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Global topology of contact force networks: Insight into shear thickening suspensions
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Highly concentrated particle suspensions (also called slurries) can undergo a sharp increase in viscosity,
or shear thickening, under applied stress. Understanding the fundamental features leading to such rheological
change is crucial to optimize flow conditions or to design flow modifiers for slurry processing. While local
changes to the particle environment under applied shear can be related to changes in viscosity, there is a broader
need to connect the shear thickening transition to the fundamental organization of particle-interaction forces
which lead to long-range organization. In particular, at a high volume fraction of particles, recent evidence
indicates frictional forces between contacting particles is of importance. Herein, the network of frictional contact
forces is analyzed within simulated two-dimensional shear thickening suspensions. Two topological metrics are
studied to characterize the response of the contact force network (CFN) under varying applied shear stress.
The metrics, geodesic index and the void parameter, reflect complementary aspects of the CFN: One is the
connectedness of the contact network and the second is the distribution of spatial areas devoid of particle-particle
contacts. Considered in relation to the variation of the viscosity, the topological metrics show that the network
grows homogeneously at large scales but with many local regions devoid of contacts, indicating clearly the role
of CFN growth in causing the large change in the rheological response at the shear thickening transition.
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I. INTRODUCTION

“Dense” suspensions consist of a high volume fraction of
particles immersed in a liquid and can be found in various
human-made and natural materials such as muds, ceramics,
and chemically extreme environments like those associated
with industrial waste storage and processing sites. Controlling
the flow of dense suspensions is one of the most critical as-
pects for processing but it is challenging because these fluids
exhibit a wide range of rheological behavior. These rheologi-
cal properties derive from an interplay of forces between the
particles, coupled with the physicochemical characteristics of
both the particles and the suspending medium, under far-from-
equilibrium shear flow conditions.

*auclark@wsu.edu
†jaehun.chun@pnnl.gov.

Suspended particles may generally be subject to hydrody-
namic, van der Waals, electrostatic, Brownian, and frictional
forces, each of which may predominate depending on the
conditions. In dense Brownian suspensions, a delicate bal-
ance between these forces has been shown to be responsible
for yielding, shear-thinning, and shear thickening, depending
on shear rate and the volume fraction of particles [1]. The
present work focuses on non-Brownian suspensions, where
the dominant particle forces are expected to be hydrodynamic
and frictional [2,3]. The former can be decomposed into
a “short-range” hydrodynamic lubrication force that arises
from close proximity between particles and large pressures
associated with relative motion of the particle surfaces and
a “long-range” hydrodynamic force. Particle volume frac-
tions approaching the jamming condition have been shown
experimentally to lead to increased importance of frictional
forces between two particles. The frictional force involves
direct particle contact and is physically related to roughness
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of particle surfaces [4,5]; a previous study by Mari et al. [3]
demonstrated that inclusion of stress-induced frictional inter-
actions above an onset stress set by repulsive forces between
particles allows the rationalization of strong shear thickening
in dense non-Brownian suspensions. The contribution to the
viscosity of short-range hydrodynamics, relative to friction,
is larger at smaller volume fraction of particles. Specifically,
hydrodynamics is found to be dominant up to an approximate
volume fraction φ = 0.45 as seen by comparison of experi-
ments with Brownian hard spheres [6] and Stokesian dynam-
ics simulations [7] at the same conditions. However, at higher
solid fraction in the same set of experiments [6], this behavior
was not reproducible without inclusion of further physics. The
rate dependence observed is consistent with hydrodynamics
overwhelming the stabilizing effects of Brownian motion and
repulsive surface forces, driving particles into contact as shear
rate increases [1,8].

The viscosity of non-Brownian dense suspensions at zero
and infinite shear limits has been understood via a volume
fraction of particles scaled by a relevant maximum packing
fraction (e.g., the Krieger-Dougherty formulation [9]). Such
a formulation intrinsically captures the frictional nature of
the particles through its influence on the maximum packing
fraction. A recent study showed that such a scheme can
be extended to bidisperse and polydisperse non-Brownian
suspensions [2]. The yield stress of dense suspensions has
been studied by rheometry and subsequent simple rheological
models that include the Bingham plastic or Herschel-Bulkley
fluid models, combined with qualitative scaling arguments
and semiquantitative theories [10–13]; these studies show that
the yield stress arises from a collective effect involving both
cohesive forces between particles and the microstructure of
aggregated particles.

