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Modeling of Rayleigh-Taylor mixing using single-fluid models
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Turbulence mixing models of different degree of complexity are investigated for Rayleigh-Taylor mixing
flows with reference to high-resolution implicit large eddy simulations. The models considered, in order of
increasing complexity, comprise the (i) two-equation K-L, (ii) three-equation K-L-a, (iii) four-equation K-L-a-
b, and (iv) Besnard-Harlow-Rauenzahn (BHR-2). The above models are implemented in the same numerical
framework to minimize the computational uncertainty. The impact of the various approximations represented by
the different models is investigated for canonical one-dimensional (1D) Rayleigh-Taylor mixing and for the more
complex (2D on average) case of the tilted-rig experiment, aiming to understand the balance between accuracy
and complexity. The results provide guidance on the relative merits of various turbulence models over a variety
of conditions.
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I. INTRODUCTION

The Rayleigh-Taylor (RT) instability occurs in a wide
range of variable-density flows, both natural and human-
made, including inertial confinement fusion (ICF) [1,2], cav-
itation [3], combustion [4], astrophysics [5–8], and geophysi-
cal flows [9].

Although significant progress has been made in under-
standing RT mixing by using different simulation approaches,
including direct numerical simulation (DNS) and large eddy
simulation (LES), these approaches remain computationally
expensive for complex applications such as ICF at high
Reynolds numbers [10–22]. For complex applications, tur-
bulence models based on transport equations, which predict
the “average” behavior of the turbulent mixing zone, are
employed. Turbulence models allow for larger time steps and
coarser computational grids than DNS and LES. Further-
more, for cases where the average behavior has homogeneous
directions, the computational cost can be further reduced
by performing calculations in preferential directions. Due
to the ensemble averaging of the second- and higher-order
correlations of turbulent fluctuations, additional terms arise
that require modeling. The modeling assumptions and closure
coefficients are validated and calibrated through comparisons
with experiments but increasingly through comparisons with
high-resolution simulations because quantitative experimental
data are limited.

Turbulence mixing models can be classified into three
categories. The simplest models are called buoyancy drag
models [23–26] and use ordinary differential equations to
evolve the width of the mixing layer. The bubble, or spike,
amplitudes are described by balancing the inertia, buoyancy,
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and drag forces. These models cannot model multiple mixing
interfaces; cannot be easily extended to two and three dimen-
sions; and, as a rule, do not address demixing, also known as
countergradient transport, i.e., reduction of total fluid masses
within the mixing zone. To address the above problems, two-
fluid (or multi-fluid) models have been proposed [27–30].
They use a separate set of equations for each fluid in addition
to the main flow equations and provide an accurate modeling
framework for demixing by correctly capturing the relative
motion of the different fluid fragments. An intermediate class
of models are the single-fluid models [31–34]. They consist of
evolutionary equations for the turbulence kinetic energy and
its dissipation rate or equivalent turbulence length scale.

A more advanced version of the single-fluid models is
the Besnard-Harlow-Rauenzahn (BHR) model [35]. The BHR
model is based on the evolution equations arising from
second-order correlations and gradient-diffusion approxima-
tions. Using a mass-weighted averaged decomposition, the
original BHR model includes full transport equations for
the Reynolds stresses, turbulent mass-flux velocity, density
fluctuations, and the turbulence kinetic energy dissipation
rate. Several efforts were made to simplify the resulting equa-
tions. A three-equation variant was proposed for RT, Kelvin-
Helmholtz (KH), and Richtmyer-Meshkov (RM) flows [36].
A second-moment closure implementation was also presented
by Schwarzkopf et al. [37]. In the present study, the four-
equation variant, known as the BHR-2 model [38], was
employed. The BHR-2 model is also investigated here in
conjunction with the modified species turbulent diffusion term
[39], which can improve accuracy in demixing.

Despite the aforementioned efforts, there is still an uncer-
tainty over the optimum choice of turbulence models, a lack
of systematic comparison between the different models, as
well as room for significantly improving the models accuracy
across flow regimes. In this study, specific modifications to the
original models that result in improved accuracy are proposed.
A systematic comparison of the accuracy of the different
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models is presented for canonical planar RT flows [16,18] and
the tilted-rig experiment [27,40].

II. TURBULENCE MIXING MODELS

The first step for the development of turbulence models is
to perform Reynolds averaging of the governing equations and
Favre averaging of the resultant terms. As in previous studies
[27–29,31,32,36,38], high-Reynolds-number applications are
considered where turbulent viscosity, conductivity, and diffu-
sivity are large compared to molecular values.

The resulting modeled governing equations of the mixture
are given by:

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj

= 0, (1)

∂ρ̄ũi

∂t
+ ∂

∂xj

(ρ̄ũi ũj + p̄δij ) = ∂τij

∂xj

+ ρ̄gj , (2)

∂ρ̄Ẽ

∂t
+ ∂ (ρ̄Ẽ + p̄)ũj

∂xj

= ∂τij ũi

∂xj

+ ρ̄ũj gj

− ∂qj

∂xj

+ ∂

∂xj

(
μt

NK

∂K

∂xj

)
, (3)

∂ρ̄F̃

∂t
+ ∂ρ̄F̃ ũj

∂xj

= −∂Jj

∂xj

, (4)

where variables labeled by “bar” and “tilde” denote Reynolds
and Favre averages, respectively; ρ is the density; ui are the
velocity components; F is the mass fraction; and E is the
total energy. The repeated index j implies summation over
the dimensions (i, j ) = 1, 2, 3; gj is an external acceleration
in the direction of dimension j ; and μt is the eddy viscosity.

The perfect gas assumption is employed, p̄ = ρ̄R∗T̃ ,
where R∗ is the mixture specific gas constant and T̃ is the
Favre-averaged static temperature corresponding to the static
pressure (conditions) of the mixture.

The Favre-averaged total energy is obtained from the sum
of the Favre-averaged internal energy, kinetic energy, turbu-
lence kinetic energy, and potential energy:

Ẽ = ẽ + ũkũk

2
+ K + gjxj , (5)

where ẽ = p̄/(γ − 1)ρ̄ is the Favre-averaged internal energy
per unit mass.

