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Negative viscosity of a liquid crystal in the presence of turbulence
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We report on the discovery of enormous negative viscosity in a nematic liquid crystal in the presence of
turbulence induced by electric fields. As the negative viscosity in this system is so large, we are able to observe
several phenomena originating from it. For example, we observe a spontaneous shear flow that rotates the upper
disk of a rheometer, as well as the reversal of the rotational direction upon applying an external torque in the
opposite direction. Hysteresis loops are also observed in the shear-stress–shear-rate curves, which is reminiscent
of those seen for ferromagnetic and ferroelectric materials. The similarities between the phenomena observed for
our system and ferroic materials are comprehensively demonstrated, although the two systems are fundamentally
different in that the former is out of equilibrium. We elucidate the origin of the negative viscosity and propose a
simple model that reproduces the phenomena observed in this active fluid.
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I. INTRODUCTION

Numerous experimental [1–5] and theoretical [6–14] stud-
ies have been conducted in an attempt to observe negative
viscosity. The viscosity of a fluid is a measure of its resistance
to flow. In the case of negative viscosity, the flow is ampli-
fied by negative resistance even in the absence of external
stress, resulting in spontaneous flow. In magnetic fluids (MFs)
[6,7], which are colloidal solutions of magnetic particles, the
viscosity has been observed to decrease upon application of
an alternating magnetic field, although it remains positive
[1]. Each particle is rotated by the alternating magnetic field,
which generates a vortex flow around the particle. Other
systems include active suspensions of bacteria [2–5,8–14].
Recently, López et al. observed negative viscosity in suspen-
sions of Escherichia coli, in which the bacteria generated
a specific flow field that reduced the apparent viscosity by
organizing themselves [2]. Because the viscosity was very low
(approximately −10−1 mPa s), the authors used a rheometer
specially designed for investigating low-viscosity fluids.

Recently, Nagaya et al. demonstrated a remarkable re-
duction of viscosity in a nematic liquid crystal (NLC)
[15,16]. Typical NLCs consist of rodlike molecules with long-
range orientational order, where the average direction of the
molecules is designated by a unit vector n that is referred to
as the director [17,18]. One of the most remarkable properties
of NLCs is the coupling between the director and the flow; a
change in the director can induce flow and vice versa [17–19].
Furthermore, the director can be controlled by external
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electric fields owing to the dielectric anisotropy �ε=ε‖−ε⊥,
where ε‖ and ε⊥ are the relative dielectric constants parallel
and perpendicular to n, respectively. The director tends to be
parallel or perpendicular to the electric field for �ε > 0 and
�ε < 0, respectively, which reduces the interaction energy
with the electric field. The interaction energy density can
be expressed as fel = − 1

2ε0ε⊥E2 − 1
2ε0�ε(n · E)2, where ε0

is the dielectric constant in a vacuum and E is the applied
electric field [17,18]. This relationship implies that the torque
exerted on the director is proportional to the square of the
electric field. The applied electric field causes orientational
change of the director and then a change in viscosity. Such
fluids whose viscosity can be controlled by electric fields are
referred to as electrorheological (ER) fluids [20]. Although
typical ER fluids consist of suspensions of dielectric particles
in an electrically insulating oil, some studies have also inves-
tigated the ER properties of NLCs [21–23]. In NLCs, the elec-
trorheological effect is dependent on the dielectric anisotropy,
as was clearly demonstrated by Nagaya et al. in experiments
using a series of mixtures of two NLCs with positive and
negative dielectric anisotropies [16]. These authors prepared
mixtures containing different fractions of the two NLCs with
dielectric anisotropies �ε ranging from −0.483 to 0.245. In
the low-voltage region, the viscosity monotonically increased
for all of the mixtures, while in the high-voltage region, the
viscosity of the mixtures with negative dielectric anisotropy
reached a maximum and then decreased, whereas that of the
mixtures with positive dielectric anisotropy continued to in-
crease. However, even in the mixture with the lowest dielectric
anisotropy of −0.483, the viscosity did not reach a negative
value. It should be noted that in the high-voltage region,
electroconvection (EC) was observed in all of the mixtures.
In general, NLCs exhibit EC under high electric fields, which
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FIG. 1. Schematic illustration of experimental setup. (a) The
upper disk is composed of glass completely coated with ITO and
attached to the metal sensor of a rheometer. The lower stage is also
composed of glass with the top surface coated with ITO. Microscopic
observations can be made through the lower glass stage. (b) The x,
y, and z axes are taken along the flow, vorticity, and velocity gradient
(electric field) directions, respectively.

is caused by the conduction of impurity ions and whose
appearance depends on both the dielectric and conductive
anisotropies [17,18,24–29]. Although EC occurs under both
dc and ac voltages, an ac voltage is generally used to avoid
degradation due to ion injection at the electrodes [18]. The
convective pattern changes from regular rolls to turbulence
through various patterns upon changing the amplitude and
frequency of the ac electric field [26].

