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Evolution of fragment size distributions from the crushing of granular materials
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We study fragment size distributions after crushing single and many particles under uniaxial compression
inside a cylindrical container by means of numerical simulations. Under the assumption that breaking goes
through the bulk of the particle we obtain the size distributions of fragments for both cases after large
displacements. For the single-particle crushing, this fragmentation mechanism produces a log-normal size
distribution, which deviates from the power-law distribution of fragment sizes for the packed bed. We show
that as the breaking process evolves, a power-law dependency on the displacement is present for the single grain,
while for the many-grains system, the distribution converges to a steady state. We further investigate the force
networks and the average coordination number as a function of the particle size, which gives information about
the origin of the power-law distributions for the granular assembly under uniaxial compression.
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I. INTRODUCTION

Granular materials constitute an essential part of various
natural phenomena and are present in numerous industrial
processes. Their complex and counterintuitive mechanical
behavior has fascinated researchers for decades [1,2]. An
important issue occurring in granular systems in which flow,
compaction, tapping, and vibration are present is the breaking
of grains into smaller fragments. Due to its complexity, it
is often disregarded in theoretical and numerical models.
When fragmentation occurs, the evolution of the particle size
distribution (PSD) plays a significant role in many industrial
and natural processes, like milling, sieving, and segregation.
Whether it is a single-particle fragmentation or crushing of
a granular packing under compression or shearing, there
are many open questions, even though both problems have
been studied extensively in the last few decades [3–14]. It
is a known fact that the ultimate stress of a particle is size
dependent, scaling inversely to the particle size [15–17], and
the scaling law can be described by a Weibull distribution
[18]. Because of the scaling, bigger particles tend to break
more easily when they are transmitting a load through a small
number of contacts. However, in a packing of particles, the
bigger particles are usually surrounded by many smaller ones,
leading to higher coordination numbers for the big parti-
cles, creating a state similar to hydrostatic pressure around
them. Therefore, it is less likely for the bigger particles to
break. The interplay of those two mechanisms leads to a
power-law fragment size distribution with exponent α ≈ 2.5
for a packed granular bed under compression [7,8,11,12,19].
The situation for the single-particle crushing, however, has a
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different character, since the fragment interactions do not play
an important role, and depending on the load conditions and
material properties, different size distributions are to be ex-
pected from those PSDs for the packed bed. Even though most
single-particle crushing experiments have been performed on
quartz sand, different distributions have been observed, such
as a power law with exponent α ≈ 1 [20], a superposition of
log-normal distributions [21], and more recently, a power law
with exponent α ≈ 2 [13].

A single grain under slow uniaxial compression will have
sequential failures where the particle that further breaks will
be the one transmitting the load between the bottom and top
plates. This process leads to a gradual reduction in fragment
sizes, governed by a random process. Kolmogorov [22] and
Epstein [23] developed the theoretical foundation for PSDs,
assuming no preferential selection of fragment size which
led to a log-normal distribution, which often approximates
experimental observations [3–6,24]. Although most materi-
als, such as crystalline solids like quartzite sand, do have
preferential crack formation regions and directions [13], it
is important to understand the effect of individual failure
modes. Depending on the amount of input energy, particle
geometry, and contact configuration, different mechanisms
can be distinguished [25]: breaking through the bulk of the
particle, crumbling due to local compaction, chipping off at
contact points, splitting into several pieces and disintegrating
into many fragments. Since the fundamental works of Åström
et al. [9] and Tsoungui et al. [10] on the fragmentation of
granular packings, various other models have been proposed
and investigated, but the task of capturing the experimentally
observed power-law distributions [14,26,27] of fragment sizes
for confined crushing still remains challenging. The main
focus is on the compression laws and the compaction behavior
[28–32]. Concerning the single-particle breaking, the most
established numerical techniques employ bonded elements,
such as disks (spheres) [33–35] or polygons (polyherda)
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[36–40], and the focus remains on the modeling of critical
breakage force and the crack propagation. Moreover, methods
built upon the discretization of individual grains are unfeasible
for simulating systems containing a large number of particles.
Various simulation techniques have been employed to model
the fragment size distributions for impact breaking of a single
grain [36,41–43] or for dynamical fragmentation [40], but
little work has been done on the numerical modeling of PSDs
at slow compression rates for large displacements, where
dynamical effects can be neglected. Recently, the split-cell
method [44] was developed, and Gladkyy et al. [45] proposed
the combined use of Mohr-Coulomb and Weibull criteria for
fracture. The breaking of individual grains with the correct
strength scaling is explicit as well as the mode of particle
breaking for low input of energy, leading to the splitting of
the particle into two fragments, is captured as observed in
Ref. [35] for the single breaking of ballast particles. Fur-
thermore, a good qualitative agreement for PSDs with the
experimental fragmentation of a single quartzite grain has
been reported by Gladkyy et al. [45].