Using the isobaric assumption for the thermodynamic clo-
sure of the mixture [41], the heat capacity ratio of the mixture
γ is calculated by:

γ = 1 + 1∑N
n=1

fn

γn−1

, (6)

where N is the total number of the species and γn is the
heat capacity ratio of a component n. The volume fraction of
species n, fn, is calculated by:

fn = Fn/Mn∑N
m=1 Fm/Mm

, (7)

where Fn and Mn are its mass fraction and molar mass,
respectively, and

∑N
m=1 fm = 1.

The turbulent diffusion terms are adjusted using dimen-
sionless scaling factors such that Nh and NF correspond to

the turbulent Prandtl (Prt = cpμt/κt ) and Schmidt (Sct =
μt/(ρDt ) numbers, respectively. Note that the turbulent trans-
port (diffusion) of the turbulence kinetic energy is also ac-
counted for in Eq. (3).

There are also extra terms arising from the Favre averaging
that need to be modeled: (i) the Reynolds stress tensor τij ≡
−ρu′′

i u
′′
j , (ii) the turbulent viscosity μt , and (iii) the den-

sity weighted turbulence kinetic energy K ≡ k̃ = ũ′′
ku

′′
k/2 =

ρu′′
ku

′′
k/2ρ̄ = −τii/2ρ̄.

The transport equation for the Favre-averaged turbulence
kinetic energy is given by:

∂ρ̄K

∂t
+ ∂ρ̄Kũj

∂xj

= SK + τij

∂ũi

∂xj

+ ∂

∂xj

(
μt

NK

∂K

∂xj

)
− ρ̄ε,

(8)

where NK is the scaling factor for the turbulence kinetic
energy diffusion and ε is the dissipation:

ε = CD u3
t /L. (9)

CD is the drag coefficient and ut = √
2K is the turbulent

velocity. Equation (8) varies across models depending on
the formulation of the turbulence kinetic energy production
source term, SK .

For the turbulent transport terms in the mass fraction and
total energy equations, the diffusivities of all species are
assumed to be the same [42]. Assuming Fickian diffusion, the
turbulent mass flux of species n is given by:

Jn,j = − μt

NF

∂F̃n

∂xj

(10)

and for the case of two fluids:

Jj ≡ J1,j = −J2,j = − μt

NF

∂F̃

∂xj

. (11)

The internal energy flux, qj [43,44], is obtained from
adding the interdiffusional enthalpy flux:

qd
j =

N∑
n=1

h̃nJn,j , (12)

where h̃n is the specific enthalpy of species n and the turbulent
heat conduction flux, qc

j :

qc
j = −ρ̄DT cp

∂T̃

∂xj

, (13)

where cp is the mixture’s specific heat capacity at constant
pressure:

cp =
N∑

n=1

cpnFn.

If the heat conductivity, DT , is set equal to the species turbu-
lent diffusivity, μt/(ρ̄NF ), and the fluid species have constant
specific heats, then the internal energy flux is simplified
(see Kokkinakis et al. [42]) as

qj = qd
j + qc

j = − μt

NF

∂h̃

∂xj

, (14)
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where h̃ = γ ẽ is the Favre-averaged specific enthalpy of the
mixture. Equations (11) and (14) are used in the averaged
governing equations of the species mass fraction (4) and total
energy (3), respectively.

The set of equations is completed by an equation for the
turbulence length scale, L ≡ CDK3/2/ε [37]:

∂ρ̄L

∂t
=−∂ρ̄Lũj

∂xj

+CLρut + CCρ̄L
∂ũj

∂xj

+ ∂

∂xj

(
μt

NL

∂L

∂xj

)
,

(15)

where on the right-hand side the second, third, and last terms
are used to model production, compressibility effects, and tur-
bulent diffusion, respectively, where CL = 1 and CC = 1/3.
The rest of the model constants are given in the Appendix.

The eddy viscosity is calculated by:

μt = Cμρ̄utL, (16)

where Cμ is a constant.
All turbulence mixing models are calibrated using the

full Reynolds stress tensor based on the Boussinesq eddy-
viscosity assumption:

τij = μt

(
∂ũj

∂xi

+ ∂ũi

∂xj

− 1

3

∂ũk

∂xk

δij

)
− 2

3
ρ̄Kδij . (17)

A. K − L model

The K-L model was proposed by Dimonte and Tipton [32]
for describing the turbulent self-similar regime of RT and RM
induced mixing. The starting point for deriving the model
equations are the buoyancy-drag models for the self-similar
growth of RT and RM instabilities [23,25]. Here an improved
version of the model proposed by Kokkinakis et al. [42] is
used based on the following modifications: (i) a transport
equation for the total energy, Eq. (3), instead of the internal
energy; (ii) the turbulent diffusion of specific enthalpy instead
of internal energy in Eq. (3); (iii) the implementation of the
source term (SK ) in Eq. (8) based on the mean flow and turbu-
lence timescales; and (iv) the calculation of the local Atwood
number based on higher-order numerical approximations.

B. K − L − a model

The three-equation model of Morgan and Wickett [45] was
developed as an extension to the two-equation K-L model of
Dimonte and Tipton [32] by including a third equation for the
turbulent mass-flux velocity, ai ≡ ρ ′u′

i/ρ̄ = −u′′
i .

The production source term of the turbulence kinetic en-
ergy is given by:

SK = CBaj

∂p̄

∂xj

, (18)

and the governing equation for the mass-flux velocity is
written as

∂ρ̄ai

∂t
= −∂ρ̄ũj ai

∂xj

+ b
∂p̄

∂xi

+ τij

ρ̄

∂ρ̄

∂xj

+ ∂

∂xj

(
μt

Na

∂ai

∂xj

)
− CDaρ̄ai

ut

L
. (19)

The density-specific volume covariance, b ≡ −ρ ′(1/ρ)′, is
a (positive) measure of the molecular mixing state of the mix-
ture. An algebraic expression generalized for an n-component
mixture and includes an added-mass correction factor, c,
is [45]

b = ρ̄

∑
n

fn

ρn+cρ̄∑
n

fnρn

ρn+cρ̄

− 1, (20)

where c is determined from the implicit large eddy simula-
tions (iLES). For perfectly molecularly mixed fluids b = 0,
whereas for two immiscible fluids, b attains a maximum value
given by a simple two-fluid formulation [36]:

b = f1f2
(ρ1 − ρ2)2

ρ1ρ2
, (21)

where f1 and f2 are the volume fractions associated with the
fluids composing the binary mixture and can be obtained by
setting c = 0 in Eq. (20). Positive values of c allow for some
adjustment to the maximum value of b. Neither a miscible
fluids formulation for the algebraic estimation of b nor the
added-mass correction factor, c, is known.

