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Fully resolved array of simulations investigating the influence of the magnetic
Prandtl number on magnetohydrodynamic turbulence
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We explore the effect of the magnetic Prandtl number Pm on energy and dissipation in fully resolved direct
numerical simulations of steady-state, mechanically forced, homogeneous magnetohydrodynamic turbulence in
the range 1/32 < Pm < 32. We compare the spectra and show that if the simulations are not fully resolved, the
steepness of the scaling of the kinetic-to-magnetic dissipation ratio with Pm is overestimated. We also present
results of decaying turbulence with helical and nonhelical magnetic fields, where we find nonhelical reverse
spectral transfer for Pm < 1. The results of this systematic analysis have applications including stars, planetary
dynamos, and accretion disks.
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I. INTRODUCTION

Turbulence is observed in an enormous variety of situations
but fully understood in few. When an electrically conducting
fluid is exposed to a magnetic field, the turbulent dynamics
can be described by the magnetohydrodynamic equations,
which dictate how the two main aspects of the fluid (the
velocity and magnetic fields) interact. Seminal work on mag-
netohydrodynamics (MHD) was done by Alfvén [1], earning
him the Nobel Prize. Magnetohydrodynamics offers valuable
insights into astrophysical and geophysical phenomena, in-
cluding the solar wind and the earth’s magnetic field, and
aids the development of industrial processes such as fusion
reactors [2–6].

Physical properties of a magnetofluid affect its behavior.
One such property is the magnetic Prandtl number Pm = ν/η,
where ν is the kinematic viscosity and η the magnetic resis-
tivity, which is a material property of the fluid. We may also
write Pm = Rm/Re, where Rm and Re are the magnetic and
kinetic Reynolds numbers, quantifying, respectively, the tur-
bulence of the magnetic and kinetic components of the fluid.
In nature, extreme values of Pm are commonplace: stellar
and planetary interiors are in the range Pm ∼ 10−4–10−7 and
smaller, while the interstellar medium and cosmological-scale
magnetic fields have estimated values of Pm ∼ 1010–1014

[5,7–11]. The achievable range of Pm in direct numerical
simulations (DNSs) is highly restricted because of compu-
tational requirements and is often set to one, which is not
representative of most magnetofluids. Extrapolating from sim-
ulations with Pm in the vicinity of one is often necessary
when connecting computational results to real-life applica-
tions. Nevertheless, the region around unity is not without
its applications: Black hole accretion disk models indicate
that Pm may transition from being very small in most of the
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disk to being greater than one near the center, which may
explain the change of state from emission to accretion in these
objects [12]. Estimates of Pm in the solar wind and solar
convective zone are Pm � 1 [5,13].

In this paper we present an array of 36 high-resolution
DNSs of mechanically forced, homogeneous, incompressible
magnetohydrodynamic turbulence without a mean magnetic
field, with 1/32 < Pm < 32. Additionally, we present 18
decaying simulations with 1/16 < Pm < 16, in which we test
the effect of Pm on reverse spectral energy transfer (which
includes any transfer of energy from small to large scales
that is not restricted to just the inverse cascade). With our
forced data we focus on the energy spectra, the ratios of the
total kinetic and magnetic energies EK/EM , called the Alfvén
ratio, and the kinetic and magnetic dissipation rates εK/εM .
We also discuss resolution requirements in connection with
recent theoretical findings.

In previous studies, an approximate scaling εK/εM � Pmq

was found [14,15]. The parameter q varied depending on
the magnetic helicity (which includes the knottedness of
the magnetic field and contributions from twist, writhe, and
linkage [16,17]) and whether Pm was greater than or less than
one. However, these papers only guaranteed full resolution of
one dissipation scale. In other words, the largest wave number
in the simulation, kmax, was greater than either the kinetic
dissipation wave number kν = (εK/ν3)1/4 or the magnetic
dissipation wave number kη = (εM/η3)1/4, but not both. This
is an issue because, although a system’s energy is mostly con-
centrated in the largest length scales, the dissipation spectrum
is proportional to the wave number squared. In hydrodynamic
turbulence, in order to capture 99.5% of the dissipative
dynamics, the condition kmax > 1.25kν must be fulfilled
[18–20]. This was our definition of fully resolved and in
all our forced simulations we had both 1.25kν < kmax and
1.25kη < kmax. This paper also gives an explanation for the
scaling.

