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Activity-induced mixing and phase transitions of self-propelled swimmers
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We study the mixing of active swimmers. Two different types of swimmers (modeled as particles) are placed
initially in two boxes with an interconnection between them. The mixing of swimmers happens as they move
with their own self-propelled forces. The self-propelled force is constant and the direction of the exerted thrust
is governed by the neighboring swimmers. Overall mixing of the swimmers depends on the magnitude of
the exerted thrust, the initial packing fraction, and the activity level. Different nonequilibrium states are also
identified depending on the exerted thrust and the initial packing fraction of the swimmers.
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I. INTRODUCTION

Independently moving swimmers can show interesting col-
lective behavior. As these swimmers propel themselves, they
are often called self-propelled swimmers or self-propelled
particles. The collective motion of the self-propelled swim-
mers are commonly observed in flocks of birds, schools of
fish [1], human crowds [2], bacterial colonies [3], different
cells [4], etc. Collective behavior is also common in the dense
active particle system [5–9].

Researchers have identified global patterns in the self-
propelled system through experimental, numerical, and the-
oretical studies. Large-scale nonequilibrium behavior of the
active particles was observed by Baskaran and Marchetti [10].
Phase transitions in confined domains have been observed
for dense active colloids [6] or soft active particles [11,12].
Self-propelled systems have exhibited different phases due to
changes in the activity of the particles [12] or depending on
the initial packing fraction [6]. These include thermal motion,
solid, or gaslike phases. For highly viscous fluids the common
phases observed are “coherent flock,” “rigid rotation,” and
“random droplet” [13]. Phase transitions of microswimmers
due to flagellar movement and confined geometry were re-
ported by Tsang and Kanso [14]. They identified three phases:
“chaotic swirling,” “stable circulation,” and “boundary ag-
gregation.” In the last two decades, there has been a huge
amount of research focused on self-propelling particles and
the dynamics of their motion. As a result, researchers have
defined various models to this end. The most popular models
are the Czirók model [15], the Boids flocking model [16],
the Vicsek original model [17], the Vicsek modified model,
etc. Among all the models, the Vicsek model [17] is the
most studied model for collective dynamics. According to
this model, the self-propelled particles are aligned with their
neighbors, which are present inside the “influence zone” due
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to some constant “angular noise.” In the self-propelled sys-
tem noise arises due to the “thermal Brownian motion,” due
to “hydrodynamic interactions” or because of the “intrinsic
fluctuations” of the individual agents [18]. The effect of noise
on the alignment of the self-propelled rods was studied by
Ginelli et al. [19]. They have shown that different phases can
be observed depending on the magnitude of the white noise.
Collective behavior or sometimes phase separation [20] was
observed using the Vicsek model as well as without having
any alignment mechanism [21]. Many variants of the Vicsek
model were discussed earlier [22–24].

The self-propelled motion of the individual particles (or
swimmers) induces long-range velocity fields, which creates
the bulk motion in the liquid medium [25]. From various
experiments [26–28] and numerical simulations [29,30] it has
been found that the self-propelled swimmers can enhance the
diffusion mixing. Mixing of the surrounding liquid due to
the movement of the swimmers, also called biomixing [30],
is very relevant for the vertical mixing in the ocean [31].
Self-propelled swimmers can also be used to enhance mixing
inside the micromixer [27]. Sokolov et al. [32] experimentally
showed that the collective motion of bacteria enhances mixing
in dense suspensions. The packing fraction (or concentration)
of the swimmers has a significant role in phase transitions
and it is unpredictable in many cases [33,34]. Hydrodynamic
interactions between the swimmers are very important in
the overall mixing of the swimmers. In this work, we are
interested in the mixing of the swimmers and not the medium.
We have studied the mixing behavior of the self-propelled
swimmers kept in two separate boxes. There is only one
connecting passage between the two boxes as shown in Fig. 1.
The mixing behavior is compared for different coordination
forces of the swimmers. The effects of the self-propelled
force, the initial packing fraction of the swimmers, and the
noise in the system on mixing are also studied. Different
global patterns and surprising phase transitions are observed
depending on the exerted thrust and the packing fraction of
the swimmers. We first describe the modeling approach and
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FIG. 1. The definition of the problem is presented. Swimmers
are initially in two separate boxes. Initially, there are no swimmers
in the connecting path between the two boxes. Particles are colored
blue for Box 1 and pink for Box 2. The self-propelled forces of these
swimmers are varied to see the effect of activity on mixing.

simulation procedures. Next, we describe the results and show
the effect of the coordination coefficient (Cv) and the packing
fraction of the swimmers on phase transitions and the mixing
index η. An order parameter is defined to identify the different
phases.