Morgan et al. [46] have recently extended the K-L-a model
to include a second length-scale equation, which relies on
separating the turbulence transport (Lt ≡ L) and turbulence
destruction (Ld ) length scales. This is similar to the work
carried out by Schwarzkopf et al. [47] for the BHR-3.1
model. The two-length-scale approach is necessary in order to
simultaneously capture the growth parameter and turbulence
intensity of a Kelvin-Helmholtz shear layer when model coef-
ficients are constrained by similarity analysis.

C. K − L − a − b model

We have extended here the K-L-a model by adding an
evolution equation for the density-specific volume covariance
(b). Examining Eq. (19) shows that b governs the primary pro-
duction mechanism of the turbulent mass-flux and, therefore,
needs to be modeled accurately to reflect the effects of the
changes in the density fluctuations [38].

The governing equation for b employed here is similar to
the BHR-2 model [38,48,49], but with the redistribution term
omitted, as per Morgan and Wickett [45] with respect to a in
Eq. (19):

∂ρ̄b

∂t
= −∂ρ̄ũj b

∂xj

− 2(b + 1)aj

∂ρ̄

∂xj

+ ρ̄2 ∂

∂xj

(
μt

ρ̄2σb

∂b

∂xj

)
− CDb

ut

L
b, (22)

where the remaining terms on the right-hand side are the
advection, production, turbulent diffusion, and destruction
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terms, respectively. The K-L-a-b is essentially a reduced form
of the BHR-2 model presented in the next section.

D. BHR-2 model

The basic formulation for the BHR model can be found
in the paper by Besnard et al. [48] but several variants have
also been proposed. The BHR-2 variant, considered in this
study, uses an algebraic closure for the Reynolds stresses
and the gradient diffusion approximation for the turbulent
fluxes. An extensive review of the BHR-2 model can be found
in Refs. [38,49,50]. The model introduces several additional
terms in the governing equations of the turbulence length scale
(L), turbulent mass-flux velocity (ai), and density-specific
volume covariance (b).

For the turbulence length scale, the model omits the com-
pression term but adds two additional terms associated with
net production:

∂ρ̄L

∂t
= right-hand side [ of (15)] − CCρ̄L

∂ũj

∂xj

+ L

K

[
CL4

(
aj

∂p̄

∂xj

)
+ CL1

(
τij

∂ũi

∂xj

)]
, (23)

where CL4 = (3/2 − C4) and CL1 = (3/2 − C1).
For the turbulent mass-flux velocity, an additional produc-

tion term and a redistribution term are included:

∂ρ̄ai

∂t
= right-hand side [of (19)]

−CBaρ̄aj

∂ (ũi − ai )

∂xj

+ CRaρ̄
∂aiaj

∂xj

. (24)

Finally, a redistribution term is also included for the
density-specific-volume covariance:

∂ρ̄b

∂t
= right-hand side [of (22)] + 2CRbρ̄aj

∂b

∂xj

. (25)

In this study, the model is implemented in conjunction with
the total energy (Ẽ) instead of the specific internal energy
(ẽ). This is similar to the BHR-3 model [37,48] and its two-
length-scale variant BHR-3.1 [47]. Using the same equation
for Ẽ for all turbulence models considered here allows for a
more meaningful and direct comparison between the different
turbulence models to be carried out.

The gradient diffusion approximation (GDA) is typically
used to model the turbulent transport terms; for the species
mass fraction it is defined as:

− ∂

∂xj

(ρu′′
jF

′′) = ∂

∂xj

(
μt

NF

∂F̃

∂xj

)
. (26)

Bertsch and Gore [39] developed a modified species turbu-
lent diffusion (MSTD) term and applied it in the framework of
the second moment closure BHR-3.1 model. MSTD enables
counter gradient transport and can model demixing in both
BHR-3 and BHR-3.1 models. According to Ref. [39], the
turbulent transport term on the right-hand side of Eq. (4) can
be formulated in the incompressible limit as:

− ∂

∂xj

(ρu′′
jF

′′) =
(

ρ1ρ2

ρ2 − ρ1

)
∂aj

∂xj

. (27)

MSTD requires the turbulent mass-flux velocity (ai) and
partial densities, therefore, it can be implemented in any
model that includes a transport equation for ai . Results for
the BHR-2 model using the MSTD, as well as the GDA
(with and without the SF limiter), are shown in relation to the
tilted-rig case only because the results were identical for the
one-dimensional (1D) problem.

E. Implementation details

The realizability conditions of Vreman et al. [51] are
imposed on the Reynolds stresses:

τii � 0, |τij | � (τiiτjj )1/2

det(τij ) � 0, |τij | � 2ρ̄K, (28)

where the Reynolds stress tensor is τij ≡ −ρu′′
i u

′′
j .

Since all the models investigated employ the (Boussinesq)
eddy-viscosity assumption for modeling τij , and the GDA for
modeling the turbulent transport terms, excessive turbulent
diffusion can occur in locations of the flow that exhibit strong
two-dimensional behavior. This can be interpreted as an over-
estimation of the turbulent diffusion in the direction normal to
the local shear. Thus, in all of the two-dimensional simulations
performed here, the turbulent viscosity is calculated by:

μt = SF (Cμρ̄utL), (29)

where

SF = 1 − |ũl|
|ũm| + (1 − sf )(|ũl| + ut )

,

and ũm and ũl are the local velocities parallel and normal
to the direction of the flux, respectively; the subscript index
corresponds to Eqs. (1)–(4) according to m = j and n �= j .
Finally, sf is given by

sf = min(1, |ũj + ut |/c̃),

where c̃ = √
γ p̄/ρ̄ is the local speed of sound. Note that for

computational stability, it is recommended to limit SF above
zero, i.e., SF = max(0.01, SF ). The turbulent viscosity limiter
SF acts to reduce the turbulence diffusion via a reduction in
the magnitude of the turbulent viscosity μt when velocity
shearing is large. This can be partly justified by the smaller
Cμ value required for modeling Kelvin-Helmholtz induced
mixing, where typically a value of 0.09 is used [32].

