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Phase field crystal simulations of the kinetics of Ostwald ripening in two dimensions
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The kinetics of Ostwald ripening of solid domains in the liquid phase of one-component systems in two
dimensions is investigated numerically via the phase field crystal model. The simulations, which are performed
systematically as a function of volume fraction of the solid phase, show that dynamical scaling is reached during
late times, and the growth law is in good agreement with the classical theory of Lifshitz, Slyozov, and Wagner
(LSW), i.e., R ~ t'/3, an indication that domain growth is mediated by the long-range interdomain diffusion of
atoms. In contrast to the LSW theory, however, the domain size distribution is symmetric, and can be fit with a
Gaussian. The investigation of the topological domain structure, through the Voronoi tessellation of the domains’
centers of mass shows that both the Lewis law and the Aboav—Weaire law of two-dimensional cellular patterns
are satisfied, implying that the kinetics proceed such that the conformational entropy of the domain-containing
Voronoi cells is maximized. These results are in very good agreement with an earlier experimental study of a

phase-separating phospholipid-cholesterol Langmuir film.
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I. INTRODUCTION

The kinetics of phase separation in materials is crucially
important to many materials processes and has thus been
the subject of many studies during the last few decades
through experiments (see, e.g., Refs. [1-13]), theory see, e.g.,
Refs. [14-26]), and simulation (see, e.g., Refs. [24,26-34]).
Phase separation occurs when a system is rapidly quenched
from a homogeneous disordered state to a multiphase region
of its phase diagram. The early stages of this process de-
pend on the volume fractions of the coexisting phases. If
these volume fractions are comparable, the phase separation
is triggered by an instability of the homogeneous concen-
tration against nonlocalized fluctuations with infinitesimal
amplitudes, leading to the formation of small domains and
their subsequent growth through a process known as spinodal
decomposition [35]. However, if the volume fractions of the
coexisting phases are very different, such that the initial
homogeneous state is supersaturated, the phase separation
is triggered by an instability against localized concentration
fluctuations with finite amplitudes. This instability leads to
the nucleation of the minority phase into small domains and
their subsequent growth, to a degree where supersaturation
is relieved, through a process known as Ostwald ripening
[35,36]. Domain growth in either spinodal decomposition or
Ostwald ripening is driven by the minimization of the excess
interfacial energy of the domains. In Ostwald ripening, in
particular, domain growth proceeds through the long-range
evaporation-condensation mechanism, whereby material is
transported, through diffusion within the matrix (majority
phase), from the shrinking (small) domains to the growing
(large) domains.
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An interesting feature of the late stages of the kinetics of
phase separation is the emergence of a single characteristic
length scale with a power-law time dependence, R(z) ~ ",
where the growth exponent n indicates the physical mecha-
nism governing the phase separation process. The emergence
of a single dominant length scale during the late stages of
phase separation implies that structural functions such as the
structure factor, correlation function, and domain-size distri-
bution exhibit simple dynamical scaling behavior [35,36]. In
alloys, where domain growth proceeds via the evaporation-
condensation mechanism, the growth exponent n = 1/3. The
first theoretical understanding of this growth mechanism was
developed by Lifshitz and Slyozov [15] and by Wagner
[16]. Although the Lifshitz—Slyozov—Wagner (LSW) theory
[15,16] was developed for the case where the volume fraction
of the minority phase is infinitesimally small, the growth
law predicted by this theory is very robust and is in fact
independent of volume fraction, geometry of the domain
structure, and spatial dimension. In the case of binary fluids,
hydrodynamics play a more important role on their phase sep-
aration than the long-range evaporation-condensation mecha-
nism, leading to growth laws that depend on whether domains
are connected and on the spatial dimension [35].

The LSW theory [15,16] is based on few ingredients corre-
sponding to a quasistationary approximation of the concentra-
tion or density field in the matrix, a boundary condition at the
domains interfaces satisfying the Gibbs—Thomson relation,
and the requirement of flux conservation at the domains
interfaces. The theory predicts an asymptotic average domain
size,

R(t) =[R*0)+ K1]'°, (1)

where R(0) is the initial average domain size in the long-
time regime, and K is the coarsening rate. LSW theory
also predicts a self-similar behavior, as displayed by the
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domain-size distribution,
g(R.1) ~ G(R/R(1))/R* (1), 2)

where G is a time-independent domain-size distribution and
d is the spatial dimension. For tractability, the LSW theory
was developed for the limit of infinitesimally small volume
fractions of the minority phase in three-dimensional systems
[15,16]. Extensions of the LSW theory were later made to
two-dimensional systems (where the theory suffers from log-
arithmic singularities), to systems with finite volume fractions
[20,21,23-26,28], and to multicomponent systems [37].