In this paper we demonstrate that the viscosity of an NLC
with negative dielectric anisotropy becomes negative at high
electric fields, where the absolute value of the negative viscos-
ity is several hundred times greater than that of the previously
reported bacterial suspensions, and report on some phenom-
ena related to the negative viscosity such as the occurrence of
hysteresis loops. This paper is organized as follows. In Sec. II
we describe the experimental setup and sample preparation.
In Sec. III we present the experimental results, including
the observation of negative viscosity, hysteresis loops, and
S-shaped curves, temperature and frequency dependences,
and a self-oscillation due to the negative viscosity. In Sec. IV
we discuss the mechanism underlying the negative viscosity
based on the Ericksen-Leslie theory and propose a simple
model that reproduces the experimental results. In Sec. V we
summarize our findings and offer some concluding remarks.

II. EXPERIMENTAL DETAILS

Rheological measurements and microscopic observations
were performed on the NLC p-methoxybenzylidene-p′-n-
butylaniline (MBBA), which exhibits negative dielectric
anisotropy (�ε = −0.631 at 25 ◦C) and is a typical NLC that
has frequently been used to study EC. We used a commer-
cially available sample of MBBA (Tokyo Chemical Industry)
as is, without dopant ions; the measured conductivity at 25 ◦C
was 0.9 × 10−7 �−1 m−1, which is sufficiently large to induce
EC [18]. As shown in Fig. 1(a), the liquid crystal sample was
sandwiched between the upper disk (50 mm diameter) and
the lower stage of a rheometer (MCR-302, Anton Paar), both
of which were fabricated from glass coated with indium tin
oxide (ITO). The upper disk and lower stage were mutually
parallel and separated by a gap of 100 μm. Since the shear rate
depends on the measurement position, for the purposes of this

FIG. 2. Negative shear stress and spontaneous shear flow.
(a) Electric field dependences of shear stress at three different shear
rates of 1, 3, and 5 s−1. For the measurements, ac electric fields
with a frequency of 50 Hz were applied and the amplitude is used
to express the electric field strength. At the lowest shear rate, the
shear stress becomes negative at high electric fields. (b) Dependence
of spontaneous shear rate (which is proportional to the angular
velocity of the upper disk) on the square of the electric field. The
measurements were performed at zero shear stress.

study it was defined as that at the periphery of the upper disk.
The shear stress at the edge of the disk was calculated from the
measured torque by assuming that the fluid is Newtonian. No
surface treatment was performed for liquid crystal alignment.
A voltage was applied between the upper disk and the lower
stage through a metal wire and an ionic liquid [1-ethyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide] fill-
ing a tray on the upper disk to avoid friction between the wire
and upper disk. Microscopic observations were made through
the glass disk and stage using a microscope (IX73, Olympus)
and a video camera (ORCA-Flash4.0, Hamamatsu), respec-
tively.

III. RESULTS

A. Negative shear stress and spontaneous shear flow

Measurements were performed at 25 ◦C in the nematic
phase. Figure 2(a) shows the voltage dependence of the shear
stress measured at constant shear rates of 1, 3, and 5 s−1,
where the frequency of the applied ac electric field was 50 Hz
and E represents the amplitude. For each shear rate, the shear
stress first increased to a maximum and then decreased mono-
tonically with increasing applied electric field. In particular,
for a shear rate of 1 s−1, the shear stress reached zero at ap-
proximately 0.85 V/μm and thereafter became negative. The
viscosity at 1.5 V/μm was −44 mPa s, the absolute value of
which is considerably greater than that of −0.1 mPa s reported
for the aforementioned bacterial suspension. The negative
shear stress creates spontaneous shear flow, resulting in the
rotation of the upper disk of the rheometer if it is allowed to
freely rotate, that is, at a constant shear stress of 0 Pa. We
successfully observed this spontaneous rotation, as well as the
reversal of the rotation direction upon the application of an
external force (see video 1 in [30] and the Appendix, Sec. 1).
Figure 2(b) shows the dependence of the spontaneous shear
rate (which is proportional to the angular velocity of the upper
disk) on the square of the applied electric field. It can be seen
that the shear rate was nearly proportional to the square of
the electric field. This square dependence may stem from the
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FIG. 3. (a) Turbulence observed at E = 1.5 V/μm and f =
50 Hz, which corresponds to the DSM2 state (see video 2 in [30]).
The scale bar is 50 μm. Note that a macroscopic flow can be
observed from left to right in the video. (b) Coexistence of the DSM1
and DSM2 states. The image was clipped from a movie taken after
applying an electric field of E = 0.3 V/μm and f = 50 Hz (see
video 3 in [30]). The bright and dark domains correspond to the
DSM1 and DSM2 states, respectively. The scale bar is 1 mm.

square dependence of the director torque on the electric field
as described above.

As MBBA is somewhat susceptible to hydrolysis, which
may be accelerated by ionic conduction in the presence of
an electric field, we investigated the possibility of sample
degradation. The conductivity of our sample at 25 ◦C was
0.9 × 10−7 �−1 m−1. In our sample with a volume of πr2h ≈
200 μL (with r = 25 mm the radius of the upper plate and
h = 100 μm the gap between the upper disk and the lower
stage), the total current (amplitude) and power were 0.27 mA
and 20 mW, respectively, at an applied voltage of 150 V
(amplitude) and a frequency of 50 Hz. We checked for the oc-
currence of degradation under these conditions by monitoring
the time dependence of the spontaneous shear rate over 10 h.
The decrease in the spontaneous shear rate was approximately
1%. As the longest measurement made in the present study
was 7 h, sample degradation can therefore be neglected.