In this study we employ the split-cell method for grain
fragmentation incorporated in the framework of the Non-
Smooth Contact Dynamics (NSCD) method. NSCD has an
advantage over smooth Discrete Element Method models,
since fragmentation introduces discontinuities in the moments
and energies. Following Ref. [45], the critical stress is explic-
itly rescaled according to the Weibull distribution. We propose
an idea to calculate the orientation of the degradation plane
by a convex combination of two orientations, one based on
the stress tensor, and one based on the moment of inertia
tensor, in order to take into account the shape of the particle
and prevent unphysical cascading fragmentations. By means
of this numerical model, we investigate the breaking process
of a single particle under unconfined compression and the
confined compression of a packed bed. Under the assump-
tion of particle breakage that happens inside the bulk of the
particle, by splitting the grain into two subgrains when the
critical stress is reached, we obtain the PSDs for both afore-
mentioned systems. We show that the single-particle frag-
mentation under these assumptions, neglecting other fracture
mechanisms, follows a log-normal distribution. Moreover, we
show that the evolution of the PSDs scales as a function of the
global displacement by a data collapse of the distributions for
different instances during the compression. Furthermore, we
simulate the confined compression of breakable particles in an
oedometric setup, starting from similar-sized grains, and we
show good agreement with the established power-law scaling
for the size distribution of the fragments. This leads to the
conclusion that the same crushing mechanisms can generate
PSDs of different nature. Last, we obtain the evolution of the
average coordination number as a function of the particle size,
which shows the origin of the power-law size distributions for
the compression of packed granular beds.

II. NUMERICAL MODEL

A. Particle interaction and motion

The granular particles are geometrically represented as
convex polyhedra defined by their vertices in both body and

FIG. 1. Contact laws for NSCD method. Left: volume exclusion
constraint for the normal contact force Fn as function of the gap
g between two particles (Signorini graph). Right: static friction
constraint plus the dynamic friction condition expressed in terms of
the relative tangential velocity �Vt , and the ratio || �Ft ||/Fn of tangential
and normal contact forces between two particles (Coulomb graph).

space fixed coordinate systems and a list of faces, containing
for each face the indices of the corresponding vertices. As in
Ref. [46], we impose disorder and asymmetry by generating
randomly each particle; more precisely, the vertices of a par-
ticle are placed randomly on the surface of an ellipsoid with
half-axis ae � be � ce and a convex hull is obtained to con-
struct the face list for the respective particle. The interaction
between the particles is solved by means of the NSCD method
[47], which is based on the volume exclusion constraint and
Coulomb friction law without regularization as illustrated in
Fig. 1. Thus the method is made particularly well suited for the
modeling of dense packings of rigid, frictional particles with
long-lasting contacts. Because of the discontinuous nature of
the contact laws (see Fig. 1), for NSCD we employ an implicit
scheme for the integration of the equations of motion:

mi

d

dt
�vi = �Fi,

Ii

d

dt
ωi = �Ti,

(1)

where mi denotes the mass, Ii the moment of inertia tensor, �vi

the translational velocity, and ωi the rotational velocity for a
particle Pi . The subscript i denotes the particle number, going
over all Np particles. �Fi and �Ti in Eq. (1) are, respectively, the
forces and torques acting on the particle. Each force �Fi is a
sum of contact forces and external forces, which we denote
by �F cont

i and �F ext
i . Also, the the torques �Ti are a sum of

torques due to contacts, �T cont
i , and due to external sources,

�T ext
i . At each time step δt , the forces �F cont

i and torques �T cont
i

are calculated with an iterative Gauss-Seidel algorithm until
a global convergence criterion is fulfilled. The distances and
the normal vectors for two contacting particles are calculated
by the Common Plane method [48–50]. Note that for the
interaction between polyhedral particles three situations may
arise: point, line, and area contact. However, it is sufficient to
represent those cases by single, double, and multiple contact
points without modifying the constraint force law.

B. Breaking of particles

There are various approaches for the modeling of crushable
irregular grains, such as the decomposition of aggregated
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particles [29,33,36,38,51], Finite Element discretization [52–
54], and plane splitting of polyhedral particles [30,44,45].
While the first two techniques allow for the calculation of
stress fields inside a single particle, they both have the dis-
advantage of being computationally expensive and thus not
feasible for simulations of packings composed of large num-
ber of grains. Another disadvantage of those two categories of
methods is that they are strongly dependent on the subgrain
resolution and the topology of the discretization. While the
split plane methods don’t resolve the stress distributions inside
the particles, they are more computationally efficient, thus
making it possible to simulate more realistic system sizes.

Our fragmentation model, motivated by the plane-splitting
methods [30,44,45] and, more specifically, the recent ad-
vances proposed by Gladkyy et al. [45], incorporates the
Mohr-Coulomb failure criterion with tension and compression
cutoffs, degradation plane calculation taking into account both
the stress state, and the geometrical shape of the particle and
Weibull’s probabilistic theory to capture the size effect of
fragmented grains.