Assuming a Cartesian grid, the local time-step size is
calculated by:

�tl = �x

c̃ + ‖ũ‖ + uD

, (30)

where ‖ũ‖ =
√

ũ2
i and i implies summation. The above for-

mula takes into account the maximum turbulent diffusion ve-
locity (uD). This term needs to be included in the calculation
of the global time step in order to maintain numerical stability;
uD is given by:

uD = μt

ρ̄
× max

( |∂φ/∂xi |
Nφφ

)
, (31)
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where φ denotes h̃, K , or L. The global time step for updating
the solution at each time iteration is the minimum local time-
step value calculated in the domain, i.e., �t = min (�tl ).

The inclusion of uD in the calculation of the time-step size
is particularly important in the case of large values of turbulent
viscosity and in the regions of steep gradients for quantities
such as h̃, K , or L. For example, for simulations with CFL =
0.2 and without using uD , the results become erroneous at late
times of the mixing process, e.g., the total turbulent kinetic
energy (TKE) begins to decrease. This behavior cannot be
rectified by simply reducing the CFL number, as this would
be case dependent. Including uD in the definition of the time
step reverts the total TKE to the correct physical behavior,
even for larger CFL values, e.g., CFL = 0.3.

The models presented in the preceding sections have been
numerically implemented using a finite volume Godunov-type
[52] upwind, shock-capturing method in conjunction with

(i) the isobaric mixture assumption to estimate the heat
capacity ratio of the mixture Eq. (6);

(ii) the fifth-order MUSCL scheme [53] in combination
with a low Mach correction [54] for reconstructing the vari-
ables [ρ̄(1 − F̃ ), ρ̄ ũ, p̄, ρ̄F̃ , ρ̄K, ρ̄L];

(iii) the HLLC Riemann solver [55] based on the pressure-
based wave speed estimate method for the solution of the
numerical intercell flux estimation;

(iv) a third-order total-variation-diminishing (TVD)
Runge-Kutta scheme for time integration; see Refs. [56–59]
and references therein.

The above numerical framework does not cause spurious
numerical oscillations at the fluid interface, including the case
of different heat capacity ratios (γ1 �= γ2) [42].

III. 1D RAYLEIGH-TAYLOR MIXING

The turbulence models have been applied to the simulation
of simple 1D RT mixing cases with a 3:1 density ratio (ρ1 =
3 g/cm3 and ρ2 = 1 g/cm3). The computational domain ex-
tends [−8, 20] cm with the heavy fluid placed on the left
side of the domain and the initial interface at x = 0. Unless
otherwise stated, the computational grid consists of 100 cells
and the adiabatic exponent is γ = 5/3 for both fluids. The
following relation is satisfied in all cases A0g = 1; thus for the
3:1 density ratio the gravitational acceleration is g = 2 cm/s2.

It is essential to first demonstrate correct behavior of the
models for this simple 1D case before more complex problems
such as the tilted-rig experiment are considered. Calibration
of the models has been performed to match experiments
corresponding to α ∼ 0.06. Additionally, the models are vali-
dated against iLES data across a range of mixing parameters.
Following Kokkinakis et al. [42], calibration of the models
is achieved by adjusting the models coefficients to match
iLES data. The calibration also takes into account numerical
dissipation effects. Subject to careful calibration against iLES
data, all models are expected to provide very similar results
for the simple 1D RT case.

Comparisons between the models are presented for the
volume fraction (VF) and turbulence kinetic energy (K) pro-
files vs. X/W , as well as for the evolution of the mixing
width (W ) and maximum turbulence kinetic energy (Kmax) vs.
self-similar time (A0gt2). The integral mixing width is defined

by W = ∫
f̃1f̃2dx, where f̃1 is the dense fluid volume fraction

and for a binary mixture f̃2 = 1 − f̃1. For self-similar turbu-
lent mixing at a given density ratio, both W and Kmax grow at
a constant rate equivalent to A0gt2.

The flow properties are identical to those previously used
in Ref. [42]. The two fluids are considered to be in isen-
tropic hydrostatic equilibrium, i.e., ũ = 0 and p̄/ρ̄γ = const
within each fluid, where γ is the ratio of the specific heats
(γ = cp/cv).

For the single-fluid turbulence mixing models, within the
mixing zone, simple approximations are used to initialize the
turbulence variables:

K0 = |A0|gxη0, L0 = η0

ax0 =
√

K0/4, b0 = 10−8 (32)

where A0 is the initial Atwood number and η0 is the perturba-
tion standard deviation of the initial mixing layer σ ≈ ελmax,
where for α = 0.06 in Ref. [16], ε = 0.005 and λmax is half
the width of the domain (direction parallel to initial material
interface). For a box width of 15 cm, η0 = 0.00375 cm.

A. iLES results

A complete description of the iLES can be found in [16].
The iLES results have been obtained using a Lagrange-remap
hydrocode [60] called TURMOIL, which calculates the mix-
ing of compressible fluids. The hydrocode solves the Euler
equations in conjunction with advection equations for fluid
mass fractions.

As in previous iLES studies of RT mixing, the present iLES
[16] were conducted by assuming that the Reynolds number
is high enough to have little effect on the main quantities and
that the flow is beyond the mixing transition as defined by
Dimotakis [61] in order for the effect of the Schmidt number
to become important. For RT mixing, a suitable definition of
the Reynolds number is Re = h1ḣ1/ν, where h1 is the extent
of the mixing zone and ν is the kinematic viscosity. According
the experimental results (see Refs. [61,62] and references
therein) the mixing transition corresponds to Re ∼ 104. The
results shown in this paper are applicable to high-Reynolds-
number mixing in which Re exceeds 104.

The iLES results of Ref. [16] are obtained from very high
resolution simulations, typically using 2000×1000×1000
size grids, and it is argued that the results used are grid
converged to the point that the effect of the unresolved scales
is negligible. For some of the cases considered in Ref. [16],
DNS results are also available [18,63] and are very close to
iLES.