Particle-based numerical simulations such as the noted
Stokesian dynamics (SD) [7] and dissipative particle dynam-
ics (DPD) [14] have been employed to study the role of
hydrodynamics within the rheology and microstructure of
dense suspensions. Recent simulation models that include
particle contact have been employed to examine the onset of
yield stress, obscuring of shear thickening, and continuous
or discontinuous shear thickening [1,3,15]. Importantly, these
studies clearly demonstrate a significant role of the network
of particles that come into direct contact with each other
and interact via frictional force—the “contact force network”
(CFN). These studies have shown that CFN formation is a
critical component of the rheological response for both yield-
ing and shear thickening. Furthermore, the shear thickening
transition is shown to be coincident with the appearance of
a growing number of frictional contacts as the shear rate (or
the shear stress) increases [3]. More specifically, once the
contact network forms and spans the suspension, constraints
on the motion of particles due to friction generate correlated
regions. Therein, large-scale fluctuating motions are much
more dissipative than isolated lubricated sphere motions and
in turn result in the high viscosity of the shear thickened state.

To date, analysis of the properties of the contact network in
relation to rheological response has been limited. The fraction
of frictional contacts (i.e., the number of close interaction con-
tacts that are in the frictional state divided by the total number
of such interactions) exhibits a direct relation to the shear

stress [3,16]. Melrose and Ball [17] focused on hydrodynamic
clustering of particles with a polymer coating that resulted
in a repulsive as well as a modified lubrication force. While
the contact networks were not the focus of their study, they
reported that the number of contacts per particle were low at
low shear rates before suddenly and sharply increasing at the
higher rates associated with shear thickening.

An emerging field of study is the application of network
(or graph) theory to explore the topological organization of
physical systems. Papadopoulos et al. [18] offers a valuable
review of this approach and how it has been applied to
granular packing, while Clark [19] describes applications to
complex solutions at molecular and coarse-grained scales.
These reviews describe how network theory has been devel-
oped and employed across multiple disciplines, resulting in a
rich set of tools and analysis techniques. Using the tools of
network theory, complex multiscale (in both length and time)
behavior can be related to the patterns of interactions between
participants. We use this approach in the present work to study
contact force networks, where spherical particles are the nodes
and their particle-to-particle frictional contacts are the edges
in the network. We are particularly interested in the trans-
mission of forces across systemwide distances and the role
that this may play in the bulk rheological behavior, with a
focus on the viscosity. Such analysis has been performed for
granular systems, where network approaches have followed
the evolution of the contact network topology under various
conditions [18,20,21], such as jamming [22]. However, con-
tact networks in dense suspensions, under the influence of
hydrodynamic interactions, have not been well explored using
network theory, and suspensions have the benefit of providing
rate-dependent nonequilibrium steady states that are ideal for
statistical analysis of network properties and their dependence
on the controlled parameters.

Fundamentally, this work investigates what correlating re-
lationships exist between the global network topology and
rheological properties. We then seek to understand how those
relationships elucidate the physical behavior. Toward this end,
this work introduces a topological metric that measures the
interconnectedness of CFNs as a function of shear stress
or shear rate and area fraction of dense suspensions. We
also introduce a topological parameter that measures areas of
the two-dimensional (2D) network that are void of frictional
contacts. Using these two topological metrics in tandem re-
veals that the dominant force networks display homogeneous
growth across the entire system but are locally heteroge-
neous with regions devoid of contacts. We also show that
interactions continue to form well past the shear thickening
transition, as the CFN becomes more dense and robust.