Materials properties are usually investigated through mi-
croscopic approaches, such as density-functional theory [38]
and classical atomistic molecular dynamics [39,40], or meso-
scopic approaches, such as phase field models [41]. The phase
field crystal (PFC) model is a relatively new phenomeno-
logical approach, developed by Elder and Grant [42], which
can be derived from classical density-functional theory and
leads to a periodic field with atomic-scale structure. The
advantage of this model is that, while it accounts for atomic-
scale elastic and plastic effects, it is able to describe structural
properties on diffusive timescales. The PFC approach has thus
been used extensively during the last few years in a range
of studies addressing generic phenomena in one-component
and two-component materials, including grain boundaries
[42], epitaxial growth [43,44], crystallization [45—49], and
phase separation kinetics [49,50]. In this article, we present
a computational study of the kinetics of Ostwald ripening,
of crystalline domains in a liquid matrix of one-component
systems in two dimensions, based on the PFC model.

Many experiments have been performed to test the validity
of the LSW theory [2,8,11-13,51,52]. Few experiments have
also been performed to investigate Ostwald ripening in two-
dimensional systems [7,8]. While experiments have shown
that domain growth is in accord with Eq. (1), the domain-size
distributions from these experiments are broader and more
symmetric than predicted by the LSW theory [53].

Numerical simulations of Ostwald ripening in two dimen-
sions through phase field simulations of Model B [30,54]
predict a correct growth law (n = 1/3). However, the domain-
size distributions from these simulations are also broader and
more symmetric than predicted by generalized LSW theory
in two dimensions [23,54]. Phase field simulations, however,
are too coarse grained and do not take into account micro-
scopic details of the systems. Simulations of Ostwald ripening
through atomistic molecular dynamics are impractical since
the phenomenon occurs on diffusive timescales. We therefore
alternatively investigate the feasibility of using the PFC model
to examine Ostwald ripening in two dimensions. In agree-
ment with the LSW theory, we observed dynamical scaling
during late times with an average domain size that grows as
t'73 as a result of the long-range evaporation-condensation
mechanism. In contrast to the LSW theory, however, the
average domain-size distribution is fairly symmetric and can
be fit with a Gaussian, in agreement with Seul et al.’s exper-
imental investigation of phase separation of a Langmuir film
phospholipid-cholesterol mixture [8]. Using Voronoi tessel-
lation, we also investigated the topological domain structure
and found that the distribution of coordination number is sym-
metric and that the average area of a domain scales linearly

with the number of nearest-neighbor domains, in accord with
Lewis’ law [55]. We also verified that the coordination num-
ber of a domain is correlated with the average coordination
number of its neighboring domains through the universally
observed Aboav—Weaire law of cellular patterns [55]. We also
found strong anticorrelation in nearest-neighbor-domain ar-
eas; namely, a growing large domain is on average surrounded
by shrinking small domains, and vice versa.

II. MODEL AND NUMERICAL APPROACH

The starting equation describing the kinetics of the dimen-
sionless local density field, ¥ (7, t), is the conserved Langevin
equation [42],

oy ,0F

— =V — 4, 3

» 5y ¢ 3)
where ¢ and 7 are reduced time and space, and ¢ is a reduced
Gaussian noise with zero mean and a temporal-spatial corre-
lation,

(cF, DG, 1)) =DVGFE —7F)H8(t —t). 4)

The PFC approach is based on a free-energy functional
given by
4
F({y}) = /dr{%[ﬂ +(1+ V21 + I/’T} ®)
where B is an effective reduced temperature. Using the free-
energy functional above, Eq. (3) then becomes
z—’f = VB + 1+ VY +¢. (6)
Here, since we are interested in the late stages of phase
separation where thermal fluctuations are not as important as
during the early stage of nucleation, the thermal noise is set to
zero, i.e., £(¥,t) = 0. Equation (6) is integrated numerically
by using a semi-implicit spectral method according to the
following algorithm [42]:
(1) Setup of an initial inhomogeneous configuration of
Y (7, t = 0) with an average value v/, beyond the early stages
nucleation regime, such that there are N (0) circular solid do-
mains, with a local average density v in a liquid background
of density v . The average size of the solid domains is R(0).
The domains’ centers of mass are distributed randomly, with
a size distribution predicted by Ardell [23]. .
(2) Calculations of the Fourier transforms ¥(k,t) and
V3(k, 1) of ¥ (F, 1) and Y3 (7, 1), respectively.
(3) ¥ (k,t + At) is calculated by using the approximation
[56]
2