If mixing is self-similar, then dimensional reasoning sug-
gests that the length scale should be proportional to gt2. In the
RT test case, the depth at time t to which the turbulent mixing
zone extends into the denser fluid 1 is given by:

h1 = αAtgt2, (33)

where ρ1 and ρ2 are the densities of the two fluids, g is
the acceleration, α is a constant for self-similar mixing, and
At = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number.

Experiments using incompressible fluids with low vis-
cosity, low surface tension, and random initial perturbations
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FIG. 1. Self-similar growth of W (cm) and Kmax(cm2/s2).

reveal that the dominant length scale increases as mixing
evolves. For RT experiments α ∼ 0.04 to 0.08; however, when
LES or DNS are performed using ideal initial conditions based
on small random short-wavelength perturbations, much lower
values of α ∼ 0.026 are obtained [6,16]; this is attributed to
the influence of initial conditions. The iLES results [16] used
for the models calibration and validation have initial long-
wavelength random perturbations at the interface (multimode
planar RT mixing) that gives α ∼ 0.06.

B. Turbulence mixing models results

The self-similar growth rate parameters of the integral mix-
ing width (W ) and maximum turbulence kinetic energy (Kmax)
are important physical quantities describing the mixing layer
evolution, and it is paramount they are accurately predicted
during model calibration. The theory in the self-similar regime
of the RT instability indicates that the bubble distance hb

is given by hb = aAtgt2; hb is defined as the most extreme
location, where the light fluid penetrates the heavy fluid and
is of at least 1% volume fraction. The self-similar RT mixing
is typically used for models calibration [42]. Model constants
are chosen here to give a = 0.06 and the overall degree of
molecular mixing and fraction of turbulence dissipated is
provided by iLES [16]. W and Kmax distributions are pre-
sented against aAtgt2 rather than t because their self-similar
behavior results in a straight line under such scaling.

According to DNS [64], the divergence of velocity is not
zero. It is then argued that in RT flows, the mean velocity is
purely dilatational and arises solely due to molecular mixing.
At very early times, when the density gradients are steep,
the mean velocity is important. However, after the early flow
development, the Reynolds mean velocity is small so that
ũx ≈ ax . Therefore, the models are calibrated to give ũx ≈ ax .
The models coefficient calibration for fluids mixing at an
Atwood number of 0.5 (density ratio 3:1) is given in the
appendices in Tables III and IV. All models predict the correct
self-similar growth (Fig. 1).

Figures 2(a) and 2(b) show the f̃ and K profiles, respec-
tively, at two time instants for the RT case with density ratio
3:1 and initial interface pressure p0i = 250 dyn/cm2. The
iLES results (t = 10s) have been spatially averaged to allow
comparisons with the 1D turbulence model calculations.
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FIG. 2. Profiles of (a) f̃ and (b) K vs. X/W at t = 10 s.

The f̃ profile obtained from the different models is almost
identical and in excellent agreement with iLES and requires
no further investigation.

With respect to K , all models predict similarly the max-
imum value and its location, as well as the shape of the
profile. The maximum K value (Kmax) is predicted within
4% of the reference averaged iLES solution in all cases. Few
minor discrepancies are noticeable. The BHR-2 model under-
predicts the magnitude of K on the light-fluid dominated side
(X/W > 0) near the vicinity of the peak value (Kmax), while
the rest of the models overpredict it on the heavy-fluid domi-
nated side. Overall, the best agreement with iLES is obtained
using the BHR-2 model.

The three- and four-equation models are calibrated to give
aj ≈ ũj for RTI mixing according to Livescu et al. [64].
Note that for 1D incompressible RT flow, ū should be zero,
and hence a equals ũ. The results for the turbulent mass-
flux velocity (ax) and density-specific volume covariance (b)
at t = 10 s, Figs. 3(a) and 3(b), respectively, show that all
models give very similar results.

All models accurately predict both the maximum value and
spatial profile of ax , as well as satisfy ax ≈ ũ for incompress-
ible RT mixing. For the K-L model, the mass-averaged veloc-
ity (ũ) agrees reasonably well with the predictions obtained
by the rest of the models and the iLES, with the peak ũ value
being within 5%. For clarity only the BHR-2 model result of
ũ is additionally shown in Fig. 3(a).
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FIG. 3. Profiles of (a) ax and (b) b vs. X/W at t = 10 s.

Note that for the K-L-a model the added-mass correction
factor in Eq. (20) was set to c ≈ 2.04, based on the 1D
averaged iLES data where bmax occurs.

The models estimated distribution of b at t = 10 s
[Fig. 3(b)] is also very accurate. The location of bmax is
slightly shifted towards the light-fluid dominated side of the
mixing layer for the three-equation K-L-a model, whereas
both of the four-equation models give a much better agree-
ment with the iLES result.

Figure 4 shows that the maximum value of b attains
an approximately constant value corresponding to the self-
similar state. In the transport equation of b, the three- and

t [s]

b
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FIG. 4. Time evolution of bmax for self-similar RT mixing.
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FIG. 5. Time evolution of W (cm) and Kmax(cm2/s2) for RT
mixing using the BHR-2 model; effect of grid resolution.

four-equation mixing models include a source (production)
term corresponding to the entertainment of unmixed flu-
ids into the mixing layer and, for miscible fluids, a dis-
sipation term corresponding to the destruction caused by
molecular mixing. For self-similar mixing, there is a balance
between these two processes in so that the value of b at the
center of the mixing layer approaches an approximately con-
stant value. The added-mass correction factor “c” in Eq. (20)
allows for the adjustment of the maximum attainable value of
bmax to account for miscibility.

According to Eq. (21), the maximum (immiscible) value
for bmax is 1/3. However, this value is filtered out during the
1D spatial averaging of the 3D iLES data, thus the maxi-
mum value attained after the 1D averaging is bmax ≈ 0.205
(t ≈ 2 s).