B. Turbulence caused by electric fields

When a liquid crystal exhibits the negative shear stress and
spontaneous shear flow discussed above, turbulence occurs
[24–29]. In general, NLCs reach turbulent states through a
series of bifurcations [26]. Two types of turbulence are known,
which are referred to as dynamic scattering modes (DSMs) 1
and 2 [25]. The former appears at lower electric fields than
the latter. It was shown that the transition between the two
DSM states occurs via nucleation of DSM2 and its subsequent
growth in an increasing electric field, and disclinations are
created in the DSM2 state during this transition [25].

Figure 3(a) and video 2 in [30] show the typical turbulence
observed at E = 1.5 V/μm and f = 50 Hz. The turbulence
was confirmed to be DSM2 by observing the coexistence of
the DSM1 and DSM2 states and the growth of the DSM2
domains upon applying an electric field of E = 0.3 V/μm
[Fig. 3(b) and video 3 in [30]]. Since disclinations scatter
the incident light, the DSM2 domains are darker. The tran-
sition electric field was determined to be Ec = 0.16 V/μm
by slowly varying the applied electric field around Ec. This
obtained value of Ec is smaller than typical values reported
to date, because the sample gap (100 μm) was considerably

FIG. 4. Hysteresis loops, S-shaped curves, and scaling relation.
(a) and (b) Relationships between shear stress and shear rate at var-
ious fields under (a) controlled shear stress and (b) controlled shear
rate. Hysteresis loops are observed in (a), which become larger as the
electric field is increased, whereas S-shaped curves are observed in
(b). (c) and (d) Relationships between scaled shear stress and scaled
shear rate based on the data shown in (a) and (b), respectively. The
scaled shear stress and scaled shear rate are defined as σ/ε0|�ε|E2

and γ1γ̇ /ε0|�ε|E2, respectively. The scaling relation holds for both
sets of data. The solid black curve in (d) represents the theoretical
result calculated by assuming the orientational distribution function.

larger than that of typically used liquid crystal cells. It was
previously observed that Ec decreases with increasing gap
size [28]. We performed all of our experiments at electric
fields higher than Ec; the minimum applied electric field in
our experiments was 0.47 V/μm, at which we could observe
spontaneous shear flow.

C. Hysteresis loop, S-shaped curve, and scaling relation

Figures 4(a) and 4(b) present the relationships between the
shear stress σ and the shear rate γ̇ measured under controlled
shear stress and controlled shear rate, respectively, at various
electric field strengths, where the shear stress or shear rate was
first increased from the minimum value to the maximum value
and then decreased to the minimum value again. The electric
field was changed at a step of �(E2) = 0.45 (V/μm)2 and
the measurement time at each of the different electric fields
was 1000 s. Under controlled shear stress, hysteresis loops
were clearly observed, the size of which became larger with
increasing electric field. In contrast, under controlled shear
rate, S-shaped curves were obtained without hysteresis. The
appearance of the curves varied because the shear stress is a
single-valued function of the shear rate, whereas the latter is a
multivalued function of the former. Controlling the shear rate
enables us to measure the unstable region (dσ/dγ̇ < 0) and
clearly recognize the occurrence of negative viscosity because
the slope at the origin indicates the inverse of the viscosity η0.
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Such S-shaped curves have not been observed in ferroic solids
to date, because it is difficult to control the order parameters
such as magnetization. Quite recently, the different behavior
under controlled shear stress and rate is theoretically shown in
bacterial suspensions [14].

Since negative shear viscosity is very unusual, one may
ascribe it to an experimental artifact. To dispel this suspicion,
we performed measurements using a different type of rheome-
ter (ARES-G2, TA Instruments), which is a strain-controlled
rheometer and can therefore be used to directly measure the
shear stress regardless of whether it is positive or negative; the
MCR-302 used in the above experiments is fundamentally a
stress-controlled rheometer. We obtained essentially the same
result as described above, thereby convincingly demonstrating
the occurrence of negative viscosity (see Appendix, Sec. 2).

In Figs. 4(a) and 4(b) all of the curves in each plot have a
similar appearance. From dimensional analysis we obtain the
scaling relation

γ1γ̇

ε0|�ε|E2
= f

(
σ

ε0|�ε|E2

)
, (1)

where γ1 is the rotational viscosity [17,18] and f (x) is a
scaling function. The scaled data from Figs. 4(a) and 4(b)
are plotted in Figs. 4(c) and 4(d), respectively. The scaling
relation holds for the data obtained under both controlled
shear stress and controlled shear rate. It is noted for Fig. 4(b)
that the slope at the origin, that is, the inverse of viscosity η0,
is independent of the applied electric field. This is a natural
consequence of the scaling relation; since f (x) in Eq. (1) is
an odd function, f (x) = f ′(0)x for small x and thus γ1γ̇ =
f ′(0)σ independent of the applied electric field in the linear
region.