The mean Cauchy stress tensor for a single particle Pi can
be calculated as described in Ref. [55]:

σ i = 1

Vi

Nc∑
c=1

�l(c) ⊗ �F (c), (2)

where c spans over all Nc contacts of the particle, and �F (c)

and �l(c) are the contact force and the branch vector of the two
particles forming the cth contact, and Vi is the volume of Pi .
To ensure the moment equilibrium for the stress tensor σ i ,
we perform a simple symmetrization procedure by averaging
opposite nondiagonal components. After the symmetric stress
tensor is constructed, the principal stresses σ1 � σ2 � σ3 are
calculated together with their corresponding principal axes
�nσ

1 , �nσ
2 , and �nσ

3 . The Mohr-Coulomb failure criterion with
cutoffs is implemented as described in Refs. [56] and [45]:
the compression strength σC and the tensile strength σT define
the limits of the failure envelope. For convenience we denote
the ratio σT /σC by σT C . The failure condition is composed of
three primitive conditions: {(σ1 < 0) ∧ (σ3 < −σC )}, {(σ3 >

0) ∧ (σ1 > σT )}, and {|σ1 − σT Cσ3| > |σT |} corresponding
to compression, tensile, and shear failure. respectively.
The failure envelope in the σ1-σ3 plane is illustrated in
Fig. 2.

When the stress hits the failure surface at one of the
primitive surfaces, the particle fragments along a degradation
plane with a direction vector �np passing through the center
of mass of the polyhedron, resulting in two small polyhedra.
In order to take into account the shape of the particle for the
derivation of the splitting plane, we first calculate the principal
components I1 � I2 � I3 and the principal axes �nI

1, �nI
2, and �nI

3
of the moment of inertia tensor Ii . We then obtain the aspect
ratios a � b � c of the polyhedral particle aligned with the
coordinate system defined by (�nI

1, �nI
2, �nI

3), i.e., the body fixed
inertial frame of reference. The orientation of the degradation
plane is calculated according to �np = λβ �nσ + (1 − λβ )�nI,
where �nσ = (�nσ

1 + �nσ
3 )/2 defines the shear plane obtained

from the stress state of the particle, �nI = �nI
3 defines the axis

of smallest rotational moment, and λ = a/c is the ratio of

Compression

TensionShear

Shear

FIG. 2. Mohr-Coulomb failure criterion with compression and
extension cutoffs. The rescaling of the failure surface with the
Weibull criterion from Eq. (4) is illustrated with dashed lines and the
arrows indicate the direction of the stretching as the particle diameter
d decreases.

shortest to longest aspect ratios of the polyhedron, and the
exponent β defines whether �nσ or �nI is the dominant orien-
tation. This expression essentially means that when β > 0,
elongated particles are more likely to fragment along a plane
perpendicular to their longest direction. For all simulations we
use β = 1. This approach has two advantages: first, it mimics
bending failure, which is not taken into account otherwise,
and second, it prevents cascading fractures as discussed in
Ref. [30]. After the vector �np is calculated, the particle is
split along the plane with orientation �np passing through the
center of mass of the original particle. This splitting proce-
dure is built on the assumption that the fracture propagates
through the bulk of the particle and effects like chipping
and crumbling are neglected. The newly created particles are
assigned the translational and angular velocities of the parent
particle.

In order to take into account the effect of particle size into
the failure criterion we employ Weibull’s statistical theory for
the strength of materials [18]. According to Weibull’s theory,
the probability of failure Pf as a function of the critical stress
σ c is given by

Pf (σ c ) = 1 − exp

{
−

(
d

d0

)3(
σ c

σ0

)m
}

, (3)

where d is the particle diameter, d0 is a reference diameter,
σ0 is a characteristic strength, and m is the exponent of the
Weibull probability distribution. The particle diameter d is the
diameter of the circumscribed sphere of each polyhedron. If
we are to solve the inverse problem, i.e., for a given failure
probability to derive the critical stress, we end up with the
following equation:

σ c = σ0

{
−

(
d0

d

)3

ln(1 − Pf )

}m−1

. (4)
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The latter expression allows us to predict the strength of a
particle with a given diameter d and thus rescale the failure
envelope according to the particle size and the stress state
that it experiences. The type of stress acting on the particle
is taken into account by replacing σ0 in Eq. (4) with σC , σT ,
or σS , depending on the type of stress: compressive, tension,
or shear. The last step of rescaling the failure envelope is
to calculate the effective stress σeff on the particle for each
stress type: σeff = −σ3, σeff = σ1, or σeff = |σ1 − σT Cσ3|,
again corresponding to compression, tension, or shear. In
this way when the effective stress exceeds the critical stress,
i.e., σeff > σc, the particle will break. This stretching of the
Mohr-Coulomb failure surface is depicted in Fig. 2, where
the rescaled surface is shown with dashed lines and the new
compression and tension strengths are denoted by σ ∗

C and σ ∗
T ,

respectively. The shear strength is also rescaled, while the two
slopes σT /σC in quadrant II and σC/σT in quadrant IV are
kept constant.