FEt+ A = P ONGE, 1) = o8 _ 15 @),
w((k)
©)

where the amplification factor
w(k) = —k*[B + (1 = K*)’]. ®)

(4) Calculation of the inverse Fourier transform (7, t +
At), and repeat steps 2—4.
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FIG. 1. Portion of interest of the phase diagram of the PFC model
in two dimensions. The region of coexistence between the crystalline
solid and liquid phases is shown in yellow. The solid lines on the left
and right correspond to the solidus and liquidus lines, respectively,
and are obtained from numerical solutions of Eq. (6). Isolated points
from right to left correspond to area fraction of the solid phase with
o = 0.1, 0.15, 0.2, and 0.25, respectively.
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The numerical integration was performed by using a CUDA
code developed by us. The Fourier transforms were calculated
by using the freely available CUFFT distributed-memory paral-
lel code on a square grid of mesh size Ax = /4. We used an
integration time step At = 2.0 in reduced units. In two dimen-
sions, the model predicts a stripe phase and physically relevant
triangular and homogeneous (liquid) phases. The simulations
were performed at the effective temperature 8 = —0.2 in the
liquid-solid coexistence region of the phase diagram, partially
shown in Fig. 1, and for —0.29767 < vy < —0.29268. These
systems correspond to ¥; = —0.3010 at the liquidus line and
Ys = —0.2677 at the solidus line. The area fraction of the
solid phase, o = (Y1 — ¥0)/ (¥ — ¥s), the initial average
domain size, and the initial number of domains of the systems
considered in this study are shown in Table I. All simulations
are performed on systems with lateral size L = 6433.98 and
four independent runs were performed on each system.

III. RESULTS

Domain growth is illustrated by a time-sequence of snap-
shots shown in Fig. 2 for the case of o = 0.25. This figure

TABLE 1. Average density v and corresponding area fraction
of the solid phase, o, initial average domain size R(0), and initial

number of domains, N (0), of the systems simulated at § = —0.2.
Yo o R(0) N(0)
—0.29767 0.10 49.14 31
—0.29605 0.15 47.74 50
—0.29434 0.20 47.74 67
—0.29268 0.25 45.88 38

t=2x105 t=2x10° t =4x106
t=8x106 t=2x107 t =4x107

FIG. 2. Time sequence of snapshots for a the case of 0 = 0.25
and 8 = —0.2. The black and red arrows point to two domains that
grew and then decayed at later times. The domain indicated by the
red arrow disappears by t = 4 x 107.

demonstrates that, on average, domains coarsen with time, but
not as a result of their coalescence. Domains must therefore
coarsen via Ostwald ripening, i.e., the evaporation of atoms
from shrinking domains and their condensation on growing
domains. Figure 2 also shows, as expected during Ostwald
ripening, that domains grow and then decay as a function of
time (e.g., domains pointed to by the black and red arrows in
Fig. 2). Furthermore, Fig. 2 also shows that the domains are
only slightly distorted from a circular shape.
The average domain size, calculated as

1 N(@)

R() = NGO 2 R;, 9

where N(t) is the number of domains at time ¢, is shown in
Fig. 3(a) for all considered values of o. This figure demon-
strates that domain coarsening is in line with LSW theory,
i.e., R(t) ~ t'/3 [Eq. (1)], with a coarsening rate that increases
with increasing area fraction of the solid phase, in agreement
with previous theories of Ostwald ripening in two dimensions
[20,23,24]. An interesting feature, shown by Fig. 3(a), is that,
although, on average, R(t) increases with time, this increase
is not monotonic. Instead, R(¢) increases in steps with the
average domain size that in fact anomalously decreases with
time during each step. We show later that this behavior is due
to the small number of domains in the system and to the fact
that the material evaporating from the shrinking domains does
not instantaneously condense on the growing domains. Each
discontinuity in R(t) corresponds to a single event of domain
disappearance. Figure 3(a) also shows that, on average, the
timescale of each tread in R vs t decreases with increasing
o. This is simply due to the fact that the number of domains
increases with increasing o, and therefore the number of
domains disappearance events increases with increasing o.
Figure 3(b) confirms that, on average, the net area of the
coarsening crystalline domains, N(t)R?(¢), is indeed con-
served, as expected, and that the net area of the solid domains
is proportional to the area fraction of the solid phase [see inset