D. Temperature and frequency dependences
of the S-shaped curve

To confirm that the negative viscosity was due to the
nematic phase, we examined the temperature dependence of
the S-shaped curve, which would be expected to disappear in
the isotropic phase. For our MBBA, the transition temperature
from the nematic phase to the isotropic phase is approximately
45 ◦C. The experimental procedure was the same as that
used in Fig. 4(b), except that the amplitude and frequency
were fixed at E = 1.5 V/μm and f = 50 Hz, respectively,
and the temperature was varied. As shown in Fig. 5, the
viscosity η0 gradually increased with increasing temperature.
At 43 ◦C, the viscosity was positive but the shear-stress–shear-
rate line remained slightly curved because the sample was
still in the nematic phase. At 47 ◦C, which corresponds to the
isotropic phase, the line was straight owing to the absence
of negative viscosity. This result clearly indicates that the
negative viscosity originated from the nematic phase. In this
case, compared with the electric field dependence [Fig. 4(b)],
the behavior is different: No scaling relation holds and the
viscosity η0 depends on the temperature. Furthermore, the
temperature dependence is reminiscent of the ferromagnetic
or ferroelectric phase transition, where the hysteresis loop
(S-shaped curve in our case) disappears at high temperatures
in the paramagnetic or paraelectric phase. Therefore, we refer
to the states with and without the S-shaped curve (hysteresis

FIG. 5. Temperature dependence of the S-shaped curve. Mea-
surements are performed under controlled shear strain at E =
1.5 V/μm and f = 50 Hz. The nematic to isotropic phase transition
temperature of MBBA is approximately 45 ◦C. At 47 ◦C, the nonlin-
ear property related to the negative viscosity completely disappears.

loop) as ferroviscous and paraviscous phases, respectively.
In addition, we refer to the property of spontaneous shear
flow and the reversal of its direction by an external impulse,
which leads to the S-shaped curve (hysteresis loop) in the
ferroviscous phase, as ferroviscosity.

In general, EC is dependent on the frequency, so we
can expect the S-shaped curve to be frequency dependent.
Figure 6(a) shows the frequency dependence of the S-shaped
curve at a constant electric field of 1.5 V/μm. A ferroviscous
phase transition similar to that seen in Fig. 5 can be observed.
In this case, the frequency plays a temperaturelike role. Both
temperature and frequency are able to cause the paraviscous to
ferroviscous phase transition. However, we consider that the
frequency is the proper temperaturelike quantity in the ferro-
viscous phase transition, because the temperature is the quan-
tity responsible for the nematic to isotropic phase transition
and the frequency is related only to the ferroviscous transition.
As the temperature influences various quantities such as the
dielectric anisotropy and the viscosity coefficients, the tem-
perature dependence may be more complex than the frequency
dependence. We observed simple behaviors for the frequency
dependence as described in the following. Figure 6(b) shows
the frequency dependence of the spontaneous shear rate mea-
sured at σ = 0 in Fig. 6(a), clearly indicating that the shear
rate corresponds to the order parameter in conventional ferroic
materials. Figure 6(c) shows the frequency dependence of
the differential viscosity dσ/dγ̇ at σ = 0, where there are
two other values η+ and η− in addition to η0 as indicated
in Fig. 6(a); the average value (η+ + η−)/2 is plotted rather
than η+ and η−. The ferroviscous phase transition occurred
at fc = 433 Hz. For (η+ + η−)/2 (f < fc) and η0 (f > fc),
the typical Curie-Weiss law holds, so they correspond to the
inverse magnetic susceptibility, and the absolute value of the
slope for the former is approximately 1.8 times as large as
that for the latter, which is close to the value of 2 calculated
from the mean-field theory or Landau theory [31] for ferroic
materials. In addition, negative η0 (f < fc) was successfully
observed, unlike in conventional ferroic materials.
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FIG. 6. Frequency-induced transition from the paraviscous phase
to the ferroviscous phase. (a) Frequency dependence of the S-shaped
curve at E = 1.5 V/μm. At high frequencies, the slope at γ̇ = 0 is
positive, which corresponds to the paraviscous phase. Therefore, the
transition from the ferroviscous phase to the paraviscous phase can
be observed. (b) Frequency dependence of the spontaneous shear
rate at zero shear stress obtained from (a). A steep increase in the
spontaneous shear rate is observed below the transition point, which
is similar to the order parameter of conventional ferroic materials.
(c) Frequency dependence of differential viscosity dσ/dγ̇ at σ = 0,
showing η0 and the average (η+ + η−)/2. At the transition point of
fc = 433 Hz, η0 becomes zero.

E. Self-oscillation caused by negative viscosity

Negative electrical resistance can be used to produce elec-
trical oscillators, which are based on negative-resistance de-
vices such as tunnel diodes [32]. In exactly the same manner,
we can construct a mechanical oscillator simply by attaching
a coil spring to the shaft of the upper plate (Fig. 7). With
the spring, the equation of motion for the rotational angle φ

becomes

I φ̈ = −Kφ − �φ̇ − M (φ̇), (2)

where I , K , and � are the moment of inertia of the upper
disk, the spring constant of the coil spring, and the damping
constant of the coil spring excluding the viscosity of the
liquid crystal, respectively. In addition, M (φ̇) is the torque
exerted on the liquid crystal for an angular velocity φ̇, which
is obtained from the S-shaped curve shown in Fig. 4(b), M =
(πr3/2)σ and φ̇ = (h/r )γ̇ , where r and h are the radius of
the upper disk and the gap, respectively. When �φ̇ + M (φ̇) =
a1φ̇ + a3φ̇

3, Eq. (2) is the Rayleigh equation [33], which is
transformed, by differentiating it with respect to time, to the
van der Pol equation [34]

I �̈ = −K� − (a1 + 3a3�
2)�̇, (3)

FIG. 7. Mechanical self-oscillator. A coil spring is simply at-
tached to the shaft of the upper plate of the rheometer.

where � = φ̇. For a1 < 0, the static solution is unstable and a
limit cycle appears. In our system, we can demonstrate a self-
oscillation, although M (φ̇) contains higher-order terms with
respect to φ̇ in this case.