C. Simulation procedure

We are focusing here on the numerical simulation of
compression in an oedometric test configuration with cylin-
drical geometry on a single particle and on a packed bed
of particles. For both cases, gravity is taken into account.
The cylindrical container with radius rcyl has a fixed bottom
plate, and the top plate is lowered with constant displace-
ment rate u̇z starting from some initial height h0 for the
single-particle case and constant force rate Ḟz for the packed
bed. The cylindrical side walls of the container are rigid
and fixed, thus a confined configuration is achieved. As in
Refs. [14,26,31], the friction coefficient μw with the side
walls is set to zero in order to minimize boundary effects.
The particle-particle friction coefficient is denoted by μp. For
the case of single-particle crushing, a particle with randomly
initialized vertices uniformly distributed over the surface of
the generating ellipsoid is placed at the center of the bottom
of the container. For the case of a packed bed, the particles
are randomly initialized with a uniform spatial distribution
and uniform random orientations. Note that the ellipsoid,
on which the vertices are generated is kept constant with
radii ae = d, be = 0.9d, and ce = 0.85d for all particles,
therefore, bias from the initial PSD is removed. After the
particles are initialized, they are deposited under gravity and
let to relax prior to compression. During the compression, the
total kinetic energy of the particles is monitored to ensure
that the system is in a quasistatic regime. For the confined,
many-particles system, fragments that have fractured more
than 10 times are discarded from the simulations, similarly
to Ref. [30], since they are not contributing significantly
to the force transmission and can also lead to numerical
instabilities. Typical parameter values are listed in Table I.
The simulation units are made nondimensional by choosing
characteristic length lc = 0.025 m, density ρc = 2500 kg/m3,
and acceleration ac = 9.8 m/s2. The characteristic timescale
is then defined from the relation tc = √

lc/ac. The friction
coefficient for the single-particle crushing is μ = 0.3 and for
the confined granular packing is μ = 0.4. The cylinder radius
is rcyl = 0.125 m and rcyl = 0.175 m for the single particle
and the confined bed, respectively.

TABLE I. Parameters in dimensional (physical) units and nondi-
mensional units used in the simulations. The compressive strength,
characteristic diameter, and Weibull’s modulus are taken from
Ref. [16].

Physical Simulation Variable
units units name

rp 0.025 m 1 Particle radius
ρp 2500 kg/m3 1 Particle density
δt 5 × 10−5 s 0.001 Time step
g 9.8 m/s2 1 Gravity
σC 20 MPa 32 000 Compressive strength
σT 10 MPa 16 000 Tensile strength
Pf 0.6 0.6 Fracture probability
d0 0.05 m 2 Characteristic diameter
m 3 3 Weibull’s modulus
μ 0.3–0.4 0.3–0.4 Friction coefficient
u̇z 2.5 × 10−4 m/s 0.0005 Displacement rate
Ḟz 1.2 kN/s 150 Loading rate

III. RESULTS AND DISCUSSION

A. Unconfined breaking of a single grain

We show first in Fig. 3 how the critical force Fc experi-
enced on the top plate and the critical stress σ c

zz calculated
from Eq. (2) depend on the particle size d. For the chosen
value of the Weibull modulus m = 3 we define explicitly that
σ c ∝ d−1 from Eq. (4). The critical force is then Fc ∝ d1,
and as we see in Fig. 3 this relation is preserved and the
fluctuations are due to the random generation of the particle.
We are interested in the mechanical behavior and size distri-
butions after many successive fractures. Since the number of
fragments from a single realization is not enough to produce
robust statistical distributions, a large number of simulations
has been performed to reduce the statistical noise. The initial
height h0 of the top plate of the cylindrical container is
constant for all simulations in order to measure the size
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FIG. 3. Critical force F c and critical vertical stress σ c
33 as func-

tions of the diameter d of the generating ellipsoid (here we imply
that the particles are generated from a sphere, i.e., ae = be = ce).
Data points represent the mean value over 10 realizations, and the
error bars represent the standard deviation. The continuous lines are
the functions F c(d ) = 2.0d1 and σ c

zz(d ) = 98.0d−1
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(a) (b)

(c) (d)

FIG. 4. Snapshots from single particle compression at different
heights: (a) h = 3 cm, (b) h = 1.125 m, (c) h = 0.875 cm, (d) h =
0.625 cm.