012803-3



KYLE A. MOATS, EBRAHIM ASADI, AND MOHAMED LARADIJI

PHYSICAL REVIEW E 99, 012803 (2019)

1x10°F (@) P

8x10°F RS s

0 | | | L |
0 1x10 2x10 3x10” 4x10’
(b) SETE
o +\ [ S
8x10°F IR A
B N"&f < 1
o N ST ]
5 b RN R N I R B
6x10° [ 0 01 02 03]
< o
= 1 e e 1
W 50 i
4%10° .
<10t
0 1x100  2x107  3x10’  4x10’  5x10’

FIG. 3. (a) R3(¢) size versus ¢ for B = —0.2. Black, red, blue,
and green points correspond to o = 0.1, 0.15, 0.2, and 0.25, respec-
tively. The dashed lines are linear fits of the numerical data. The
maximum error bar of the data is shown in the bottom left of panel
(a). (b) The net area of the solid phase Z,N:(;) R,.2 (t) vs time for the
systems shown in panel (a). The same colors as in panel (a) are used.
The dashed lines are horizontal. The inset shows that the average
value of vafi) R?(t) is indeed proportional to the area fraction of the

solid phase.

of Fig. 3(b)]. However, the net area of the domains is not
instantaneously conserved. The small amplitude fluctuations
in the net area of the solid phase are correlated with the
discontinuities in R(z) vs time shown in Fig. 3(a).

In this article, we are interested in the case where domains
are rounded. As previously noted, the advantage of the PFC
approach, in contrast to the phase field approach, is that it
accounts for the crystallinity of the solid phase. We therefore
also performed a few simulations for lower values of 8 and
found that the domains are faceted for 8 < —0.25, as shown
by the snapshots in Fig. 4 for the case of 8 = —0.30. During
intermediate times, domains grow in accord with Lifshitz—
Slyozov theory, as shown by the graph of Fig. 4. However,
we found that domain growth anomalously slows down and
halts at late times, in contrast with the case where domains
are rounded. We repeated the simulations for smaller mesh
sizes and time steps and found the same results. The observed
slowing down at late times may be attributed to the fact that,
at late times, the local curvature of a faceted domain becomes
independent of the domain size, R. This is due to the fact that
the local curvature of the straight edges is zero, while the local

t =5%10°% t=2x108 t=4x10°

t =8x10° t=1.2x107 t=2x107
m
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FIG. 4. Time sequence of snapshots for the case of 8 = —0.30
and o0 = —0.25 (corresponding to ¥, = —0.37816). The bottom
graph shows R3(¢) vs time.

curvature of the vertices is a function of the crystallinity and
is independent of the domain size.

We now turn to the discontinuous growth in R(t), shown
in Fig. 3(a), we performed a simulation of a system consisting
of one small domain of initial radius R (0) = 100.5 and two
large domains of initial radius R4+(0) = 201.0 at = —0.20.
The centers of mass of the domains are separated by a distance
1020 in dimensionless units. The configuration is such that
the centers of mass of the three domains are colinear. We
note that we repeated these simulations with different con-
figurations and found similar results. The time dependence of
the profile of the v field (averaged over small length scales
in order to integrate out the short-length-scale oscillations
in the solid phase) along the axis containing the domains’
centers of mass is shown in Fig. 5. This figure shows that,
while the small domain (in the center) shrinks, the density
profile of the large domains varies very weakly during this
stage. Figure 6(a), where the average sizes of the shrinking
domain (red curve) and growing domains (green curve) vs
time are shown, demonstrates that the shrinking and growing
domains sizes do not vary simultaneously: While the small
domain shrinks, the large domains are not growing, implying
that the material evaporating from the shrinking domain is
contributing to the increase in the density of the liquid around
the shrinking domain, as shown by Fig. 6(d). This is due to the
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FIG. 5. Evolution of the density profile of a simulation composed
of a small and large domain at § = —0.20. The density profile is
averaged over short length scales to integrate out the atomic-scale
oscillations in the solid phase.