II. COMPUTATIONAL METHODS

A. Simulation protocol

The shear thickening behavior of suspensions was simu-
lated using the method LF-DEM, which employs a “lubri-
cation flow” (LF) description of hydrodynamic interactions
coupled with discrete element modeling (DEM) of particle
contacts. Also included are conservative forces, e.g., electro-
static repulsion [8]. This approach successfully reproduces

012607-2



GLOBAL TOPOLOGY OF CONTACT FORCE NETWORKS: … PHYSICAL REVIEW E 99, 012607 (2019)

important aspects of both continuous and discontinuous shear
thickening. A brief overview of the LF-DEM simulation
method is presented here, and the interested reader can find
a detailed description of the tool elsewhere [3,8,23], including
the influence of attractive forces in shear thickening suspen-
sions [1].

LF-DEM is based on the overdamped Langevin equation,
with negligible particle inertia, amounting to a force and
torque balance for each particle:

0 = FH + FC + FR, (1)

where hydrodynamic forces (FH ), contact forces (FC), and re-
pulsive colloidal forces (FR) are considered. A similar torque
balance holds. An electrostatic repulsion is modeled as

FR = F0exp(−κh). (2)

The characteristic length scale of the repulsive force is the
Debye length, which we set to κ−1 = 0.02a, where a is the
particle radius. The dominant contribution of hydrodynamic
forces in these dense suspensions is captured through the
lubrication force (long-range hydrodynamics are neglected)
while contact forces are modeled by linear normal and tan-
gential springs that follow the Coulomb friction law:

FC,tan � μFC,nor, (3)

where the static friction coefficient μ = 1 in all work pre-
sented here. Spring constants are chosen such that the
maximum normal and tangential particle deformation is
maintained below 0.04a and 0.02a, respectively.

In order to avoid shear-induced ordering, a slightly bidis-
perse suspension having equal area fractions of particles
with radii a and 1.4a was simulated at total area fractions
of φA = 0.70, 0.72, 0.74, 0.76, 0.78, and 0.79, all in the
dense regime. The simulations were conducted in a quasi-
2D environment of a monolayer of 500 total spheres with
Lees-Edwards boundary conditions applied to mimic an in-
finitely extended material. Shear stress-controlled simulations
were performed for 30 strain units over a range of shear
stress capturing the continuous shear thickening (CST) and
discontinuous shear thickening (DST) transitions. Averaged
properties of rheological measures (i.e., relative viscosity in
our case) were extracted from the simulation output sam-
pled every 0.01 strain after discarding initial transient data
(∼2 strain units) to ensure a lack of dependence on the initial
conditions. Note that the system rapidly rearranges relative
to the sampling rate, helping ensure that sampled data are
uncorrelated. The time or strain average is substituted for the
ensemble average as this system is found to be ergodic [8].

B. Stress scaling

Shear stress dependence of the rheology of dense suspen-
sions is only introduced through the presence of an additional
force scale besides hydrodynamic forces. In the present work,
electrostatic repulsion is the only competing force and thus
the repulsive force at contact (F0) is used to rescale the
stress for this system. Consequently, shear stress σ is reported
in dimensionless form through scaling with η0γ̇0, where η0

is the viscosity of suspending fluid and γ̇0 = F0/(6πη0a
2).

FIG. 1. A layered contact network, subdivided into the two types
of frictional forces: nonsliding and sliding. FN and FT denote the
force normal and tangental to the contact, respectively.

Suspension viscosity is presented in nondimensional form as
relative viscosity, ηr = η/η0.

C. Network analysis

In application of network (or graph) theory to suspensions,
the particles are represented as nodes (or vertices), while
edges between nodes denote an interaction. The mathemat-
ical representation of any network is the N × N adjacency
matrix A,

Aab =
{

0

1, if αab is satisfied

}
, (4)

where N is the number of participating nodes and αab is the
criterion for establishing an edge between nodes a and b.
In this work, a frictional contact defines an edge and is es-
tablished when the center-to-center distance between particle
pairs (dij ) is equal to the sum of the particles’ radii (ai + aj ).
This contact force network is then further subdivided into two
layers: (1) that based on nonsliding (static) friction edges and
(2) that based on sliding (dynamic) friction edges (Fig. 1).
If Eq. (3) is satisfied, the contact is described as static and
the connection becomes part of the nonsliding network; oth-
erwise, the contact is dynamic and becomes part of the sliding
network.