Our set of forced simulations are an extensive data set
for DNS of homogeneous magnetohydrodynamic turbulence,
with 36 data points in the Re-Rm plane covering a square grid
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FIG. 1. Small circles show ν−1 and η−1 for each of the 36
simulations appearing in Figs. 2–4. The nine large circles indicate
the decaying helical and nonhelical simulations with initial spectra
peaking at k0 = 40 (see Fig. 6). The lines indicate points of constant
Pm = 2n for −5 � n � 5. The largest and smallest values of η and
ν are 0.01 and 0.000 312 5.

(see Fig. 1). Re and Rm range from approximately 50 to 2300,
allowing for a three order of magnitude range in magnetic
Prandtl number. Each point was run on a 5123 or 10243 lattice
depending on individual resolution requirements, ensuring all
data were fully resolved. This is the largest fully resolved data
set for a Pm study.

Large values of magnetic helicity encourage reverse spec-
tral transfer (RST), where energy is transferred to the largest
length scales in the system, rather than to the small dissipative
scales, as in the usual Richardson-Kolmogorov phenomenol-
ogy [21–24]. While RST does not imply an inverse cascade,
an inverse cascade is a type of RST. The second aspect of our
study covers magnetofluids with nonzero magnetic helicity.
We found RST in both helical and nonhelical turbulence down
to Pm = 1/4, increasing as Rm increased, with Re playing
little role. We thus confirm the results of recent simulations
that found RST without helicity [25–27] and have seminal
results showing RST occurring for Pm < 1.

II. SIMULATIONS

We carried out DNS of the incompressible magnetohydro-
dynamic equations

∂t u = −∇P − (u · ∇)u + (b · ∇)b + ν∇2u + f , (1)

∂t b = ∇ × (u × b) + η∇2b, (2)

∇ · u = 0, ∇ · b = 0, (3)

where u is the velocity field, b is the magnetic field in Alfvén
units, P is the total pressure, the density is constant and set to
1, and f is a random force defined via a helical basis

f (k, t ) = A(k)e1(k, t ) + B(k)e2(k, t ), (4)

where e1 · e∗
2 = e1 · k = e2 · k = 0, e1 and e2 are unit vec-

tors satisfying ik × e1 = ke1 and ik × e2 = −ke2 [28–30],
respectively, and A(k) and B(k) are variable parameters
that allow the injection of helicity to be adjusted; we chose
to force nonhelically. We solved the magnetohydrodynamic
equations numerically using a pseudospectral, fully dealiased
code (see [18,31] for details) on a three-dimensional periodic
domain. The initial fields were random Gaussian with mag-
netic and kinetic energy spectra of the form EM,K (k, t = 0) =
Ck4 exp[−k2/(2k0)2], where C is a positive real number and
k0 is the peak of the spectrum. In our forced simulations we set
k0 = 5 and forced the velocity field at the largest scales, 1 �
k � 2.5. The nature of the forcing function and the forcing
length scale do not greatly affect the dynamics [28,32]. We
also ran decaying simulations, where we were less interested
in the inertial range energy spectra and more interested in
RST, so we set the peak at k0 = 40. There was no imposed
magnetic guide field. The viscosity and resistivity of each sim-
ulation are given in Fig. 1; note that Rm � 0.65/η and Re �
0.65/ν. This value of 0.65 comes from the fact that the rms
velocity u and integral length scale L are relatively constant
during the simulations, with Re = uL/ν and Rm = uL/η.

III. RESULTS

A. Energy

Figure 2(a) shows the time-averaged compensated kinetic
energy spectra of selected simulations. In each of the three
plots the solid line represents the same simulation, with Re =
Rm � 2275 and Pm = 1. The top plot shows the spectra
of four simulations where Re and Rm were increased with
Pm = 1 kept constant. The middle plot compares data with
Rm � 2275 and Pm increasing from 1 to 32 by decreasing
Re, while the bottom plot shows data with Re � 2275 and
Pm being decreased from 1 to 1/32 via decreasing Rm.
When we increase Re but keep Pm constant, as in the top
plot, we see that less energy is stored in the large scales of
the velocity field, whereas if we increase Re but keep Rm
constant and large valued, as in the middle plot, the amount
of energy in the large-scale velocity field is slightly enhanced.
The spectrum most closely resembling the Kolmogorov k−5/3

scaling is the Pm = 1/32 run in the bottom plot, which seems
to be below the dynamo action onset threshold, and so the
magnetic field (which was initially in equipartition with the
velocity field) will eventually decay completely, leaving a
purely hydrodynamic simulation.