fact that material evaporation is faster than material diffusion
during this process. It is worthwhile noting that Fig. 6(b)
shows that the decay rate of the shrinking domain agrees with
LSW’s growth rate equation

dR(t) D ( I !
. R(r)(&(r) B R(r))’ (10)

where D is the material diffusion constant and R.(t) is the
time-dependent critical radius. The average domain size of
this system, shown in Fig. 6(c), has the same features as that of
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FIG. 6. (a) Red curve shows the radius of the shrinking domain,
normalized by its initial value, R (¢)/R(0) — 1 vs time. Green curve
shows the average radius of the growing domains, normalized by
their initial value, R4(¢)/R4+(0) — 1 vs time. Inset (b) shows the
linear relationship between R (dR,/dt) and 1/R,, in accord with
Eq. (10). (c) The average domain size vs time. Inset (d) shows the
deviation of the ¢ field in the region within the liquid phase between
the shrinking domain and the growing domains.
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FIG. 7. Scaled structure factor, F(x,t) = S(k, t)/R*(t), where
the scaled wave vector x = kR(¢) for the case of & = 0.20 and B =
—0.2. Data shown correspond to 1.2 x 10° (black), 1.32 x 10° (red),
2.52 x 10° (green), 7.32 x 10° (blue), 1.45 x 107 (cyan), 2.18 x 107
(magenta), 3.86 x 107 (maroon), Inset shows the time evolution of
the structure factor, S(k, ¢) vs k. Times shown are 1.20 x 10° (black),
1.32 x 10° (red), 2.52 x 10 (green), 7.32 x 10° (blue), 1.45 x 10’
(cyan), 2.18 x 107 (magenta), and 3.86 x 107 (maroon). The slope
of the solid line in the main graph is three, showing that Porod’s law
is satisfied.

Fig. 3(a); namely, a discontinuity occurring at the time where
a shrinking domain disappears, and a decay of the average
domain size right before the discontinuity.

As stated earlier, the late-time kinetics of phase separation
is marked by the presence of a single characteristic length
scale, which implies that structural functions such as the
structure factor should exhibit a dynamical scaling behavior,

Sk, 1) = (| Pk, D)*) = RU@t)F(x), (11)

where x = kR(¢) is the scaled wave vector, ¥ is the Fourier
transform of i, and F(x) is the time-independent scaling
function. The presence of a small wave vector peak in S(k, 1),
shown in the inset of Fig. 7, implies that the domains are
spatially correlated, as expected during Ostwald ripening and
spinodal decomposition. The time independence of the scaling
function, F(x), shown in Fig. 7 (which begins at about
11.0 x 10%), implies that the kinetics of Ostwald ripening
in the present study is indeed in the scaling regime. The
presence of a single length scale during late times implies
that other shorter length scales in the system, particularly the
thickness of the domains interfaces, should be very small in
comparison with the average domain size. Scattering from
well-defined domain interfaces should therefore obey Porod’s
law at large wave vectors, S(k) ~ k~“+D [57]. The scaled
structure factor, shown in Fig. 7 does indeed scale as x 73 for
large wave vectors, further confirming that dynamical scaling
is indeed reached in the simulations.

The normalized scaled domain size distribution G(z),
where z = R/R(t) [Eq. (2)] is shown in Fig. 8 for all con-
sidered values of o. We found that, during late times, G(z)
is time independent, implying again that the systems are
in the dynamical scaling regime, in agreement with Fig. 8.
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FIG. 8. Normalized scaled domain distribution G(R/R) vs R/R
at f = —0.20. The solid lines are fits with Gaussians. The dotted line
in the case of o = 0.15 corresponds to Ardell’s generalized Lifshitz—
Slyozov prediction for the same area fraction in two dimensions [23].

This figure shows that the domain-size distributions for all
values of o are fairly symmetric and can be well fit by a
Gaussian, in contrast with the theoretically predicted mean-
field distribution by Ardell in two dimensions, shown by the
dashed curve for the case of 6 = 0.15 [23]. Our results are in
very good agreement with an earlier experiment of Ostwald
ripening of a two-component Langmuir surfactant monolayer
at an air-water interface [8] and numerical solution of the
Cahn-Hilliard equation [54]. The standard deviation of the
Gaussian fits of the distributions in Fig. 8 ranges between 0.21
for 0 = 0.25 and 0.3 for o = 0.1. These values are close to
those obtained by Seul et al., which are about 0.22 [8].