The simplest analysis of A consists of the edge distribution
about every node. As prior work has shown [15,17], the
edge distribution of the particles in the CFN (which is a
local metric of connectivity) has some correlation with the
viscosity. It is natural to presume that as viscosity is increased,
the number of frictional contacts a node has (i.e., its edge
count) also increases until the maximum local connections
possible for a node is reached within a fully packed ar-
rangement. When nodes are of equal size, the maximum
packing arrangement in 2D is a hexagonal lattice, with six
contacts per node [24–26]. With two sphere sizes, the ratio
of the sphere radii rsmall/rlarge, determines how the nodes will
most efficiently pack. In this case, rsmall/rlarge >

√
2 − 1 which

indicates that, for the bidisperse systems in this work, the
smaller spheres cannot fit into the gaps of an ideal hexag-
onal lattice of larger spheres, and therefore the maximum
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FIG. 2. Grid analysis to determine void area in nonsliding frictional contact network.

contact number will be smaller than six [26]. As will be shown
in Sec. III, the local metric of edge distribution converges well
before the converged maximum viscosity under applied stress,
which further motivates the development of global topological
metrics of CFN behavior.

To consider the global topology of the network, we first
consider pathways of interactions that span multiple nodes
and can have a variety of shapes (cycles, strings, etc.). One
topological feature of interest is the extent of interconnectivity
within the network, which can be measured by analyzing the
number of interaction pathways that each node participates in.
It is mathematically expedient to define the shortest pathway
that connects every pair of nodes, called the geodesic path.
Here, the Floyd-Warshall algorithm [27,28] is used to convert
A to the geodesic distance matrix containing the shortest
number of contiguous interaction paths between individual
nodes. The raw geodesic distance matrix contains all subpaths
that also connect a pair of nodes. For example, for the path
from node 1 to node 4 through nodes 2 and 3, the geodesic
is 1 → 2 → 3 → 4, yet the entire set of geodesics also
contains the subgeodesics 1 → 2, 2 → 3, and 1 → 2 → 3.
See Fig. S1 in the Supplemental Material [29]. The sub-
geodesics are typically removed when considering the number
of paths in which a node participates [19]. Recognizing that
the geodesic matrix is itself size-extensive because the number
of geodesics increases with particle count N , we instead
utilize the geodesic index, Igd, which is representative of the
normalized average number of pathways that all nodes in the
network contribute to. The Igd for a network with N nodes
sampled at M frames of a simulation is given by

Igd = 100

[∑M
1 ρgd

NM

]
, (5)

where

ρgd =
∑

1 gda (i) + ∑
1 gdb(i) + . . .

∑
1 gdN (i)

N
. (6)

Here gda (i) is the geodesic path i in which node a partic-
ipates. This value is summed across all paths node a par-
ticipates in, and the process is repeated across all nodes in
the network. Note that ρgd can be larger than N , as node a

can be a linking node in many geodesics that connect other
pairs of vertices. The scaling factor of 100 is introduced for
convenience. As was shown by Wang et al. [30], a hexag-
onal ice lattice converges to a geodesic index of about 160.
However, this was for a 3D structure of identical-sized nodes.
So the value of 160 will not be exceeded by the geodesic index

of this system and can safely be considered as a theoretical
maximum value. The Floyd-Warshall algorithm, implemented
in the ChemNetworks program [31], was used for all geodesic
calculations.