The corresponding magnetic energy spectra are shown in
Fig. 2(b). The spectra are most heavily influenced by Rm.
In the top and bottom plots, Rm is varied while Pm and
Re are respectively kept constant. The spectra produced in
these two plots are relatively similar except in the Rm = 73
case, where for Pm = 1 the magnetic field is sustained but
for Pm = 1/32 it is decaying. In the second plot we see that
increasing Pm with constant Rm may slightly augment the
large-scale magnetic field. While this appears to imply Pm
dependence of the energy spectra, the total energy spectra
ET (k) = EK (k) + EM (k) (equivalent to thinking in terms of
Elsässer variables) appear to depend only on the maximum of
Re or Rm and is thus independent of Pm.
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FIG. 2. Selected simulations: (a) kinetic energy spectra, com-
pensated by k−5/3, and (b) uncompensated magnetic energy spectra.
The top images show data with Pm = 1, the middle show data with
Rm � 2275, and the bottom show data with Re � 2275. In each plot
the solid line corresponds to the same simulation, with Pm = 1 and
Re = Rm � 2275.

Figure 3 shows the time-averaged Alfvén ratios as a func-
tion of Pm, grouped into sets of points with approximately
equal Rm. For fixed Rm the Alfvén ratios tend to decrease
as Pm is increased, although the slope flattens at larger Rm.
Bearing in mind that Rm doubles with each set of points, we
see that the data are converging onto an asymptotic high-Rm
limit. For all values of Pm, the ratio EK/EM decreases with
increasing Rm. These behaviors are in agreement with what
was put forward in Ref. [33].
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FIG. 3. Time-averaged Alfvén ratios of simulations grouped
according to resistivity η.

B. Dissipation

Figure 4 shows the kinetic-to-magnetic dissipation ratios
for our data set. Our Pm > 1 data collapse onto the same
line as Rm increases, implying asymptotic independence from
Rm when Pm > 1. The scalings for nonhelical MHD with
Pm < 1 and Pm > 1 that were proposed in Ref. [14] have
been indicated. Since for Pm < 1 the kinetic dissipation scale
was not properly resolved in the simulations reported in
Ref. [14], it is probable that the measurement of εK was
affected, and similarly εM when Pm > 1, so the steepness of
the scaling of εK/εM with Pm appears exaggerated for both
Pm < 1 and Pm > 1 compared to our results.

The total dissipation rate was controlled by the large-scale
energy injection and is approximately constant across all of
our simulations. In our mechanically forced simulations εM

is necessarily equal to the average net kinetic-to-magnetic
energy transfer rate, so the ratio εK/εM can be used as a
measure of the efficiency of dynamo action. Smaller values
mean more energy is being transferred to and dissipated via
the magnetic field. The collapse of our data onto one line
as Rm increases in Fig. 4 shows that there is a maximum
dynamo efficiency which is curtailed as the magnetic Prandtl
number increases; that is, although a magnetic field is more
easily sustained at large values of Pm, it receives relatively
less energy transfer from the velocity field. This is consistent
with other work from a very different direction [34,35] but
within the same Pm range that also supports a diminishing
of the dynamo. At small values of Pm, εM may far exceed εK ,
meaning that if the kinetic-to-magnetic transfer rate is not able
to match εM , any magnetic field will eventually dissipate fully.
This line onto which the data collapse has an inflexion point
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FIG. 4. Time-averaged kinetic-to-magnetic dissipation rate
ratios grouped according to resistivity η.
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FIG. 5. Comparison of the time-averaged kinetic-to-magnetic
dissipation rate in simulations on a 1283 lattice (εK/εM )128 and on
a 5123 lattice (εK/εM )512 with otherwise identical initial conditions.

about Pm = 1, however, the equivalent line when plotting
εM/εT (εT = εK + εM ) as a function of Pm shows no such
inflexion. This serves as one explanation for the origin of the
scaling behavior of the dissipation ratio.