We also characterized the topological domain structure
during Ostwald ripening, as predicted by the PFC model
in two dimensions, through the Voronoi tessellation based
on the domains’ centers of mass. For illustration, Fig. 9
shows a snapshot of the domains with links to their nearest-
neighbor domains, as obtained from the Voronoi tessellation.
The coordination number probability of the domains, P(g) =
N(q)/N, is shown in Fig. 10(a) for the case of o = 0.25,
where N (g ) is the number of domains with g nearest-neighbor
domains and N = ) p N(q). P(q) is symmetric and centered
at g = 6. We found that P(q) quickly becomes time indepen-
dent and is independent of . The values of P(q) # 0 forgq >
6 or g < 6 implies that the domain structure is characterized
by alarge amount of topological defects. Interestingly, the val-
ues of P(q) are in very good agreement with the experimental
values obtained by Seul er al. [8]. The second moment of
P(q), ur = Zq(q — 6)2P(q) ~ 0.8, which is also very close
to the values reported by Seul et al. [8].

We also found a linear relation between the average area
of g-coordinated domains, normalized by the average domain
area, A(gq)/A, with the topological charge Q = ¢q — 6, as
shown in Fig. 10(b). This result is in accord with Lewis’ law
of cellular patterns [55],

% =a+vy0Q, (12)

FIG. 9. Snapshot of the domains (perimeters shown in black)
with links (red lines) to their nearest-neighbor domains, as obtained
from the Voronoi tessellation. Data shown correspond to the case of
o =0.25and g = —0.20.

universally observed in many systems such as two-
dimensional foam [58], epithelial cells [59], and stratocumu-
lus clouds [60]. Equation (12) implies that domains with a
coordination number g = 6 tend to have a size equal to the
average domain size in the system, and that domains that are
larger (smaller) than the average domain size tend to have a
coordination number larger (smaller) than six. This result indi-
cates that domains are positioned such that the configurational
entropy is maximized [59]. We found that the coefficients,
in Eq. (12), @ &~ 1.0 and y &~ 0.23 for the case of 0 = 0.25,

FIG. 10. Normalized average area of nearest-neighbor domains,
Ann/A vs A/ A for the case of 0 = 0.25 and 8 = —0.20. The solid
line is from Eq. (14) with parameters y and b obtained from fits with
Egs. (12) and (13), respectively. Inset (a) shows the coordination
probability P(q) vs g for the case of o = 0.25. The dashed line is
simply a guide to the eye. Inset (b) shows A(g)/A vs topological
charge, in agreement with Lewis’ law (12). Inset (c) shows the
average coordination number of nearest-neighbor domains of g-
coordinated domains vs topological charge, in agreement with the
Aboav—Weaire law (13).
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again in good agreement with Seul ef al.’s results [8]. It is
important to note that Lewis’ law applies to the areas of the
Voronoi cells, while we verified this law by using the domains
areas. Dynamical scaling, however, implies that the average
distance between neighboring domains is proportional to the
average domain size. Hence, Eq. (12) should apply to the
domains areas as well.

Optimal space filling of cellular patterns also requires
another universally observed topological correlation between
the coordination number of a domain, ¢, with the average
coordination number of its nearest-neighbor domains, p,,(q),
known as the Aboav—Weaire law [55,61],

qPm(q) = (6 —b)(g —6)+c, (13)

with ¢ =36 + u,. This relation states that domains with
high (low) coordination number, i.e., large (small) domains
according to Lewis’ law [Fig. 10(b)] are surrounded by small
(large) domains. Figure 10(c) shows that the Aboav—Weaire
law is indeed satisfied during the kinetics of Ostwald ripening
through the PFC model, with » &~ 1.18 and ¢ = 36.75 ~ 36 +
W2, by using the earlier above-found value of u, & 0.8. We
note that these results are again in very good agreement with
Seul et al.’s findings [8].