II. MODELING AND SIMULATIONS

The self-propelled swimmers are generally modeled as
discrete particles [12,35,36]. Either overdamped equation of
motion [35,37] or force based models [12,36] are used to
describe the behavior of the self-propelled particles. In the
present work, we have used the discrete particle based meth-
ods to model self-propelled systems. Earlier, Levine et al.
[36] reported that the discrete models agree very well with
the continuum flock solutions in both one dimension and two
dimensions. In the present work, the swimmers are modeled as
soft disks of radius r and mass m. All swimmers are confined
in an enclosure and they have a self-propelled force on which
they can propel themselves. The force models are similar to
our previous work [12,38].

The total force on any j th swimmers �F j is the sum of the
self-propelled force �F j

sp, the internal (swimmer-swimmer) in-
teraction force �F j

pp, the alignment force �F j
a , and the frictional

force �F j

f :

�F j = �F j
sp + �F j

pp + �F j
a + �F j

f + Fnoise. (1)

The self-propelled force �F j
sp is modeled as [12]

�F j
sp = mj

(
β − ξ

∣∣�vj
p

∣∣2)
v̂j

p. (2)

Here, mj is the mass of the individual swimmer, �vj
p is the

instantaneous velocity of the j th swimmer, v̂
j
p is a unit vector

in the direction of the velocity, and β is a thrust coefficient.
Here, ξ is a small number that restricts the unbounded accel-
eration of the single swimmer in the dilute suspension limit
[39]. As the thrust is modeled as a monopole force, ξ can also
be rationalized as a net momentum sink. For dense systems ξ

can even be set to zero [12].

The swimmer-swimmer interaction force �F j
pp is calculated

considering the interaction between soft spheres [38]:

�F j
pp =

{
−kn

�δ, |�δ| > 0,

�0, otherwise.
(3)

Here, �δ = {|�ri − �rj | − [(di + dj )/2]} �ri−�rj

|�ri−�rj | is the distance be-
tween two swimmers, i and j . Their position vectors are �ri

and �rj and their diameters are di and dj , respectively.
The alignment force �F j

a on the j th swimmer arises because
of the relative velocity of the swimmer with the surrounding
swimmers. The alignment force is a form of force used earlier
[23,36] that helped in aligning the swimmer with the flock.
This coordination force not only restricts the swimmers to
achieve large speeds but also helps in aligning the swimmers.
The alignment force on any swimmer can be estimated as

�F j
a = Cvdj

(�vj − �vj
p

)
. (4)

Here, Cv determines the local alignment of the swimmer with
the neighboring swimmers. In all our simulations, we have
considered Cv as a parameter to understand the effect of
the coordination of the swimmers. Here, �vj is the weighted
average velocity calculated from the n neighboring swimmers
of the j th swimmer [38],

�vj =
∑n

i=1 miWij (‖�ri − �rj‖, hj )�vi
p∑n

i=1 miWij (‖�ri − �rj‖, hj )
, (5)

where the function Wij is in the Gaussian form,

Wij =
{

exp
(−η

‖�ri−�rj ‖2

hj
2

)
,

‖�ri−�rj ‖
hj

� 1,

0, otherwise.
(6)

Here, hj is a cutoff radius of influence for the j th swimmer.
hj corresponds to the influence zone of the swimmers; η is
a constant parameter of value 2 [40]. From Eq. (4) it can be
said that the alignment force helps in local coordination of the
swimmers. It can be understood that random thermal motion
will be observed on the swimmers in the absence of any kind
of restoring force. The frictional force on any swimmer can be
estimated as

�F j

f = −Cvdj �vj
p. (7)

A noise term is added with the total force for each swimmer
in addition to the alignment force and the self-propelled force.
The white noise term is of the form Cvdjγ ζ , where γ is the
noise amplitude and ζ denotes the white noise. The value of
γ = 10−6 is chosen for all the simulations, if not mentioned
otherwise.