distributions for all realizations under the same conditions.
In Fig. 4 snapshots of a single realization are shown for
different instances. After the top plate establishes contact
with the grain as in Fig. 4(a), the stresses on the particle
start building up until it fragments. Depending on the contact
configuration and the orientation of the splitting plane, the
fragments can either start sliding until they find a new stable
configuration, or if the contacts remain the same for one of
the subgrains, a new fracture will take place. In that case,
due to the modification of the plane calculation, we observe
that at most two sequential fractures can happen for the same
grain. As noted previously, if β = 0, not only can this effect
repeat, but the produced fragments also become very flat since
the orientation of the splitting plane remains the same. After
that initial breaking, if the sliding condition is satisfied for
all fragments, the displacement continues with no crushing
until a subgrain establishes contact with the top plate with no
possibility of further rearrangements. This process is repeated
many times yielding a large number of fragments when the
height h between the platens becomes small [see Figs. 4(b)–
4(d)].

In Fig. 5 we show the force F at the top plate and the
fracture surface A generated as functions of the displacement
uz. For crack formation of brittle materials it is known that
the dissipated energy is proportional to the fracture surface
[57]. We observe that there are initially few independent force
peaks for small displacements for which the force drops to
zero as the particles lose the contact with the top plate. For
a larger displacement (small height h), e.g., uz > 3 cm, the
top plate establishes contact with many fragments, leading
to a collective force response at the displacing plate and
F does not retrace to zero. Correspondingly, the fracture
surface increases with few large jumps for large displacements
since the first few generations of the fragments are still of
the same order as the initial particle. For large displacement,
in the regime when the number of fragments is big, we
see a steep exponential increase in the newly formed area.
From the inset of Fig. 5 we see that for uz in the interval
uz ∈ [2.5 cm, 4 cm], the fractured surface can be fitted by an
exponential function. It follows that under the assumption of
fragmentation through the grain bulk, the generated fracture
area has an exponential dependency on the plate displacement
for uniaxial compression.

FIG. 5. Resulting force F on the top plate and the fracture
surface A from particle fragmentation as function of the top plate
displacement uz for single realization. The inset shows the same
graphs as in the main figure plotted in semilogarithmic axis in the
interval uz ∈ [2.5, 4] as well as an exponential fit of the fracture
surface.

Next, we analyze the fragment size distributions for all
performed simulations. We are interested in the probability for
finding a particle with a normalized diameter d/dmax ∈ [0, 1].
In Fig. 6(a) the evolution of the cumulative volume fractions
(CVFs) for all realizations are shown. The distributions can be
approximated by log-normal distributions with high accuracy,
as seen from Fig. 6(a), where the distributions are fitted with
log-normal cumulative distribution functions. Since the grain
size is always limited by the height h of the top plate, it
is expected that the largest size is fragmented as the plate
is displacing. As the breaking process evolves, we see that
the steepness of the distribution for d ∈ [0.2dmax, 0.6dmax] in-
creases, which means that the distribution is getting narrower.
The dependency of the distributions as function of the plate
displacement appears to be a power law, as can be seen in
Fig. 6(c), where a rescaling of the horizontal axis with h−γ is
shown. The rescaled distributions seem to collapse nicely on
a single graph for the exponent γ = 0.7.

Furthermore, we look at the probability densities [see
Fig. 6(b)]. Again, we see the pronounced shift towards the
smaller sizes as well as the narrowing of the distributions. As
for the CVFs, the densities are fitted by log-normal probability
density functions (PDFs) with high accuracy. Once more, we
performed the rescaling of the horizontal axis by h−γ , again
with γ = 0.7 [see Fig. 6(b)]. Note that since the area under the
graphs has to be preserved to unity, as the plots depict PDFs,
the vertical axis has to be rescaled by the inverse function hγ .
From the rescaled PDFs, again, a data collapse on a single
graph is observed as well as a good fit with a log-normal
PDF, further strengthening the assumption for a power-law
dependency on the displacement. Our simplified crushing
model approximates the fragmentation of a single grain un-
der compression resulting from breaking into two fragments
through the particle bulk. Note that some differences in the
fragment size distributions between the ones obtained from
our numerical model and experimentally obtained distribu-
tions for crystalline materials can occur since the formation
of cleavage planes is characteristic for such materials. While
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FIG. 6. Fragment size distributions at different plate height h averaged over 90 realizations. (a) Cumulative volume fractions without
rescaling. (b) Probability densities without rescaling. (c) Data collapse of the rescaled cumulative volume fractions. (d) Data collapse of the
rescaled probability densities. Log-normal fittings are shown with dashed lines.

our particle-breaking model can capture the strength scaling
correctly as well as particle splitting into two pieces, it does
not take into account other breaking modes, such as the
disintegration of a particle or splitting into several fragments
from a single crushing event, which would result from high-
energy input. Such an event would generate a large number
of fines, neglected in our model, which are responsible for
the power-law distributions observed in Refs. [13,20]. Other
differences can be due to branching fractures, dynamical crack
propagation, and the existence of other breaking modes (see
Sec. I) which are not captured by our model.