Complementary to the measure of the interconnectedness
of the global contact network is the analysis of regions devoid
of frictional contacts. To determine the void areas, a grid is
applied to each snapshot of the simulation trajectory (illus-
trated in Fig. 2). Choice of grid size is important as a grid
size set too large would lack resolution while a size too low
would show empty regions between packed particles (i.e., in
spaces too small for the particles to occupy). In this case,
the grid size is set by the approximate area of two contacting
particles, creating a 13 × 13 grid in the relative distance units
(scaled to the smallest particle radius of 1, with a total box
side length of 52). For a given snapshot, only particles with at
least one contact force edge are considered. Each grid element
that does not contain a particle is marked as empty. The
total void count and area are averaged across snapshots and
presented as a function of applied shear stress. Analyzing both
the interconnectedness and the empty domains has significant
potential to yield new physical insight by elucidating the
relative homogeneity of the network as a function of volume
fraction and applied shear stress.

III. RESULTS AND DISCUSSION

A. Benchmarking the simulation data

The shear thickening behavior of the frictional 2D sus-
pensions is illustrated by plotting the relative viscosity versus
shear stress (σ ) for the different φA values in the dense regime
(Fig. 3). At low applied shear, repulsive forces dominate over
the hydrodynamic forces. The electrostatic repulsion main-
tains particle surface separation, thereby preventing frictional
contacts. The competition between shear and the finite-range
repulsive force results in shear thinning behavior at low
stresses.

Figure 3 shows that the onset of shear thickening is ob-
served at a dimensionless critical shear stress of σ ≈ 0.3,
irrespective of φA. This has been observed in numerous ex-
periments [4,32–36]. At the onset stress, the non-negligible
fraction of the pairwise repulsive forces are overcome by
hydrodynamic shearing, which causes particle contact and ac-
tivates formation of frictional contacts between particles. Such
contact is allowed due to the limiting nature of the lubrication
resistance as described in prior work [3]. Frictional forces,
and the formation of a frictional contact network, provides

012607-4



GLOBAL TOPOLOGY OF CONTACT FORCE NETWORKS: … PHYSICAL REVIEW E 99, 012607 (2019)

FIG. 3. Relative viscosities of bidisperse suspensions for the
simulations with various φA.

additional resistance to flow, that in turn leads to increased
viscosity observed as either CST or DST depending on φA.
Phenomenologically, the system experiences a transition from
frictionless to frictional rheology at the onset of shear thicken-
ing, which is the same mechanism as described for 3D systems
[37], and known to compare well with experiments. The 2D
suspension is convenient, however, as it allows for straightfor-
ward visualization and analysis of network connectivity. Shear
thickening in these systems is seen to transition from CST to
DST at φA ≈ 0.78 as indicated by the slope of viscosity as
a function of stress (in a log-log plot) approaching of 1 [38].
This, in 3D simulations, has been known to occur at φ ≈ 0.56
for friction coefficient of μ = 1 [8].

B. Network connectivity

The networks analyzed are a graphical representation of
the frictional interactions between particles in non-Brownian
dense suspensions. The topological morphologies of these
networks are pursued to provide insight to the phenomena
responsible for rheological properties. Exploring changes in
network topology allows us to determine the relationship
between frictional force and networks across length scales
(local to global) and bulk shear thickening.

The edge distribution over all nodes in the contact force
network is a local measure of connectivity. Figure 4 presents
the edge distributions of nonsliding force networks at the
lowest and highest area fractions studied, φA = 0.70 and
0.79, with intermediate fractions presented in Supplemental
Material [29]. As anticipated, the system with a higher φA has
a larger population of particles with more contacts. Further,
at the large φA, the number of contacts increases rapidly as
shear stress increases, even when the shear stress is at the
onset value of σ ≈ 0.3. For all φA values, edge connections
reach a plateau around a shear stress of ≈5, but the viscosities
continue to increase with increasing σ (see Fig. 3). Note that if
the average number of contacts is considered, the value for all
φA plateaus to approximately three contacts and is thus well
below what would be anticipated for a hexagonal (edge count
of 6) 2D system. This implies that even at the highest shear
stress, approaching a jammed state, the system is far below the
maximum number of contacts for an ordered system. While

FIG. 4. Distribution of direct particle contacts (edges) for the
nonsliding contact networks from (a) φA = 0.70 and (b) φA = 0.79.

this local connectivity information reveals an average of the
local particle interactions, the global rheological character-
istics are not captured solely by the local contacts of the
particles, providing motivation for study of the topological
characteristics of the entire contact network and their changes
under applied shear stress.