The simulation domain is shown in Fig. 1. It has been re-
ported earlier [41,42] that the dimensionality of the model has
very minimal effect on the results of the collective behavior of
the self-propelled systems. We performed the simulation with
a two-dimensional setting and each box was a square (L ×
L). The length of the connector was 0.4 × L and the width
was 0.2 × L. All swimmers were considered as soft disks
of diameter 0.005 × L. Initially no swimmers were packed
at the connector. We started the simulation with zero initial
velocity of the swimmers. The walls of the boxes consisted of
stationary disks of the same size as the swimmers.
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The position and the velocity of the swimmers are esti-
mated from the net force on each swimmer. A linked list
algorithm [43] is used to reduce the computational effort while
calculating the forces. The acceleration of an individual swim-
mer is calculated first from the net force, by dividing the force
with the mass of the particle. The velocity-Verlet algorithm
[44] is used to numerically integrate the position and the
velocity. The procedure is detailed in our earlier work [38].

The major dimensionless groups that govern the dynamics
of the system are χ , L̄ = L

d
, and k̄ = knd

mβ
, where χ is the ratio

of the two force scales: alignment force ( �Fa) and forces cre-
ated due to the self-propelled thrust ( �Fsp). The scale associated
with the forces are Fa ∼ Cvd

√
βL and Fsp ∼ mβ. Here,

√
βL

scales the maximum possible speed of the swimmers in each
box. The expression of χ = L̄ Fa

Fsp
upon simplification can be

obtained as

χ = CvL
√

L

m
√

β
. (8)

Conceptually, χ characterizes the effect of the alignment
force and the self-propelled thrust force. Therefore, we have
described all our results in terms of χ to identify the com-
petition between these forces. In this work, we have varied
χ by changing Cv while keeping other parameters constant.
Although in a few cases we have changed the value of β of
the swimmers in box 2, for simplicity we have used the β

value of box 1 (which is constant throughout) for obtaining
dimensionless quantities. It should be noted that, low χ or Cv

values signify higher thrust force in comparison to the align-
ment force. With the increase of χ or Cv , the alignment force
that dictates the transition of the swimmers from the random
fluctuating state to an ordered collective motion increases.

Mixing calculation

A mixing parameter (η) is defined based on the corre-
lation of the swimmer’s position with respect to the initial
position. The procedure followed here is similar to that of
the weak sense mixing parameter of Doucet et al. [45]. As
the swimmers’ sizes are fixed, the particle size distribution at
any time instant is independent of the initial distribution. The
mixing calculation is done based on the swimmers’ position
data using principal component analysis (PCA) [38,45]. In the
present problem, the following steps are used for calculating
the mixing index.

(i) Based on the initial variance and mean, all swimmers’
initial positions are scaled at the initial instant, t = 0.

(ii) The Swimmers’ positions at time t are scaled based on
the instantaneous variance and mean.

(iii) The correlation matrix ρ(Xm
t ,Xn

0), where m = 1
and 2, and n = 1 and 2, is determined X1 and X2 are N -
dimensional vectors of the x and y coordinates of the swim-
mers (N being the total number of swimmers). The correlation
matrix involves the product of the transpose of (Xm

t ) and
(Xn

0), where t and 0 denote the current and initial time
instants, respectively.

(iv) The correlation matrix C is formed, by assigning
Cmn = ρ(Xm

t,Xn
0).

(v) The symmetric matrix M is computed, such that
M = CCT .

(vi) The eigenvalue problem Mα = λα is solved. Here,
the maximum eigenvalue is λ and the corresponding eigen-
vector is α.

(vii) The mixing parameter for two-dimensional space is
defined as

η =
√

λ/2. (9)

III. RESULTS AND DISCUSSION

We performed the simulations for different packing frac-
tions (�) of swimmers. We considered two cases based on
the initial packing of the swimmers in each box: 74.62% and
34.45%. In each case, the same number of swimmers were
packed in the two boxes initially. Depending on χ and β,
the overall mixing of the two boxes changes. The simulations
are done for χ ranging from 121 to 6039. To see the effect of
the swimmers’ activity on mixing, we also changed the value
of β in box 2.

Figure 2 illustrates the transience of mixing at different
values of χ , for � = 74.62%. Only three representative χ val-
ues are shown in Fig. 2. Initially the swimmers are separated
in two different boxes. In the earlier studies [12], due to the
presence of the hydrodynamic interaction of the particles with
the medium it was observed that with increasing χ the average
velocity of the particles decreases due to higher damping. It
was also observed that the particles move into a rotational
phase and show an organized motion. In the present study
where there is no damping effect, at χ = 604 few swimmers
move into the other box through the connecting path. At
higher χ , as the average velocity of the swimmers is low, the
swimmers did not jam the connecting path. Due to the higher
centrifugal forces [12], a hollow core forms at the center of
each box (see video SM1 in the Supplemental Material [46]
for � = 74.62%). With further increase of χ , an oscillatory
motion of the swimmers is observed in each of the boxes (see
video SM2 in the Supplemental Material [46] and Fig. 2 for
χ = 6039 for � = 74.62%). Due to very slow motion of the
swimmers, the mixing parameter also decreases.