Figure 8(a) shows a typical self-oscillation observed in
the angular velocity φ̇ after applying an electric field of
E = 1.5 V/μm and f = 50 Hz. Here we confirm that the
self-oscillation originates from the S-shaped curve according
to Eq. (2). Figure 9 shows the S-shaped curve in the M and
φ̇ plane, which was measured by removing the coil spring
after observing the self-oscillation in Fig. 8(a). To numerically
solve Eq. (2), we assume an odd function for M (φ̇) as

M (x) = −ax + bx|x|1.5/(|x|1.5 + c1.5), (4)

where a, b, and c are fitting parameters, which were obtained
from Fig. 9 by least-squares fitting. In our data for M (φ̇),
polynomial functions are not suitable for fitting. The black
line in Fig. 9 shows the fitting result. Here the fitting range was
chosen such that it covers the moving range of φ̇ in Fig. 8(a).

FIG. 8. Mechanical self-oscillation of angular velocity. (a) Ex-
perimental result observed upon applying an ac electric field with
an amplitude of 1.5 V/μm and a frequency of 50 Hz at t = 0.
A self-oscillation is observed in both the angular velocity φ̇ and
the rotation angle φ. (b) Numerical result calculated using Eq. (2).
The initial condition of φ = 2.98 × 10−3 rad and φ̇ = 0 rad s−1 was
imposed at t = 2.47 s; these values were obtained from the data of
φ(t ) (not shown) and (a).
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FIG. 9. Plot of the S-shaped curve. This curve was measured
without the coil spring shortly after observing the self-oscillation.
The applied electric field was the same as that used to obtain
Fig. 8. The average of the data obtained while increasing and
decreasing the shear rate is shown. The solid black line indicates
the fitting result from Eq. (4) with a = 4.58 × 10−4 Nms rad−1, b =
7.56 × 10−4 Nms rad−1, and c = 7.97 × 10−3 s−1.

The moment of inertia I was measured using the rheometer.
The parameters K and � were obtained from a damped oscil-
lation without the liquid crystal sample, as shown in Fig. 10,
where we fitted the function φ(t ) = A exp(−t/τ ) cos(ωt + δ)
to the data to obtain K = I (ω2 + τ−2) and � = 2Iτ−1. Using
these obtained parameters, we determined φ̇(t ) by numeri-
cally solving Eq. (2). As shown in Fig. 8(b), we were able to
successfully reproduce the experimental data, which convinc-
ingly demonstrates that the self-oscillation originated from

FIG. 10. Damped oscillation. Time dependence of the rota-
tional angle φ after applying an initial rotational angle of 7.8 ×
10−3 rad with the coil spring and no liquid crystal. From the least-
squares fit, we obtain K = 1.15 × 10−4 Nm rad−1 and � = 4.6 ×
10−7 Nms rad−1 by using I = 9.70 × 10−5 Nms2 rad−1.

FIG. 11. Power density −Mφ̇ as a function of φ̇ obtained from
the S-shaped curve shown in Fig. 9. The maximum power den-
sity is approximately 6.7 × 10−9 W at φ̇ � ±7.2 × 10−3 rad s−1 and
M � ∓9.3 × 10−7 Nm.

the negative and nonlinear viscosity depicted in Fig. 9. The
amplitudes of oscillation for the experimental and numerical
results were 0.015 and 0.014 rad s−1, respectively, and the
periods were 8.2 and 7.2 s, respectively. The discrepancy,
especially with respect to the period, may be attributable to a
dynamical effect; the M − φ̇ curve in Fig. 9, which was stat-
ically measured, could be changed by a faster measurement
made, for example, within the period.

Finally, we briefly consider the efficiency when we regard
the system with no coil spring, which spontaneously rotates,
as a motor. From the S-shaped curve in Fig. 9, the work done
on the upper disk by the liquid crystal per unit time, that is,
the power −Mφ̇, was calculated as a function of the angular
velocity (Fig. 11). The maximum value of the power was
about 6.7 × 10−6 mW at φ̇ � ±7.2 × 10−3 rad s−1 and M �
∓9.3 × 10−7 Nm, which is much smaller than the supplied
electric power of 20 mW.