In contrast to the local structure of the network provided
by the edge distribution described above, the geodesic index,
Igd, is a global metric of the extent of interconnectivity of
the CFN. The geodesic index as a function of shear stress is
shown in Fig. 5 for nonsliding [Fig. 5(a)] and sliding frictional
contact networks [Fig. 5(b)]. For the nonsliding network, the
geodesic index increases with shear stress once past the shear
thickening onset of σ ≈ 0.3. Below this value, the geodesic
index remains small due to the low number of frictional
contacts; the force networks that the index is measuring have
yet to form in large numbers. Insensitivity of the geodesic
index to the change in viscosity below a σ ≈ 0.30 is a result
of the small contribution of the nonsliding contact force to
the suspension stress. For σ > 0.3, the geodesic index begins
to rise, but at different rates depending on φA. As with the
viscosity, the increase in the geodesic index is faster for the
higher φA. The dependence on φA is also seen in the rate
at which the geodesic index approaches its saturation value,
which occurs when the maximum number of particles for a
specific φA are participating in the network. In contrast, the
sliding frictional network [Fig. 5(b)], while containing fewer
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FIG. 5. Changes in the geodesic index for (a) nonsliding contact
force networks and (b) sliding contact force networks. It is likely area
fractions 0.78 and 0.79 are approaching a similar value at σ = 30
and a statistical variation is the reason φA = 0.79 has a slightly lower
value. This is supported by Fig. S3 in the Supplemental Material,
which shows the errors bars for Fig. 5(a) [29].

connections than its nonsliding counterpart, begins to increase
its connectivity at a lower shear stress. At higher stress, the
curves turn over and the sliding network connections begin
to decrease, with higher φA decreasing faster. This is similar
to the edge count distributions, indicating that the sliding
frictional contacts are likely confined to localized networks.

Our analysis of these networks provides a picture of the
type of interactions in which the nodes (i.e., particles) partic-
ipate. Below the onset stress for shear thickening of σ ≈ 0.3,
the stress is primarily generated by hydrodynamic forces and
weak shear thickening is seen [3,39]. Just prior to the critical
stress, the interconnectivity of the nodes begins to grow, with
the dynamic frictional contacts undergoing rapid growth as
the stress begins to overcome the repulsion force. At the onset
stress, networks of nonsliding frictionally contacting particles
rapidly grow, and these apparently are crucial to the more
rigid correlated motion leading to elevated viscosity. With

FIG. 6. Void domain analysis for nonsliding force networks. (a)
Total void area is defined by the number of empty grid squares. (b)
The number of distinct void domains (i.e., the number of unique
regions of adjacent voids partitioned by the force network into
separate areas). All curves were averaged over the snapshots of the
simulation.

further increase in σ , the nonsliding networks become system
spanning; the detailed conditions for the system spanning
network are affected by the finite simulation size, and we have
not probed these here.

C. Voids: Domains that lack particle contacts

Complementary to understanding the interconnectedness
of the contact network is a depiction of the unoccupied (by
contacts) region that remain as stress increases. This metric
conveys information on the patterns and shapes associated
with the 2D area of the forming networks. Thus, these empty
domains or voids offer a measure of the developing force
network, as the force chains form the boundaries of the voids
in the highly connected states. A region of high connection
density will produce many small voids. The total void area and
the number of separate void domains for the nonsliding force
networks are presented for different φA in Fig. 6 as a function
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FIG. 7. Examples of void domains (blue) for φA = 0.79. (a) A
snapshot of a large single void domain at low shear stress. (b) A
snapshot showing several smaller void domains in intermediate shear
stress. (c) A snapshot of very small void domains in high shear stress.

of shear stress. The sliding network void analysis is included
in the Supplemental Material [29]. Though beyond the scope
of the analysis presented here, more detailed analysis of the
2D void shapes could provide added insight into the change in
rheological properties. Note that the void analysis can be
extended to 3D, where both the size and shape of empty
domains (i.e., cavities) could be analyzed to provide deeper
insight into the contact network distribution.