A grid convergence study was performed for the BHR-2
model using three grids composing of Nx = 100, 200, and 400
cells. The reduction in the numerical dissipation associated
with the grid size is apparent only at the early stages of the
simulation until the turbulent viscosity of the model becomes
large enough to surpass that caused by the numerical dissipa-
tion of the convection terms. This is evident both in the inte-
gral mixing length (W ) and the maximum turbulence kinetic
energy (Kmax) in Fig. 5. For Nx = 100, the self-similar growth
of the BHR-2 is hindered due to the excessive numerical dif-
fusion associated with the coarseness of the grid. Nonetheless,
the model shows a clear grid convergence behavior from Nx =
200 to 400 cells. Thus, grid resolution affects the BHR-2
growth rate only at the early stages of the simulation. Once the
turbulence viscosity becomes sufficiently large, the targeted
self-similar growth rate is achieved.

Calculations using the BHR-2 model were also performed
for different initial pressures at the interface in order to
assess the incompressibility limit of the model, as well as
various heat capacity ratios, and no effect on the results worth
commenting was found (plots not shown here).

All models provide similar results for the simple 1D RT
problem. The differences with respect to iLES for the mixing
width and the maximum turbulent kinetic energy are less
than 5%. Small differences between the models and iLES are
shown only in the spatial profiles near the edges of the mixing
layer.
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TABLE I. Tilted-rig case properties.

Acceleration (gz) 0.034335 cm/ms2

Heavy fluid density (ρ̄H ) 1.89 g/cm3

Heavy molecular mass (MH ) 246.77673 g/mol
Light fluid density (ρ̄L) 0.66 g/cm3

Light molecular mass (ML) 86.176 g/mol
Adiabatic index (γH = γL) 5/3

IV. TILTED-RIG RAYLEIGH-TAYLOR MIXING

The tilted-rig test case originates from a series of exper-
iments [27,40] performed at the Atomic Weapons Establish-
ment in the United Kingdom in the late 1980s to study the
mixing between two variable density fluids induced by the
Rayleigh-Taylor instability. In the experiment, a tank con-
taining two fluids of different densities, a heavy fluid placed
in a tank below a lighter fluid (a stable configuration), is
accelerated downwards between two parallel guide rods by
firing rocket motors. The downward acceleration caused to the
tank, effectively changes the direction of “gravity” (external
body force) so that the system becomes RT unstable, causing
the two fluids to mix. The acceleration from the rocket motors
was not constant but averaged approximately 35 times normal
gravity. It eventually attains a roughly constant value, but
the time during which the acceleration varied is significant
and still needs to be considered. One approach is to directly
incorporate the measured values into the simulation [i.e., a
variable gravity g(t )]. This works well for incompressible
Navier-Stokes solvers; however, it can create problems for
compressible codes. An alternative approach [65] is to make
use of a constant acceleration for which a nondimensional
time, τ , is used for comparison with experimental results:

τ =
∫ √

Atgz

Lx

dt + δ.

For the constant gravity case δ = 0. Andrews et al. [65]
demonstrated that iLES with constant g gives a correct rep-
resentation of the experiment subject to the above scaling.
Following Refs. [16,65], all simulations conducted here use
a constant g, thus providing consistent comparisons. Further-
more, the above time scaling enables the comparisons with
experiments or incompressible simulations available in the
literature. The reader is referred to the experimental images in
Refs. [16,65] to make qualitative comparisons with the present
results.

The material interface is inclined (tilted) by a few de-
grees (5.76667◦) off the vertical axis to force a large scale
two-dimensional overturning motion. Several computational
studies using DNS, iLES, and RANS have been carried out
for the tilted-rig experiment, e.g., Refs. [18,49,50,65–67]. The
iLES results used here are very similar to those given in
Refs. [16,65], see Figs. 6–8 in the next section, for example.
References [16,65] also provide a detailed comparison of the
3D simulations with the experimental images.

Test case 110 from Refs. [40,65] has been considered
in this study. The parameters for computing this case are

TABLE II. Tilted-rig domain size (cm) and grid size.

Grid Lx Lz Ly Nx Nz Ny

RANS 15 24 — 200 320 —
iLES 15 24 15 600 960 600

summarized in Tables I and II. The density of the heavy
and light fluids is ρH = 1.89 g/cm3 and ρL = 0.66 g/cm3,
respectively. The Atwood number is At = (ρH − ρL)/(ρH +
ρL) ≈ 0.48. A near incompressible flow is obtained by using
a perfect gas equation of state for each fluid (γ = 5/3) and
a sufficiently high initial interface pressure (20 bar). The vol-
ume fractions are calculated by Eq. (7) assuming MH/ML =
ρH/ρL. The pressure Poisson equation is solved in order to
obtain the initial pressure distribution [65]. The turbulence
mixing models and iLES simulations described below use a
constant vertical acceleration of gz = 0.034335 cm/ms2, as
suggested in Ref. [65] for compressible solvers.

The iLES initial condition is used to obtain the appropriate
averaged mean flow quantities. The models are initialized
similarly to the 1D RT simulations according to Eq. (32);
however here A0 ≈ 0.517 and g = gz = 0.034335 cm/ms2.
Additionally, since the initial material interface is “diffuse”
(grid resolved), the density-specific volume covariance in the
mixed cells is calculated using the two-fluid formulation,
Eq. (21), which is consistent with unmixed fluids at t0. The
calibrated values of the models constants from the 1D RT case
are used, since the Atwood number between the two cases is
similar.

A. iLES results

Youngs [18] demonstrated that subject to sufficient grid
resolution for capturing fine-scale structures within the mix-
ing zone, both iLES and DNS give very similar results for
quantities such as the mean volume fractions, molecular mix-
ing parameter, and turbulence kinetic energy. Hence, iLES
was employed in this study to compute the high-Reynolds
behavior of integral properties.

In order to further minimize the numerical uncertainty, we
have performed iLES using two different discretization meth-
ods in the framework of two different computational codes:
TURMOIL, presented in Sec. III A, and CNS3D [11,68].
The latter employs the same numerical methods as those
implemented for the turbulence mixing models to solve the
Euler equations.

Simulations were performed on a 600×600×960 grid and
the results were averaged in the (periodic) y direction. In
the x and z directions, a reflective (inviscid wall) boundary
condition was imposed. The Mach number is M = 0.25,
while the Reynolds number is assumed to be Re → ∞, and
hence Schmidt number effects are neglected [61].