We also inferred the correlation between the area of a do-
main, A, and the average area of its nearest-neighbor domains,

20r (a) e 0,0<0 7
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9.(r) g.r)

(b)
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FIG. 11. (a) Charge-charge radial correlation function. Black
circles show correlation function between domains with opposite
charge signs. Red circles show correlation function between domains
with same charge signs. (b) Radial domains size-size correlation.
Black circles show correlation function between two domains with
one having a size larger than the average domain size R, and the other
one with a radius smaller than R. Red circles show radial correlation
between two domains where both are either larger or smaller than

R. Data shown in insets (a) and (b) are for the case of ¢ = 0.25 and
B =0.20.

A,,. Figure 10 shows that A,,/A and A are anticorrelated.
Namely, domains larger (smaller) that the average domain size
are mostly surrounded by nearest-neighbor domains that are
smaller (larger) in size. Using a maximum entropy theory for
random two-dimensional cellular patterns, Sire and Seul [62]
showed that the relationship between x = A/A and f(x) =
A,/ A is given by

2, _
Y ur —by(x 1)} (14)

1
f(x)—x[l+ 6T -1
Figure 10 shows that A,,/A and A/A are indeed anticorre-
lated, and that Eq. (14) is indeed satisfied.

The correlations above can also be inferred through two-
point correlation functions as a function of distance between
domains’ centers of mass. The two-point charge-charge cor-
relation functions, g, (r) and g_(r), are defined as the cor-
relation functions between two domains with Q; Q, > 0 and
010, < 0, respectively. Figure 11(a) shows that domains
with topological charges of opposite signs are much more cor-
related at short distances (black curve) than domains with ei-
ther both positive or negative topological charges (red curve).
This is another qualitative confirmation of the Aboav—Weaire
law; Fig. 10(c). Likewise, Fig. 11(b) shows that domains
with a size larger (smaller) than the average domain size are
also correlated within short distances with domains with size
smaller (larger) than the average domain size, in accordance
with the main graph of Fig. 10.

IV. SUMMARY AND CONCLUSION

In this article, we presented an investigation of the kinetics
of Ostwald ripening of solid domains in a liquid matrix of
one-component systems in two dimensions from a numerical
simulation of the single mode PFC model of Elder and Grant
[42]. We found that the average domain size R() grows
with time as ¢!/3, in agreement with experiments [7,8], prior
simulations using the Cahn-Hilliard equation [54], and LSW
theory [15,16]. These results therefore further confirm the
validity of the LSW theory and, in particular, that the details of
the atomic-scale crystalline structure do not affect the kinetics
during late times in the case where the domains are rounded.
For low temperatures (8 < —0.25), domains are faceted, and
their growth agrees well with the LSW theory at intermediate
times. At later times, however, the dynamics is slowed down
leading to very slow or halted kinetics.

The domain-size distribution is found to be symmetric
and is well fit by a Gaussian, in disagreement with Lifshitz—
Slyozov—Wagner theory [23] which predicts a highly non-
symmetric distribution. The domain-size distribution from
the present simulations is, however, in very good agreement
with the earlier experimental study by Seul et al. [8] of
the kinetics of Ostwald ripening of a binary phospholipid-
cholesterol Langmuir film. We also confirmed that the systems
reached dynamical scaling during late times, as demonstrated
by scaling of the density structure factor.

Our investigation of the topological structure of the two-
dimensional system during Ostwald ripening, inferred from
the Voronoi analysis, indicates that the domains are positioned
in space so as to maximize the configurational entropy of
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the domains’ centers of mass. In particular, we showed that
the average size of the g-coordinated domains follows Lewis’
law, i.e., domains with high coordination number are larger
than the average domain size, and vice versa. Furthermore,
the average coordination number of neighboring domains of
a given g-coordinate number follows the Aboav—Weaire law,
i.e., domains with high coordination numbers are surrounded,
on average, by domains with low coordination numbers. In
other words, the system adopts a structure such that deviations
from a neutral topological charge is minimized. Our results
on the topological structure of the coarsening system are in
very good agreements with earlier experimental results of Seul
et al. [8,62].

The present study represents a detailed test of Ostwald
ripening kinetics in two-dimensional one-component systems
through the PFC approach. Successful attempts have been
made to generalize the PFC approach to one-component sys-
tems with various crystalline structures through the addition
of higher-order gradients of the density field [63]. The PFC

approach also has the capability to quantitatively describe spe-
cific materials with various crystalline structures [64]. With
further generalizations of PFC to multicomponent systems
through coupling the density field to the composition field
[45], future numerical investigations using PFC of Ostwald
ripening in specific alloys can be performed on diffusive
timescales and quantitatively compared with available experi-
ments.
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