Velocity vectors of the swimmers for different χ are shown
in Fig. 3. At χ = 121, random thermal motion of the swim-
mers can be seen. With the increase of χ , the alignment force
increases, which helps in the alignment of the swimmers. As
shown earlier in Fig. 2, at χ = 604 a hollow core forms at
the respective centers of the boxes and the swimmers rotate
around it. It should be noted that the size of the core changes
with time and at a particular instant the core sizes are different
for the two boxes. With further increase of χ , the swimmers
show an oscillatory pattern in one box and rotation in the
other box. As can be seen from Fig. 3 for χ = 6039, the left
box shows oscillatory behavior of the swimmers. It should be
noted that the direction of rotation (in the rotary phase) of the
swimmers in any box is random. With multiple realization it
is expected to see both clockwise and anticlockwise motion of
the swimmers in the same box. It can be seen from Fig. 3 that
at χ = 604 the swimmers are rotating in the anticlockwise
direction in box 2, whereas the motion is clockwise at χ =
3623 in the same box. Things become more interesting when
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FIG. 2. Mixing of swimmers within the domain at different nondimensionalized times τ = t/
√

L

β
and χ for � = 74.62%. Swimmers of

box 1 and box 2 are colored with blue and pink, respectively. (a) At χ = 604, a hollow core is formed that changes its position and size
with time. The connection between the two boxes get established and mixing is observed. The swimmers inside the boxes are rotating in the
opposite directions. (b) At χ = 3623, a mixed mode of oscillation and rotation is observed. (c) At χ = 6039, the motion of the swimmers is
slower.

the boxes are filled with swimmers with different activity. This
is studied through having a higher thrust coefficient β. As a
case study, β in box 2 is set to 10 times more than β in box

χ 
=1

21
χ 

=6
04

χ 
=3

62
3

τ = 158 τ = 316

χ 
=6

03
9

Box 1 Box 2

FIG. 3. Velocity vectors at different time instants for different χ

for � = 74.62%. At very low χ , random motion of the swimmers
is observed and at higher χ the motions are ordered. A few velocity
vectors are skipped for better clarity of the image.

1. The collective behavior of the swimmers at different χ is
shown in Fig. 4 for � = 74.62%. Because of the higher β, the
swimmers in box 2 are more active than those in box 1. At
χ = 604, more active swimmers from box 2 move into box 1
and block the connecting path. It can be seen from Fig. 4, at
τ = 79 the swimmers from box 2 move into box 1 and restrict
the motion of the swimmers in box 1. The higher activity of
the swimmers of box 2 creates this jammed state in box 1,
whereas the swimmers in box 2 are in a rotary state. As time
progresses, more swimmers from box 2 penetrate box 1 and
create a rotating “wheel,” whereas all other swimmers in box
1 are stationary (see video SM3 in the Supplemental Material
[46]). At higher χ and sufficiently longer time, the swimmers
of box 2 form smaller groups inside box 1. At χ = 6039,
the swimmers in box 1 are oscillating like a single entity
whereas, the swimmers in box 2 are rotating. The behavior
of the swimmers is quite similar to that of the cases explained
earlier where all the swimmers are in a similar activity state.

Mixing of swimmers for � = 34.45% at τ = 632 for dif-
ferent χ is shown in Fig. 5. As shown in Fig. 5, at lower χ

the swimmers are either in a rotational state with a hollow
core in both the boxes [see Fig. 5(a) for χ = 604] or in a
rotational state with a filled core [see Fig. 5(b) for χ = 604].
Generally, the direction of rotations is opposite in the two
boxes. For χ = 3623, when β is set to 1 in both the boxes,
mixing characteristics are different in the two boxes. It can be
seen from Fig. 5(a) that for χ = 3623 mixing is better in the
right box (box 2). The effects of the packing fraction of the
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FIG. 4. Mixing of swimmers within the domain at different nondimensionalized time τ = t/
√