Let φ̄ be the average of φ in the y direction such that
φ̄ = φ − φ′; the Favre average φ is given by φ̃ = φ − φ′′,
where φ̃ = ρφ/ρ̄; the molecular mixing parameter (θ ) is
calculated by:

θ = (f1f2)/(f̄1f̄2). (34)
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FIG. 6. Contour plots of f̄ , θ , and k̃ at τ = 1.741 using [(a)–(c)] TURMOIL [65] and [(d)–(f)] CNS3D, respectively.

The turbulence kinetic energy (k̃) and density specific-volume
covariance (b) are calculated by:

k̃ = 1

2
ρ[(ux − ũx )2 + u2

y + (uz − ũz)2]/ρ̄ (35)

and

b = −ρ ′(1/ρ)′. (36)

Let ¯̄φ(z) denote the ensemble average of φ over the x-y
plane; then the left (spike) and right (bubble) plume penetra-
tions (Hs and Hb) measure the location where ¯̄f1 = 0.001 and
¯̄f2 = 0.001; f1 = fH and f2 = fL are the volume fractions of

the heavy and light fluids, respectively.
The integral mixing width (W ) in this case is given by:

W =
∫

f̄1f̄2 dxdz/Lx. (37)

Both iLES codes give a similar position for the location of
the plumes at the beginning (τ = 0–0.4) and at the end of the

simulation (τ ≈ 1.9) (Fig. 7). Some discrepancies appear only
in the time window of 0.4–1.9.

The integral mixing width given by TURMOIL increases
faster than CNS3D at τ < 0.5, when the Mach number is
M 
 0.1 and the inertial range is not resolved (Fig. 8). For
τ > 1.5, however, CNS3D resolves the finer scales better, thus
predicting a faster growth of W . The above agrees with the
conclusions drawn in Ref. [69] for a double vortex pairing
mixing layer. This behavior is also reflected by the larger value
of K obtained at τ = 1.741 [cf. Fig. 6(f) and Fig. 6(c)], as well
as the thickness of the turbulent mixing layer [Fig. 6(d)].

The two iLES codes provide very similar results for the
volume fraction [Figs. 6(a) and 6(d)] and local molecular mix-
ing parameter [Figs. 6(b) and 6(e)]. The largest discrepancy
appears around the location where the maximum θ occurs in
the bubble plume.

The initial slower growth of the mixing zone observed in
the compressible Eulerian code (CNS3D) leads to an accu-
mulation of potential energy. As the local Mach increases,
the stored potential energy is “released,” thus causing the
observed larger growth rate in the integral mix width (W )
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FIG. 7. Bubble and spike plumes position vs. scaled time (τ ).

at late time. Overall, the Lagrange-remap code (TURMOIL)
predicts more accurately the evolution of the mixing zone with
time.

B. Results: Turbulence mixing models

Figure 7 shows the distance of the bubble plume’s leading
edge (Hb), which forms at the lower right of the mixing layer
[see Figs. 6(a) and 6(d) for illustration]. The experimental
values plotted are obtained from Ref. [65]. The results from all
models are in good agreement with iLES. Excellent accuracy
is also achieved by all models in capturing the position of the
spike plume (Hs) that forms in the upper-left corner of the
mixing layer.

The results for the integral mixing width W (Fig. 8) show
only small differences between the models, with the K-L
and BHR-2 models being in closer agreement with iLES
(CNS3D). The difference between CNS3D and TURMOIL
is due to their different numerical dissipation properties. The
differences between the models and iLES for the mixing
width, and the position of bubble and spike plumes are no
greater than 4%.

Comparisons of the Favre-averaged mass-fraction (F̃ ) pro-
files between the models and iLES at τ = 1.741 are shown
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FIG. 8. Integral mixing width (W ) vs. scaled time (τ ).

FIG. 9. Mass fraction (F̃H ) contour plot at τ = 1.741; (a) K-L,
(b) K-L-a, (c) K-L-a-b, (d) BHR-2, and (e) iLES.

in Fig. 9. The results at earlier times are very similar. All
contour plots are normalized by a reference value, and the
isocontour levels shown here are 0.025, 0.3, 0.7, and 0.975,
unless otherwise stated. The K-L and BHR-2 models give

FIG. 10. K/Kref (Kref = 2.114 cm2/ms2) at τ = 1.741; (a) K-L,
(b) K-L-a, (c) K-L-a-b, (d) BHR-2, and (e) iLES.
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the best results for the overturning spike and bubble plumes.
None of the models seem capable of accurately predicting the
bubble plume region due to the excessive isotropic turbulent
diffusion; however, the thickness of the mass-fraction layers
across the remainder of the mixing zone is accurately cap-
tured, including the spike plume. In the planar tilted region,
where the mixing is mostly 1D (homogeneous in two direc-
tions), the differences between the models are negligible.

The K profiles are shown in Fig. 10. The K/Kref values
predicted by all turbulence models are consistent with iLES
throughout the mixing layer. The BHR-2 model predicts a
width and a shape of the K/Kref isocontours closer to iLES
than the rest of the models. In the region just above the bubble
plume (lower-right “neck”), iLES exhibits a narrow tail-like
feature corresponding to contour level 0.75 (dark gray). Apart
from the two-equation K-L model, all the other models pre-
dict a single merged region. The discrepancy is due to the
overprediction of K , hence turbulent diffusion, at the “neck”
by the three- and four-equation models, which causes the two
distinct K/Kref = 0.75 contour level regions to merge. Since
the “neck” region is highly two-dimensional, it exemplifies
whatever effect the cross-terms have on the models results,
which otherwise vanishes in the 1D simulations. In contrast,
in the region just below the spike plume (upper-left “neck”),
all models agree reasonably well with the iLES solution apart

FIG. 11. az/a
ref
z (aref

z = 0.5 m/s) at τ = 1.741; (a) K-L-a, (b) K-
L-a-b, (c) BHR-2, and (d) iLES.

from the K-L; the BHR-2 model provides the most accurate
representation of iLES. Further analysis needs to be carried
out in order to draw an accurate understanding of the models
behavior at the highly 2D “neck” regions.