To illustrate the importance of resolution we repeated on a
1283 lattice our simulations which had been done on a 5123

lattice (see Fig. 5). The low-resolution simulations miscalcu-
lated the dissipation ratios by up to 40%, with the biggest
discrepancies mostly occurring at high Rm. Additionally, for
Pm = 1/8, where dynamo action was not sustainable, the
low-resolution dissipation ratio was more than 3 times the
high-resolution ratio.

Analyses of triad interactions and shell-to-shell energy
transfers show that energy is transferred from the velocity field
at the forcing scale to the magnetic and velocity fields at all
scales in a way that depends on the separation between the
giving and receiving scales and the energy contained in the
involved scales, among other things [29,36–40]. Therefore, it
is reasonable to expect a consistent scaling of εK/εM with Pm
that is not affected by whether Pm < 1 or Pm > 1, as we see
in Fig. 4. Furthermore, when the velocity field is turbulent
over a larger range of scales than the magnetic field, i.e.,
kν > kη and Pm < 1, then for a given Rm there should be a
corresponding value of Pm below which more energy will be
transferred to the dissipative part of the magnetic field, k > kη,
than to k < kη. It thus seems natural that the magnetic field
would become unsustainable at some critical value of Pm, as
put forward in Ref. [34]. The coupling between the small-
scale velocity field and the large-scale magnetic field may
be key to tipping the balance in favor of sustainable dynamo
action for small values of Pm [41]. Indeed, this explains why
the Pm = 1/8 result in Fig. 5 was so large: Dynamo action in
the low-resolution simulation was suppressed.

C. Reverse spectral transfer

In Fig. 2(b) the high-Rm data have more of a buildup
of magnetic energy in the largest scales than the lower-Rm
data. Inspired by this, we move on to examining the effect of
Rm and Pm on RST by comparing simulations of decaying
magnetohydrodynamic turbulence with initially fully helical
or nonhelical magnetic fields. We performed nine pairs of
simulations covering the range 1/16 � Pm � 16 in multiples
of 4, with the extreme values of ν and η being 0.005 and
0.000 312 5 (see Fig. 1). To facilitate RST, we set the peak
of the initial energy spectra to k0 = 40.
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FIG. 6. Plot of E3(t ) normalized by E3(0) for nonhelical runs
(dashed lines) and helical runs (solid lines). Lines with diamond
points correspond to Pm = 1, upward-pointing small and large trian-
gles to Pm = 4 and 16, respectively, and downward-pointing small
and large triangles to Pm = 1/4 and 1/16, respectively.

We define the energy in the first three wave numbers of the
magnetic field as E3(t ) = ∫ 3

0 EM (k, t )dk. Since the system is
not subject to an external force, then if E3(t ) is constant or
increasing, energy must be coming from smaller length scales.
We measured E3(t ) until the simulation entered a power law
decay of total energy and plotted the results in Fig. 6. We
found that increasing Pm by increasing Rm enhances the
growth rate of RST, with a stronger effect than increasing
Pm by decreasing Re. This indicates that RST should be
possible as long as there is adequate separation of k1, k0, and
kη, where k1 = 1 is the largest wave number in the system
and kν is close to the value of kη or greater. In general, the
high-Rm simulations (top plot in Fig. 6) had the most RST.
Reverse spectral transfer was absent at Pm = 1/16 but present
at Pm = 1/4 for high enough Rm. In addition to nonhelical
RST for Pm < 1 in DNS, it may be of interest in geophysical
applications [42].

IV. CONCLUSION

The fully resolved simulations developed in this paper are
a definitive data set, improving confidence on the scaling and
energy transfer properties of MHD in the near couple decade
region of magnetic Prandtl number around unity. We have
shown that many results rely on reaching a critical Rm before
we find asymptotic dependence on Pm. Furthermore, under-
resolved simulations may exaggerate the scaling of properties
such as εK/εM by failing to account for all of the dissipative
dynamics. Although our simulations feature simple geometry
and do not take into account, e.g., rotation, approaching com-
plex physical problems from this angle may still have merit.
In black hole accretion disks, luminosity is influenced by the
dissipation ratios and DNS measurements could be a useful
calibration tool. We reiterate that fully resolved simulations
such as ours are vital for accurately producing dynamo action
and other effects incurred by nonunity Pm.

013101-4



FULLY RESOLVED ARRAY OF SIMULATIONS … PHYSICAL REVIEW E 99, 013101 (2019)

The data and simulation details are publicly available on-
line [43].
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