IV. DISCUSSION

A. Origin of negative viscosity and separation of viscous
and electric-field-induced stresses

We next consider the origin of the negative viscosity. Upon
the application of an electric field, macroscopic shear flow
is generated by the rotation of the director caused by the
electrically induced torque, which may generate rotational
flows and reduce the apparent viscosity. This effect appears to
be similar to that in MFs. However, there is an essential differ-
ence between the two systems. In MFs, each particle possesses
a permanent magnetic moment, which rotates according to an
applied ac magnetic field and induces a vortex flow around
the particle. The rotational directions are usually random
such that no net macroscopic flow is present. However, any
shear flow can break down the degeneracy of the rotational
direction, and the resultant synchronous rotation reduces the
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apparent viscosity. In MFs, the magnetic moment is a vector
and tends to be parallel to the applied magnetic field, whereas
in NLCs the director is a second-rank-tensor-like quantity and
tends to be perpendicular to the electric field for NLCs with
negative dielectric anisotropy. In the former case, reversal
of the magnetic moment or π rotation of the particle is
possible by applying a magnetic field in the opposite direction,
whereas in the latter case this is impossible. This means that in
NLCs, it is difficult to make the director rotate synchronously
with the ac electric field and therefore it is necessary to
find another mechanism to explain the negative viscosity.
In fact, we observed spontaneous shear flow even under dc
electric fields (the spontaneous shear rate was 2.7 s−1 at a
dc electric field of 1.06 V/μm), which definitively rules out
the above mechanism based on synchronous rotation with
an ac electric field. In the present NLC, however, turbulence
occurs, which induces random director reorientation through
the coupling between the flow and director. In this state, an
electric torque is exerted on the director when the director is
not perpendicular to the applied electric field. Consequently,
the torque gives the director electrically induced angular
velocity, resulting in the generation of a local flow. When the
local flow synchronizes over the fluid, the apparent viscosity
is reduced as in the case of MFs. This scenario is formulated
based on the Ericksen-Leslie (EL) theory [17,18].

In EL theory, the stress tensor σαβ is expressed in terms of
the director field n(x, t ) and velocity field v(x, t ),

σαβ = σ
(Ericksen)
αβ + σ

(visc)
αβ , (5)

with

σ
(Ericksen)
αβ = − ∂fd

∂ (∂nγ /∂xα )

∂nγ

∂xβ

− pδαβ (6)

and

σ
(visc)
αβ = α4Aαβ + α1nαnβnμnρAμρ

+α5nαnμAμβ + α6nβnμAμα

+α2nαNβ + α3nβNα, (7)

where fd is the Frank elastic energy density, p is the pressure,
Aαβ = (∂vα/∂xβ + ∂vβ/∂xα )/2 is the symmetric part of the
velocity gradient tensor, Nα = dnα/dt − Wαβnβ is the rate of
change of the director with respect to the background fluid
with the antisymmetric part Wαβ = (∂vα/∂xβ − ∂vβ/∂xα )/2,
and αi are the Leslie viscosity coefficients. In addition,
σ

(Ericksen)
αβ is the Ericksen stress, the first term of which origi-

nates from the elasticity, and σ
(visc)
αβ is the viscous stress due

to dissipation. In our case, we can neglect the Ericksen stress.
The elastic energy density is given by

fd = 1
2K1(∇ · n)2 + 1

2K2[n · (∇ × n)]2

+ 1
2K3[n × (∇ × n)]2, (8)

where Ki are the Frank elastic constants. Using this expres-
sion, we can estimate the Ericksen stress as Kh−2, where K

and h are a typical elastic constant of MBBA and the gap
height, respectively. Substituting K � 5 × 10−12 N [17] and
h = 100 μm, we obtain Kh−2 � 5 × 10−4 Pa, which is much
smaller than the values measured from Fig. 4. Hereafter, we
consider only the viscous stress. In Eq. (7), the two terms

containing Nα may be the origin of the negative viscosity
because they are related to the stress generated by the angular
velocity of the director.

The Nα is calculated from the torque balance equation

n × h = γ1n × N + γ2n × An, (9)

where h = −∂fel/∂n = ε0�ε(n · E)E is the force density
originating from the electric field, γ1 = α3 − α2, and γ2 =
α3 + α2 [17,18]. By using the fact that N is perpendicular to
n, which is derived from its definition, together with Eq. (9),
we obtain

N = −γ2

γ1
{An − (n · An)n}+ 1

γ1
ε0�ε(n · E){E−(n · E)n}.

(10)

Substitution of Eq. (10) into Eq. (7) yields

σ
(visc)
αβ = α4Aαβ +

{
α1 + γ2

γ1
(α2 + α3)

}
nαnβnμnρAμρ

+
(

α5 − γ2

γ1
α2

)
nαnμAμβ+

(
α6− γ2

γ1
α3

)
nβnμAμα

+ 1

γ1
ε0�ε{α2nαnμEβEμ + α3nβnμEαEμ

− (α2 + α3)nαnβnμnρEμEρ}. (11)

Since our fluid is in a turbulent state, we take the time
and spatial average. By using the decoupling approximation
〈nαnβnμnρAμρ〉 = 〈nαnβnμnρ〉〈Aμρ〉 for the turbulent state,
for a macroscopic shear flow v = (γ̇ z, 0, 0) and an electric
field E = (0, 0, E), the measured shear stress σ = 〈σ (visc)

zx 〉
can be expressed as

σ = σv + σe, (12)

with

σv = γ̇

2

[
α4 + 2

{
α1 + γ2

γ1
(α2 + α3)

}〈
n2

xn
2
z

〉
+

(
α5 − γ2

γ1
α2

)〈
n2

z

〉 + (
α6 − γ2

γ1
α3

)〈
n2

x

〉]
(13)

and

σe = ε0�εE2 1

γ1

[
α3〈nxnz〉 − (α2 + α3)

〈
nxn

3
z

〉]
. (14)

Here we take the x, y, and z axes along the flow, vorticity,
and velocity gradient (electric field) directions, respectively
[Fig. 1(b)], and E in Eq. (14) should be regarded as the
root-mean-square value as the time average is taken. Although
both σv and σe are derived from the viscous stress, we refer to
the former as the intrinsic viscous stress or simply the viscous
stress, because it persists even in the absence of an electric
field. We refer to σe as the electric-field-induced shear stress,
as it is directly related to the electric field. It should be noted
that these two stresses are expressed only in terms of the
averages of products of nα and contain no angular velocity.
This is one advantage of our formulation. Without shear flow
in the x-z plane, the orientational distribution of the director
is rotationally symmetric with respect to the z axis, resulting
in 〈nxnz〉 = 〈nxn

3
z〉 = 0 in Eq. (14), and therefore σe = 0.