Initially there are no contacts, and the entire domain is
therefore a single void. When contacts begin to occur, at
σ = 0.1−0.3 depending on φA, the number of voids remains
small and consequently large void areas are maintained. Both
features are insensitive to the changes in viscosity over this
initial evolution where hydrodynamic stress remains domi-
nant, similar to the geodesic index. Visually, we observe that
most of the simulation plane is empty of contact network
connections at low shear stress, and the few void areas present
span most of the domain. As the shear stress increases, net-
works are formed as previously demonstrated by the growth in
the number of edges, and the early rise in the geodesic index.
Once past the onset stress of σ ≈ 0.3, all volume fractions
show a rapid increase in the distinct number of void regions.
As the network forms, space is effectively partitioned by the
force network into separate void domains, so that the average
area of the voids falls rapidly with increase of σ . Examples of
the separating void domains are shown in Fig. 7.

Interestingly, for stress above σ ≈ 1.0, the number of void
domains of the nonsliding networks in Fig. 6(b) decreases, at a
rate depending on the area density. This occurs even while the
geodesic index continues increasing quite rapidly, implying
there is a limit to the number of small voids (the approximate
area of two interacting particles) that may be created within
the network. As the network connections continue to span
across void domains, many of the empty regions within the
network vanish (i.e., become smaller than 2a). This effect is
density dependent as the smaller void domains are eliminated
at lower stress for higher φA. However, even at the maximum
σ , some small voids always remain. As most of the remaining

void domains register as a single grid element, their size must
be equal to or slightly greater than a 4a × 4x region (i.e.,
the approximate area two interacting particles could occupy).
This is consistent with the disorder of the structure, as the edge
distribution never approaches the hexagonal packing limit.
Some regions are not part of the contact network even in the
high-viscosity state.

D. Complementary frameworks: Interconnectedness and voids

Under applied stress, the rapid increase in the void count
and the decrease in void area suggest that network formation
for nonsliding frictional contacts is relatively homogeneous
and well distributed. If the network grew from a single region,
the original void domain in Fig. 6(b) would not separate
into subdomains quickly, and the total void area presented
in Fig. 6(a) would slowly decrease as the network gradually
absorbed empty domains. Likewise, if the force networks
formed only on the borders of the empty domains and worked
their way into the empty regions, then the decrease in void
area and increase in void counts would gradually change.
However, we find instead that the large void areas are quickly
spanned and subdivided by the force networks.

When considered together, we see that the geodesic index
and the void analysis exhibit different behaviors at the onset of
the discontinuous shear thickening transition, during and after
the transition. As the nonsliding frictional network is initially
formed, the void count and area change dramatically with the
rapid rise in the interconnectivity until the network spans the
system. For this regime, the analysis of the voids becomes
particularly insightful. However, as the viscosity continues to
rise, both the number of voids and their area are effectively
minimized, and it is the interconnectedness of the contact
network itself that is the most sensitive to the rise in viscosity.

IV. CONCLUSIONS

A quantitative understanding, of non-Newtonian behav-
ior of fluids requires knowledge of the fundamental forces
and their underpinning organization. Here, we introduce and
evaluate global topological parameters of the contact force
network of a shear thickening fluid. We show that these
can not only track changes in rheological properties (demon-
strated for viscosity) but also reveal important insights during
the transition in properties. The network analyses introduced
here for the suspension behavior—namely geodesic index and
void count—illustrate that discontinuous shear transition is
characterized by (1) a rapid rise in the interconnectivity of
the contact force network and (2) the homogeneous distribu-
tion of void domains whose number and area are minimized
uniformly throughout the domain by the enhanced intercon-
nectivity. These well-defined network topological parameters
provide a window into understanding the coupled behavior of
the particle forces and, in particular, how the global features
of the network can be correlated to the bulk rheological re-
sponses. The scheme can help articulate a possible correlation
between parameters used in empirical viscosity models (e.g.,
Krieger-Dougherty equation) and the contact network (and
thus particle forces).
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