B. Confined breaking of packed granular bed

Next, we investigate the PSDs and breaking mechanisms
for a confined packed bed. The initial configuration before
loading is shown in Fig. 7(a). After the compression starts,
there is a regime during which the sample is being compacted
without any fragmentation, due to particle rearrangements and
reconfigurations. Unlike previous numerical simulations per-
formed with spherical particles [9,10,14], our model is able to
capture more realistically the interlocking between individual
grains and constrain their rotations. After the ultimate packing
density is reached, the breaking process begins, leading to
further compaction. The final state at which the simulation
is stopped is shown in Fig. 7(b). There are two important
observations, which are crucial for the understanding of the
emerging fragment size distributions. First, there is a number
of grains that do not fragment even for a very large load,
depicted by gray with opacity in Fig. 7(b), and second, the
largest portion of fragments are the result of many breakings,
depicted by red in Fig. 7(b). Both of those effects are due to
the same mechanism, namely that, as the system evolves, the
coordination number of large particles increases significantly,
leading to the decrease of the stresses that they experience.

This so-called “pudding” effect leads to the experimentally
observed power-law size distributions [7,8,11,12,19], which
we will discuss in more detail further below.

Again, as in Sec. III A we analyze the force-displacement
behavior as well as the fracture surface due to particle frag-
mentation. In Fig. 8 we see that first the sample gets com-
pacted without any particles getting fractured since initially
the packing is loose. After the ultimate density is reached
and the particles don’t have enough freedom to rearrange,
there is a steep increase in the applied force without signif-
icant plate displacement at uz ≈ 2.6 cm, leading to the first
fractured particles at about F = 18 kN. We observe then a
linear force-displacement behavior until a load of F = 60 kN

FIG. 7. Snapshots of a confined packing consisting of initially
500 particles. (a) Initial packing before compression. (b) Packing at
the end of the compression at load F = 102 kN, the total number of
particles is approximately 30 000. Colors represent the generation
since the initial particle.
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FIG. 8. Applied force F on the top plate and the fracture surface
A from the particle fragmentation as functions of the top plate
displacement uz.

with just a few large grains being broken up to this point.
However, big fragments cannot fill pore spaces, thus lead-
ing to small compaction in the interval F ∈ [18 kN, 60 kN].
After the number of smaller fragments increases, the com-
paction suddenly increases, since small grains can fall on
the bottom plate due to gravity or fill spaces between large
grains [see Fig. 7(b) for illustration]. This effect allows for
further compaction at a higher rate, until the simulation is
stopped when the ultimate load is reached. The final dis-
placement for this realization is uz ≈ 7.6 [cm], which corre-
sponds to a strain εz ≈ 0.25. Interestingly, the surface area

(a) (b)

(c) (d)

FIG. 9. Force networks between grains crushed fewer than four
times at different loads during the compression: (a) F = 30 kN,
(b) F = 54 kN, (c) F = 78 kN, (d) F = 102 kN. The color and
thickness on each segment of the network represent the magnitude
of the normal contact force.

A behaves very differently for the confined many-particle
system than for the unconfined single-particle case as we
see in Fig. 8. For the small compaction regime between
uz = 2.5 cm and uz = 4 cm, there is an exponential increase
in the generated area due to the breaking of mostly large
grains. At a high compaction rate regime for uz > 5 cm, we
observe a linear dependence of the accumulated fracture area
A and the plate displacement uz. This behavior is due to the
emergent power-law size distribution, which will be shown
below. Even though some fragments overcome the cutoff size
and are removed from the simulations or end up at the bottom
of the cylinder due to gravity, there is a large number of small
grains preventing the percolation of vertical force chains. As
we see from Fig. 9, at the beginning of the compression and at
small loads [Figs. 9(a), 9(b), and 9(c)], large force chains are
forming in the vertical direction, leading to the fragmentation
of large grains. At the end of the compression, however, the
bulk of fragmented small pieces prevents the formation of
vertical force networks, which means that with very high
probability the remaining large particles will not break further,
even for higher loads [see Fig. 9(d)]. To further strengthen
the hypothesis, we analyze the contact force anisotropy at
different stages during the compression. We use as a measure
of anistropy, the average normal contact force for a given
orientation. This is done by first transforming the normal
contact vector �n to spherical coordinates, (nx, ny, nz) →
(nr, nθ , nφ ), where r =

√
x2 + y2 + z2 is the radius (since �n

is normalized, r = 1), θ = tan−1(y/x) is the azimuthal angle,
and φ = cos−1(z/r ) is the zenith angle. Due to the axial
symmetry of the system, we can neglect the influence of the
azimuthal angle θ . This leaves us with only one variable for
the orientation of the normal vector, namely, the zenith angle
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(a) (b)

(c) (d)

FIG. 10. Normalized average normal contact force 〈fn〉∗(θ ) from
Eq. (6) of the interparticle force network as a function of the angle
θ at different loads during the compression: (a) F = 30 kN, (b) F =
54 kN, (c) F = 78 kN, (d) F = 102 kN. The data for force network
N1 between all particles are represented by light blue and for force
network N2 between all particles that are less than four generations
are represented by light blue.
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FIG. 11. Fragment size distributions at different plate loads F averaged over 10 realizations. (a) Cumulative volume fractions.
(b) Probability densities. Power-law fittings are shown with black dashed lines.