012701-7



HIROSHI ORIHARA et al. PHYSICAL REVIEW E 99, 012701 (2019)

FIG. 12. Separation of σv and σe. (a) Transient response of shear
stress at a shear rate of 1 s−1 upon removing an electric field of
1.5 V/μm at 0 s. The stress suddenly increases immediately after
removal of the electric field, corresponding to −σe > 0, and then
slowly relaxes. The shear stress prior to removal of the electric
field is σv + σe. From these values, we can separately obtain σv and
σe. (b) Dependences of σv and σe on γ̇ obtained by varying the
shear rate in (a). Here σv is positive and nearly proportional to the
shear rate, whereas σe is negative and becomes saturated at high shear
rates. Therefore, σ = σv + σe first decreases to a minimum and then
increases to become positive. This behavior corresponds to part of
Fig. 4(b) (γ̇ > 0).

Any shear flow can break down the symmetry to make the
averages nonzero. If σe < 0, the apparent viscosity decreases,
and furthermore, if −σe > σv, it becomes negative.

We can experimentally separate σv and σe using the fact
that σe disappears when the electric field is removed, as
indicated by Eq. (14). Figure 12(a) shows the time dependence
of the shear stress at a shear rate of 1 s−1 upon removing
an electric field of 1.5 V/μm at 0 s. The stress suddenly
increased immediately after the removal of the electric field,
corresponding to −σe > 0. The gradual decrease after the
sudden increase can be ascribed to the change in the orienta-
tional distribution. We repeated this measurement for various
shear rates to obtain the shear-rate dependences of σv and
σe [Fig. 12(b)]. It can be seen that σv was positive and
nearly proportional to γ̇ , whereas σe was negative and became
saturated at high shear rates. These behaviors are consistent
with Eqs. (13) and (14); the average values of the product of
nα in Eq. (13) are nonzero even in the absence of an electric
field and therefore they may be almost independent of the
electric field, whereas those in Eq. (14) are zero in the absence
of an electric field and so an increase would be expected when
an electric field is applied. Thus, the electric-field-induced

shear stress is clearly confirmed to be the origin of the negative
stress in the present NLC system.

B. Model to reproduce the S-shaped curve

We can now reproduce the S-shaped curves by calculating
the averages of the products of nα in Eqs. (13) and (14). To do
so, we assume the orientational distribution function as

P (n) ∝ exp

⎛
⎝−a

1

2
n2

z + b˜̇γ ˜̇γ0√˜̇γ 2 + ˜̇γ0
2
nxnz

⎞
⎠, (15)

where ˜̇γ is the scaled shear rate

˜̇γ = γ1γ̇

ε0|�ε|E2
(16)

and a and b are constants. Here we regard the turbulence
as a heat bath in analogy to equilibrium systems. The first
term in the exponential function originates from the in-
teraction energy with the electric field fel = − 1

2ε0ε⊥E2 −
1
2ε0�ε(n · E)2, which is rotationally symmetrical with respect
to the z axis. The second term represents the symmetry break-
ing due to the macroscopic shear flow. Here we introduce a
characteristic scaled shear rate ˜̇γ 0 over which the second term
becomes constant to obtain a better fitting result. Furthermore,
the scaling relation expressed by Eq. (1) is considered, which
indicates that the orientational distribution function should
contain only the scaled shear rate ˜̇γ , but not γ̇ and E indi-
vidually. We obtain σ using Eqs. (13)–(15), where we replace
the external electric field E in Eq. (14) by the root mean
square E/

√
2 (note that E represents the amplitude of the

ac electric field in this paper) and modify Eq. (12) to σ =
c(σv + σe ) with a constant c to improve the fitting. Since the
calculated σ is not so sensitive to the parameter a, we set a =
0 for simplicity. The parameters b, c, and ˜̇γ0 are adjustable,
and literature data are used for the viscosity coefficients
(α1 = 6 mPa s, α2 = −77.4 mPa s, α3 = −0.868 mPa s, α4 =
81.8 mPa s, α5 = 57.2 mPa s, and α6 = −32.5 mPa s [35])
and the dielectric anisotropy (�ε = −0.631 [36]) at 25 ◦C.
The former parameters were determined for E = 1.34 V/μm
as b = 0.76, c = 1.6, and ˜̇γ0 = 0.011 from the least-squares
fit. The corresponding theoretical curve is indicated by the
black line in Fig. 4(d). The orientational distribution for this
case is depicted in Fig. 13, which shows the surface plot of
P (n)n. In the absence of shear flow, ˜̇γ = 0, the distribution
is isotropic because we set a = 0, although in general it
should be rotationally symmetrical with respect to the z axis

FIG. 13. Shear rate dependence of orientational distribution. The surface plot of P (n)n was calculated from Eq. (5) with a = 0, b = 0.76,
and ˜̇γ 0 = 0.011 obtained from the fitting for E = 1.34 V/μm. Symmetry breaking is observed in the presence of shear flow as expected.
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FIG. 14. Frequency dependences of (a) b and (b) c and ˜̇γ 0

obtained from the fitting of Fig. 6(a). The parameter b linearly
decreases with frequency, whereas c and ˜̇γ 0 are almost independent
of frequency.

as mentioned above. In contrast, in the presence of shear flow,
the symmetry is broken and the anisotropy increases with the
shear rate. In addition, the tilt of the distribution depends on
the flow direction.