L

β
and χ for � = 74.62%. Swimmers of

box 1 and 2 are colored with blue and pink, respectively. The self-propelled coefficient β is set to 10 for the right box and it is 1 for the left
box. (a) At χ = 302, swimmers are in the jammed state in the left box, whereas they are rotating in the right box. (b) At χ = 3623, a hollow
core is formed that changes its position and size with time. The connection between the two boxes is established and mixing is observed. (c) At
χ = 6039, the pattern formed by the swimmers is similar to that at χ = 3623. However, the average velocity of the swimmers is much slower.

swimmers are visible from the figures. In � = 34.45%, the
disconnected motion of the swimmers is observed, whereas,
due to the higher packing fraction in � = 74.62%, there are
always a few swimmers in the connecting path. When the β

value of the swimmers in the right box is 10 times that of

(a)

χ 
= 

60
4

χ 
= 

36
23

χ 
= 

60
39

(b)

FIG. 5. Mixing of swimmers for different χ values for � =
34.45%. (a) The β value is the same for all the swimmers in the
two boxes (β = 1). (b) The β value of the swimmers in the right box
is 10 times that of the swimmers in the left box. Corresponding time
τ = 632.

the swimmers in the left box, the mixing of the swimmers
enhances and several smaller flocks are observed. For χ =
3623 and 6039 in Fig. 5(b), an oscillatory motion is observed
inside the connecting pathway of the two boxes and in the left
box (box 1).

A. Order parameter

To describe the flocking behavior of the swimmers, the
order parameter φ has been defined as [23,24,47]

φ =
∣∣∣∣∣ 1

N

N∑
i=1

�vi

|�vi |

∣∣∣∣∣, (10)

where �vi represents the velocity of the ith swimmer and N

is the total number of the swimmers. In the current work, the
time-averaged order parameter � of the flock increases with
increasing χ (see Fig. 6). This is mainly due to two factors:
the effect of the confinement and the type of aggregation
formed. Because of these factors, three distinct regimes of the
swimmers are observed for different χ (see Fig. 6). As shown
in Fig. 6(a), three distinct regimes are observed for � =
74.62%: thermal, rotational, and oscillatory. There is also a
transitional regime where the swimmers show the behavior
of both the rotational and the oscillatory phases. Thermal
motion is observed at χ = 121, where the value of the order
parameter is the lowest. With the increase of χ the ordering
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FIG. 6. The temporally averaged order parameter � is plotted for
increasing χ values. (a) � is plotted for � = 74.62%. Three distinct
regimes can be seen: thermal, rotational, and oscillatory. For certain
χ values a transitional regime between the rotational and oscillatory
regimes is also observed. (b) � is plotted for � = 34.45%. Thermal
motion is not observed here even for the smaller χ = 121. All
subfigures correspond to τ = 158.

increases and the swimmers start showing a rotational phase.
At the beginning of this rotational regime, the swimmers start
rotating in the two boxes, although there is no movement
of the swimmers in the connecting path. The representative
image (subfigure aii) is shown in the inset of Fig. 6(a). Thus,
the order parameter is lower, and it increases sharply with the
increase of χ . The order parameter is maximum when all the
swimmers are in motion (subfigure aiii). Inside the rotational
regime, the value of the order parameter decreases because
of the formation of smaller flocks (see the connecting path
of subfigure aiv). With a further increase of χ the activity of
the swimmers dies down, and they start oscillating inside the
boxes (for χ > 3623). It should be noted that the increase of
� does not indicate higher velocity of the flocks.
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FIG. 7. The mixing parameter for different χ values for different
cases. In the first column of the figure [panels (a) and (c)], the β value
is same for all the swimmers in the two boxes (β = 1). In the second
column [panels (b) and (d)], the β value in the right box is 10 times
that in the left box.

With the decrease of the packing fraction of the swimmers
(� = 34.45%), surprisingly, the thermal motion is not ob-
served. Only rotational and oscillatory regimes are observed.
Rotational motions can be seen in the inset (subfigure bi) of
Fig. 6(b) for χ = 121. The order parameter increases with
the increase in χ . A small decrease in the order parameter
is observed for χ = 604, when there are no swimmers in
the connecting path (see subfigure bii). With further increase
in χ the swimmers are forming smaller flocks, although
there exists a bulk motion (see subfigure biii). Similar to the
� = 74.62%, here also a transitional regime exists between
the rotational and the oscillatory phases. In the transitional
phase, either the swimmers in both the boxes are rotating with
oscillation or there is oscillation in one box and rotation in the
other. It should be noted that for both cases, the increase of
the order parameter does not suggest higher mixing. In most
of the cases, the mixing is reduced with the increase of the
order parameter, particularly at higher χ .