φ. We focus here on the average normal contact force:

〈fn〉(φ) = 1

|S(φ)|
∑

c∈S(φ)

f c
n , (5)

where S(φ) is the set of all contacts c with zenith angle
φ, and |S(φ)| denotes the size of S(φ). We obtain 〈fn〉(φ)
for two subsets of the contact force network: N1, which is
the set containing all contacts between all particles, and N2,
containing only the contacts between particles that are less
than four generations away from the original particle. In
order to compare the results for both subsets N1 and N2, we
normalize the average force:

〈fn〉∗(φ) = 〈fn〉(φ)

max
φ

(〈fn〉(φ))
, (6)

and show it in Fig. 10 for both N1 and N2 at different loads F

during the uniaxial compression. We see that for small loads
[Figs. 10(a) and 10(b)], when there are not many fragments,
the force orientations are very similar and both are highly
anisotropic, with strong peaks at 0◦–180◦, indicating the dom-
inant role of the strong force chains oriented in the vertical
direction. When the load is increased and the number of frag-
ments increases, we see for N1 the increase of strong forces in
the range of 45◦–135◦ as well as at 90◦. Also, the decrease of
〈fn〉∗(φ) at 0◦–180◦ becomes pronounced, especially at the
ultimate load. At the end of the compression, force chains
are dominated by 45◦–135◦, and 90◦ strong force orientations
have significantly increased at the expense of the vertically
oriented forces. The analysis of 〈fn〉∗(φ) for N2 at higher
loads shows that even if the anistropy remains in the 0◦–180◦
orientation, there is a significant increase of the influence

of the 90◦ orientation. The comparative analysis of the two
distributions, for N1 and N2, shows that the strong contacts
oriented at 45◦–135◦ are mostly at contacts with small frag-
ments (greater or equal to four fragmentation generations).
Even if the anistropy of the forces between the big grains (less
than four fragmentation generations) remains in the vertical
direction, the distributions tend to become more isotropic,
thus reducing the probability of a large grain to fragment.

In order to investigate in detail the behavior of the size
reduction mechanisms, we analyze the fragment size distri-
butions. Again, as in Sec. III A, we measure the distributions
of the normalized diameter d/dmax. As seen from Fig. 11(a),
the cumulative volume fractions are getting shifted towards
the smaller sizes, appearing to converge towards a stable size
distribution at the end of the compression as was previously
shown in Ref. [58]. A better representation is the probability
density, which is shown in Fig. 11(b). Note that the smallest
size introduces a cutoff of the probability density, which one
can overcome with more computational resources. We see that
for values of d > 0.2dmax, where the effects from the size
threshold are no longer present, the distributions can be ap-
proximated with high precision by a straight line in a log-log
plot. Because of the introduced threshold, there is no physical
interpretation for the “fat tail” of the distribution, since it is
an artifact of removing the small particles, and we proceed
with analyzing only the remaining parts in a log-log plot. The
slopes of the line fittings in a log-log scale are increasing as
the system evolves. For the final size distributions at load F =
102 kN, the slope of the fitted line is −α = −2.45, which is
very close to the established exponent α ≈ 2.5 for confined
comminution [7,8,58] as well as to the exponent α ≈ 2.47 of
apollonian sphere packing [59].
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FIG. 12. Average coordination 〈z〉(d/dmax) number as a function of the particle diameter d/dmax at different loads F averaged over 10
realizations on (a) linear and (b) semilogarithmic plots. Exponential fittings are shown with black dashed lines.
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Lastly, we analyze the average coordination number 〈z〉 as
a function of the normalized particle diameter d/dmax. We see
from Fig. 12(a) that 〈z〉 increases as the load F increases.
This effect is especially strong for the large grains, where
the average coordination number can reach mean values of
up to 25 for F = 102 kN. One observes that the 〈z〉 is a
monotonically increasing function of the particle size d/dmax