In the model described above, the so-called eddy viscosity
[37–39] due to turbulence is not considered; this may partially
contribute to the negative viscosity and thus its inclusion may
be necessary to fully understand the mechanism underlying
the negative viscosity in the present system. The fact that c 
=
1 may indicate that the eddy viscosity contributes somewhat
to the negative viscosity. This may be also ascribed to the
approximation used in the derivation of Eqs. (12)–(14).

Finally, we discuss the frequency dependences of b, c,
and ˜̇γ 0 obtained from the fitting of Fig. 6(a). As shown in
Fig. 14(a), the parameter b linearly decreased with frequency
without any anomaly observed at the transition point from the
ferroviscous phase to the paraviscous phase at fc = 433 Hz. It
can be seen from the frequency dependences of η0 [Fig. 6(c)]
and b [Fig. 14(a)] that there is a close relation between them.
From Eqs. (12) and (15) we obtain a simple relation

η0 =
(

α4

2
+ α5

6
+ α6

6
+ α1

15
− α2 + α3

10

γ2

γ1

)
+ 3α2 − 4α3

210
b.

(17)

Note that this equation is independent of the electric field, as
would be expected from the scaling relation. On the other
hand, c and ˜̇γ 0 are almost independent of the frequency
[Fig. 14(b)]. Thus, Eq. (15) is demonstrated to be a good
function for expressing the orientational distribution, although
it should be derived from, for example, the Fokker-Planck
equation. It is expected that there is irreversible circulation
of probability current [40] in the director space (the surface of
a unit sphere), which is one of the most remarkable character-
istics of nonequilibrium steady states.

V. CONCLUSION

We have demonstrated that an NLC exhibits enormous neg-
ative viscosity in the presence of turbulence when subjected
to electric fields. Several phenomena originating from the
negative viscosity were observed. In the shear-stress–shear-
rate curves, hysteresis loops were observed under controlled
shear stress, whereas S-shaped curves, which clearly illustrate

FIG. 15. Time dependence of spontaneous shear rate correspond-
ing to video 1 in [30], upon applying impulsive torques to the upper
disk.

the occurrence of negative viscosity, were observed under
controlled shear rate. These hysteresis loops are quite similar
to those of ferroic materials, and the similarities between the
phenomena observed for our system and ferroic materials
were demonstrated. By analogy with ferroic materials, we
have coined the terms ferroviscosity, ferroviscous, and par-
aviscous. However, the ferroic materials are at equilibrium,
whereas our fluid is out of equilibrium and electric energy
is constantly being supplied and partially transformed to the
spontaneous rotation and oscillation of the upper disk. Theo-
retical consideration based on the Ericksen-Leslie theory re-
vealed that the negative viscosity originates from the electric-
field-induced shear stress, which is generated by the rotation
of the director in the presence of turbulence. Although a sim-
ple model has been presented that reproduces the S-shaped
curve, the orientational distribution function has not yet been
theoretically derived and further issues such as the mechanism
of the turbulence generation remain open. Ferroviscous fluids
are expected to become an important subject of research in
nonequilibrium physics with potential applications to small
microfluidic devices.

FIG. 16. Shear-rate–shear-stress curve measured using a strain-
controlled rheometer.
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APPENDIX

1. Spontaneous rotation of the upper disk and reversal
of the rotational direction

When an ac electric field (E = 1.5 V/μm and f = 50 Hz)
is applied, the upper disk starts to rotate (see video 1 in [30]).
In the case of our system, the disk rotated clockwise, but the
sense is not predetermined. By applying an impulsive torque
in the opposite direction to the shaft of the upper disk using
a stick, the rotation can be reversed. The video shows the
rotation being reversed twice. The reversal of the rotational

direction corresponds to the reversal of magnetization in
ferromagnetics. The angular velocity of the upper disk was
approximately 9.5 mrad/s. The time dependence of the shear
rate is also depicted in Fig. 15.

2. Measurements using a strain-controlled rheometer

We also measured the shear-rate–shear-stress curve us-
ing a strain-controlled rheometer (ARES-G2, TA Instrument)
[Fig. 16]. The diameter of the metal disk and the gap
were identical to those in the main measurements using a
stress-controlled rheometer (MCR-302, Anton Paar), although
the measurement temperature was slightly higher (27.1 ◦C;
cf. 25 ◦C). At E = 1.5 V/μm and f = 50 Hz, an S-shaped
curve was clearly observed, although it was quantitatively
slightly different from the corresponding curve shown in
Fig. 4(b). This discrepancy may be attributable to the dif-
ferences in the materials used for the upper disks and the
lower stages, which were metal in the ARES-G2 system and
ITO-coated glass in the MCR-302 system.
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