The maximum vertical turbulent mass-flux velocity,
max(az), is accurately predicted by all models (Fig. 11),
with the BHR-2 model showing the closest agreement with
the iLES results at the large-scale bubble and spike plumes.
There is some uncertainty regarding the iLES statistics at late
time due to the integral length scale becoming large compare
to the spanwise domain size. This explains the patches of
large az/a

ref
z that can be observed in the iLES contour plot

[Fig. 11(d)]. Whether a larger domain size (Ly � 15 cm)
can result in additional large-az contour patches in the tilted
mixing region of the 2D-averaged iLES and form a single
merged contour level as the BHR-2 model predicts remains
to be investigated.

With regards to the b parameter, each model is found
to behave slightly differently but still provide a reasonable
estimate (Fig. 12). The algebraic formulation used in the
K-L-a model for b is evident by the uniform distribution along
the mixing layer. The added-mass correction factor value used
by the K-L-a model is set to c ≈ 2.04 here, too, despite
the different fluid partial densities compared to the 1D-RT
case. Note that Eq. (20) can be written in terms of the mass
and volume fractions only, and therefore it is independent of

FIG. 12. b/bref (bref = 0.16) at τ = 1.741; (a) K-L-a, (b) K-L-a-
b, (c) BHR-2, and (d) iLES.
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FIG. 13. ax contours at τ = 1.741; minimum (blue) −0.05 m/s,
maximum (red) 0.15 m/s; (a) BHR-2, and (b) iLES.

density. For Atwood numbers other than A � 0.5 as examined
here, the value of c would require adjustment. The K-L-a-b
model predicts a narrow band of large b in the tilted region
that can be argued to correspond to the few patches of larger b

observed in the iLES. BHR-2 is the only model that correctly
predicts the large values of b at the spike and bubble plumes
according to the reference iLES solution.

The BHR-2 model predicts with reasonable accuracy ax ,
including the area of negative countergradient mass-flux ve-
locity at the top of the tilted mixing layer (Fig. 13). However,
the model is not able to predict the positive flux in the
lower half of the tilted mixing region, where, as suggested by
Denissen et al. [50], it may account for some of the differences
in the mass-fraction contours. Furthermore, the location of the
maximum ax value, as well as the positive value at the front of
the spike plume do not agree with the reference iLES solution
either.

The effects of the MSTD proposed by Bertsch and Gore
[39] are briefly discussed below. MSTD replaces the stan-

dard Fickian-like mass-fraction turbulent transport term by
Eq. (27) and can be implemented in conjunction with any
turbulence model that includes a transport equation for the
turbulent mass-flux velocities (ai). Here the GDA and MSTD
assumptions are compared in the framework of the BHR-2
model, which has given overall the most promising results
this far.

Figure 14 shows that the MSTD term significantly im-
proves the distribution of F̃ in the bubble and spike plumes
at the expense of a slight increase of the mixing zone width.
The MSTD modification has hardly any effect on the turbu-
lence kinetic energy profiles (plots not shown here). The SF

limiter also offers some improvement to the BHR-2 model,
particularly the large 2D overturning bubble and spike plume
features; however, the best results for the mass fraction in the
plume regions (with reference to iLES) are obtained by the
BHR-2 model with the MSTD approximation.

V. CONCLUSIONS

This study examined the accuracy of two- to four-equation
(linear eddy viscosity) turbulence models for Rayleigh-
Taylor–induced turbulent mixing through comparisons with
high-resolution simulations.

By increasing model complexity in a gradual and system-
atic manner, a detailed understanding of the accuracy and
limitations of the models is obtained. Discretization of the
governing and turbulence model equations is kept consistent
across all models, thus reducing accuracy uncertainties asso-
ciated with the numerical implementation.

The main conclusions drawn from the investigation are
summarized below:

(i) The more complex tilted-rig test case was necessary in
order to reveal discrepancies between the models.

(ii) The K-L-a model [45] provides better accuracy than
the K-L model and also employs a simpler form of the turbu-
lence kinetic energy production source term. This is evident
by comparing with the production source term, SK , used in
Refs. [32,42].

FIG. 14. Mass fraction (F̃H ) at τ = 1.741; (a) BHR-2, (b) BHR-2 with SF , (c) BHR-2 with MSTD, and (d) iLES.
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TABLE III. Diffusion coefficients (all models).

Diffusion L (NL) 0.125
Diffusion K (NK ) 1.1
Diffusion h̃, F, a, b (Nφ) 1.0

(iii) The K-L-a-b model presented here is a reduced form
of the BHR-2 model. Using a model transport equation for
b provides some accuracy improvement compare to the al-
gebraic expression used by the K-L-a model, particularly in
relation to the prediction of the turbulent mass-flux velocities
and the turbulence kinetic energy results in the tilted-rig test
case.

(iv) With respect to the tilted-rig case, the BHR-2 model
performs better than K-L-a-b in the spike but worse in the
bubble plume region.

(v) The turbulent viscosity limiter (SF ) improves the
mass-fraction predictions, particularly in the plume regions of
the tilted-rig case.

(vi) The modified species turbulent diffusion term im-
proved the mass-fraction results, particularly in the large-scale
2D overturning regions of the mixing layer, without adversely
affecting the accuracy of the rest of the results.

(vii) Overall, the BHR-2 model provided the closest re-
sults to iLES in the bubble and spike plume regions.

Future work is required to address accuracy issues regard-
ing the prediction of (positive) ax in the lower half of the tilted
mixing region and to further examine the modified species

TABLE IV. Models coefficients for density ratio 3:1.

K-L K-L-a K-L-a-b BHR-2
Eddy viscosity (Cμ) 0.55 0.61 0.60 0.60
Drag (CD) 1.24 0.65 0.66 0.66
Buoyancy (CB ) 1.0 1.58 1.58 1.58
Production L 1 (CL) 1.0 1.0 1.0 0.28
Production L 2 (CL1) · · · · · · · · · 0.06
Production L 3 (CL4) · · · · · · · · · 0.48
Destruction a (CDa) · · · 1.35 1.39 1.39
Destruction b (CDb) · · · · · · 1.37 1.37
Redistribution a (CRa) · · · · · · · · · − 0.05
Redistribution b (CRb) · · · · · · · · · 0.05

turbulent diffusion term, as well as the effect of the models
cross-terms in highly 2D regions.
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APPENDIX: CALIBRATED MODELS CONSTANTS

(· · · ) indicates constants not applicable to the model.
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