B. Quantification of mixing

To quantitatively identify mixing, we defined the mixing
parameter η as described in Sec. II. It should be noted that the
lower value of η signifies better mixing. Figure 7 shows the
variation of η as a function of time for different χ values for
different cases studied here. When the thrust coefficient is the
same for all the swimmers in boxes 1 and 2, the mixing param-
eter is higher (i.e., low η) at χ = 604, as shown in Fig. 7(a). At
χ = 3623, the mixing parameter decreases mainly due to the
oscillatory behavior of the swimmers. The mixing parameters
for χ = 3623 and 6039 are also similar. Our objective in this
work is to show the mixing of self-propelled swimmers and

012609-6



ACTIVITY-INDUCED MIXING AND PHASE TRANSITIONS … PHYSICAL REVIEW E 99, 012609 (2019)

)b()a(

10-1 100 101 102

η

0

0.2

0.4

0.6

0.8

τ

γ=10-3

γ=10-4

γ=10-5

γ=10-6 χ = 604

10-1 100 101 102
η

0

0.2

0.4

0.6

0.8

τ

χ = 3623

(c)
γ=10-3 γ=10-4

γ=10-5 γ=10-6

FIG. 8. The mixing parameter for different χ values for different
γ for � = 74.62%. (a) Effect of γ is shown for χ = 604. (b) The
effect of γ is shown for χ = 3623. With the increase of γ the mixing
parameter increases. The arrow indicates the direction of the increase
of γ . (c) Mixing of swimmers for different γ for χ = 604. With
the increase of γ , the rotational phase to the jammed state phase
transition is observed.

not to identify the best mixing criteria based on β and χ .
When the thrust coefficient is higher in box 2, as shown in
Fig. 7(b), the higher activity of the swimmers enhances the
mixing of the swimmers of χ = 3623. In general, due to the
increase in friction and higher alignment forces, the mixing
parameter decreases with an increase in χ .

It is also interesting to see the effect of the packing
fraction of the swimmers in the mixing process. Earlier, it
was observed that the velocity of the particle decreases with
an increase in the volume fraction of the swimmers [48].
Thus, it is expected that the mixing behavior will change with
the swimmers’ packing fraction �. Mixing behaviors of the
swimmers are shown in Figs. 7(c) and 7(d) for � = 34.45%.
When β is the same for all the particles in the two boxes (β =
1), the mixing parameter increases with χ up to χ = 3623 and
then decreases. When β in the right box is 10 times that in the
left box, it can be seen from Fig. 7(d) that the mixing behavior
is almost similar to that with � = 74.62% for χ = 6039 and
3623. It can be seen from Fig. 7(d) that the mixing parameter
for χ = 604 is maximum. The higher active swimmers from
box 2 help in moving the swimmers of the left box (box 1).

Therefore, it can be expected that, with the increase of β, the
mixing parameter will increase particularly for higher χ .

C. Effect of noise

In order to identify the effect of the white noise term in
the overall mixing of the swimmers, different values of noise
amplitudes (γ ) are chosen. As seen from Fig. 8, the mixing
parameter (η) is a strong function of γ . For χ = 604, the
variation is more prominent compared to the higher χ values.
With the increase of the value of γ the overall dynamics of the
swimmers changes. As shown in Fig. 8(c), at higher γ values
the swimmers are not able to move and exhibit a jammed state,
whereas at lower values (�10−5) the swimmers are able to
move freely. Phase transitions because of the noise have also
been observed earlier by Ginelli et al. [19].

IV. CONCLUSION

Phase transition and mixing of self-propelled swimmers
are studied in this work. Different phases of the swimmers,
from the random motion to the rotary state, are identified.
Activity-induced mixing of the swimmers inside an enclosed
chamber is characterized by the mixing index. The thrust co-
efficient and the alignment forces dictate the phase transition
and the mixing of the swimmers.

Phase transitions and mixing indexes were identified for
different packing fractions of the swimmers. It is observed that
for very high packing fractions of ∼75% the swimmers show
thermal, rotational, and oscillatory phases. For lower packing
fractions the thermal motion is missing and the swimmers
are mostly in the rotational state. Mixing of the swimmers
is quantitatively identified by using a mixing parameter. The
general observation on mixing is that the mixing parameter
decreases with the increase of χ . It is also observed that, with
the presence of more active swimmers (higher β) in box 2, the
mixing is faster and better at lower χ , whereas the effect of
β is not very significant at lower χ , except at a low packing
fraction.
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