which was also shown by Bono et al. [14] for the final stage
of the breaking. We see that for the particle diameter d in
the interval [0.3dmax, 1.0dmax], the graphs can be fitted by
exponential functions, which become more pronounced as the
load F increases. This assumption is further strengthened by
Fig. 12(b), as we plot 〈z〉(d/dmax) on a semilogarithmic axis
together with their exponential fittings. This leads us to the
conclusion that the average coordination number has a form
of an exponential function 〈z〉 ∝ ec(d/dmax ), where c defines
the slope of the linear approximation in the semilogarithmic
plot. As we see from Fig. 12(b), the slopes of those linear
fits is increasing with increasing force F , indicating that the
exponential multiplier c = c(F ) is a monotonically increasing
function of F , which, interestingly, does not appear to be
saturating. Moreover, we obtain that with a good accuracy
c ≈ 1.0, 1.275, 1.55, 1.825, and 2.1 at loads F = 54, 66, 78,
90, and 102 kN, respectively. This leads us to the conclusion
that c has a linear dependency on the load F . This result can
be explained by the fact that the the small grains increase in
numbers faster than the big grains even after the stationary
distribution has been reached. Therefore, the average number
of contacts is increasing for the large grains and does not
change much for the small grains.

IV. CONCLUSION AND OUTLOOK

We have analyzed and compared the fragment size distri-
butions for both unconfined single-particle crushing at slow
compression rates and confined compression of many parti-
cles under an increasing vertical load. By means of a variation
of the plane-splitting method incorporated in the framework
of the NSCD method, we performed numerous simulations in
order to obtain the cumulative distributions and the probability
densities for both aforementioned cases. Moreover, we inves-
tigate in detail the mechanisms which cause the differences
in the distributions, given the same breaking law. Since the
fracture criterion is calculated based on the mean Cauchy
stress for each particle coupled with the Weibull scaling,
no calibration is needed to implement the correct strength
scaling as a function of the particle size. Another advantage
of the used method is the ability to use irregular shape rep-
resentations for the grains, unlike the commonly used sphere
replacement methods. This allows us to accurately model the
geometrical interlocking between individual grains, which has
a significant effect, especially for the packed bed system.

The breaking mechanism is build upon the assumption
that the fracture propagates through the bulk of the particle,
and other breaking effects are neglected. Under this assump-
tion, we obtain a log-normal fragment size distribution for
the single-particle crushing, which can be explained by the
sequential fragmentation theory developed by Kolmogorov
[22]. Moreover, we show that there is a power-law dependency
on the displacement by collapsing the data for both the cu-

mulative distributions and the probability densities. Although
our model captures a certain breaking mode, more precisely,
splitting through the particle bulk into two fragments, it does
not capture the disintegration of a particle from a single
breaking event, which is the type of fragmentation that can
result in the recently observed power-law distributions from
crushing of sand grains [13] due to the creation of many fine
particles. Other reasons for the differences in the experimen-
tally obtained distributions for single-particle breaking can
be due to the peculiarity in the crystalline structure of the
used materials, leading to predefined failure planes as well
as splitting into several fragments. Nevertheless, exploring
the effects from different failure mechanisms and their effect
on the fragmentation of granular particles is important for
gaining a deeper understanding of the behavior of particle
crushing under uniaxial compression.

For the confined crushing of a packed granular bed, we
show that unlike the single-particle crushing, the fragment
size distribution converges towards a stable distribution as the
loading increases. The final distribution has a well-defined
power-law tail for particles with diameter d larger than
0.2dmax with an exponent α ≈ 2.45 which is within the range
of the theoretically and experimentally obtained exponent
α ≈ 2.5 [7,8,11,12,19]. By looking at the force networks,
we observe that at large loads, at which the power-law dis-
tribution is established, there are no strong vertical force
chains connecting larger grains. This is indicative of the driv-
ing mechanism of the power-law size distributions, namely,
the accumulation of small fragments, which redistribute the
forces from the big fragments, thus reducing their stresses.
This was also shown by analyzing the evolution of the normal
contact force anisotropy for the force network connecting
all particles as well as the contact network connecting only
big fragments. Furthermore, we measured the evolution of
the average coordination number 〈z〉 as a function of the
particle size during the loading. We find that 〈z〉 increases
for all sizes throughout the compression, but that this increase
becomes steeper for bigger particles, reaching values of up to
25 at the end of the simulation. By analyzing the results for
〈z〉(d/dmax), we suggest that this dependency is exponential
of the form 〈z〉 ∝ ec(d/dmax ), where c increases as the load F

increases.
As an outlook for future studies, the breaking rule can be

modified in order to take into account other mechanisms and
incorporates a predefined degradation planes as well as the
breaking of a particle into several fragments with a certain size
distribution, e.g., power law. As a first suggestion, one can
take into account the contact points and define the splitting
plane as a function of the weighted linear combination of
the vector of the normal contact forces, as well as calculate
the point at which the plane passes through the force center,
instead of the mass center. Also, a comparison of the size
distributions of an unconfined packed granular bed (i.e., tri-
axial configuration) would be an interesting topic of further
investigations. Another question that can be further addressed
is whether introducing tapping or shaking of the granular bed
would affect the evolution of the PSDs or the average coor-
dination numbers as it may lead to particle rearrangements
which on the other hand could have an influence on the contact
force network.
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