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C. J. O. Reichhardt and C. Reichhardt
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 24 October 2018; published 9 January 2019)

We numerically examine a two-dimensional system of repulsively interacting particles with dynamics that are
governed by both a damping term and a Magnus term. The magnitude of the Magnus term has one value for
half of the particles and a different value for the other half of the particles. In the absence of a driving force, the
particles form a triangular lattice, while when a driving force is applied, we find that there is a critical drive above
which a Magnus-induced disordering transition can occur even if the difference in the Magnus term between the
two particle species is as small as one percent. The transition arises due to the different Hall angles of the two
species, which causes their motion to decouple at the critical drive. At higher drives, the disordered state can
undergo both species and density phase separation into a density-modulated stripe that is oriented perpendicular
to the driving direction. We observe several additional phases that occur as a function of drive and Magnus
force disparity, including a variety of density-modulated diagonal-laned phases. In general, we find a much
richer variety of states compared to systems of oppositely driven overdamped Yukawa particles. We discuss the
implications of our work for skyrmion systems, where we predict that even for small skyrmion dispersities, a
drive-induced disordering transition can occur along with clustering phases and pattern-forming states.
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I. INTRODUCTION

There is a wide variety of systems that can be effectively
modeled as an assembly of interacting particles that undergoes
structural transitions under some form of external driving. In
the presence of a random or periodic substrate, the particles
can exhibit a depinning transition [1,2] such as that found
for superconducting vortices [3,4], colloidal particles [5–7],
or sliding friction [8]. Disordering or ordering transitions
can occur in the absence of quenched disorder as a function
of dc or ac shearing [9–13]. In many cases, the particles
have a uniform size and particle-particle interaction force, but
when the particle sizes or interactions become polydisperse,
order-disorder transitions can appear even in the absence of
driving or shearing [14–16]. Disordering transitions and other
dynamical phases can also arise in systems with monodisperse
particle-particle interactions if some of the particles have dif-
ferent dynamics than others. A well-studied example is oppo-
sitely driven repulsive particles, which can form static ordered
states or undergo fluctuating disordered flow that is followed
at higher drives by a transition to a laned state consisting of
multiple partially phase separated oppositely moving stripes
[17–26]. Similar ordering and laning transitions appear when
the particles move at different velocities in the same direction
[27]. Experimentally, laning transitions have been realized for
colloidal particles [28,29] and dusty plasmas [30,31].

Here we study whether a disordering transition or lane for-
mation can occur for an assembly of bidisperse particles that
are all driven in the same direction when each particle species
has a different nondissipative Magnus term. We consider
repulsively interacting particles that form a triangular lattice in
the absence of a driving force or substrate. A dissipative force
of magnitude αi

d aligns the velocity of particle i with the net

direction of the external forces acting on that particle, while
a Magnus term of magnitude αi

m aligns the particle velocity
perpendicular to the external forces. When we introduce an
applied driving force of magnitude FD , we find that if the
Magnus term αi

m = 0 and the dissipative term αi
d = αd for all

i, the system forms a triangular lattice that moves parallel to
the driving direction. If the Magnus term is nonzero but equal
for all particles, αi

m ≡ αm, a triangular lattice still forms, but
it moves at a Hall angle θSk = θ int

Sk with respect to the driving
direction, where the intrinsic Hall angle θ int

Sk = arctan(αm/αd ).
If the Magnus term is bidisperse, with a value of αa

m for half
of the particles and αb

m > αa
m for the other half, we find that

when αa
m = 0 and αb

m �= 0, a triangular lattice appears that
moves elastically at an angle θ

b,int
Sk /2 for small drives. Above

a critical drive Fc, dislocation pairs proliferate in the lattice
and a dynamical disordering transition occurs when the two
species move at different velocities in the directions parallel
and perpendicular to the drive due to the drive dependence
of θb

Sk . When αa
m �= 0 and αa

m < αb
m, this behavior persists

since the drive dependence of θa
Sk differs from that of θb

Sk;
however, Fc increases as the difference αb

m − αa
m decreases.

At high drives, the disordered state transitions to a cluster
or stripe state in which the particles phase separate into a
single stripe oriented perpendicular to the drive with one
species on each side of the stripe. The stripe becomes denser
with increasing FD since θb

Sk − θa
Sk increases and species a

piles up behind species b. Due to the increasing compression
of the stripe, eventually an instability occurs in which the
system can lower its particle-particle interaction energy by
forming a more uniform state that we call a diagonal-laned
phase. In some cases, the diagonal-laned state exhibits strong
density modulations as well as additional transitions to a
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larger number of thinner lanes. All of these transitions are
associated with changes and jumps in the average velocity
both parallel and perpendicular to the drive, as well as changes
in the amount of sixfold ordering in the system.

Our results have implications for driven magnetic
skyrmions, which are particlelike magnetic textures that in-
teract repulsively with each other and form a triangular lattice
[32–34]. Skyrmions can be set into motion by the application
of a current [34–40], and due to the Magnus term they move
at an angle with respect to the driving force known as the
skyrmion Hall angle [34,41–45]. Within a given sample, there
can be dispersion in the size of skyrmions, and different
species of skyrmions with different dynamics may be able
to coexist with each other [38,45–50], so it is important to
understand how polydispersity affects the collective motion
of skyrmions.

Our results suggest that if there is the slightest dispersion in
the Magnus term, a drive-induced disordering transition from
a crystal to a liquidlike state can occur even in the absence
of quenched disorder. In systems with strong quenched disor-
der, monodisperse skyrmions depin into a plastically flowing
disordered state, but at higher drives they dynamically reorder
into a moving crystal state [41,51,52] similar to that found
for superconducting vortices [2–4,53]. Our results indicate
that when there is a dispersion in the Magnus term, such
behavior is reversed and the skyrmions disorder at higher
drives. In addition, clustering or species segregation can occur.
Recent continuum and particle-based simulations of monodis-
perse skyrmions showed that clustering transitions can occur
in samples containing strong pinning or quenched disorder
[52,54]. Our results demonstrate that clustering can also occur
in the absence of pinning when there is any dispersity in
the skyrmions that produces differences in the Magnus term.
These results may also be relevant for soft matter systems
in which Magnus forces are important, such as magnetic
particles in solutions [55–57] or spinning colloidal particles
[58,59], where different size particles could experience differ-
ent effective Magnus forces.

The paper is organized as follows. In Sec. II we describe
our simulation details. Section III introduces the Magnus
induced disordering transition. In Sec. IV we focus on cluster
and stripe formation, and show that a nonequilibrium confor-
mal crystal structure can spontaneously emerge in the system.
Section V describes the effect of varying the ratio of the
damping term for the two species. In Sec. VI we vary the ratio
of the Magnus term of the two species for fixed and equal
damping terms. We show the results of introducing Magnus
terms of opposite sign in Sec. VII. In Sec. VIII we briefly
describe the effect of changing other variables and provide
a general discussion. A summary of the work appears in
Sec. IX.

II. SIMULATION

We consider a two-dimensional system of size L × L with
periodic boundary conditions in the x and y directions con-
taining Na particles of species a and Nb particles of species
b for a total of N = Na + Nb particles. The particle density
is n = N/L2, where L = 36. Unless otherwise noted, we take
Na = Nb = N/2. The equations of motion for particle i of

species γ = a or b is

α
γ

d vi + αγ
mẑ × vi = Fss

i + FD, (1)

where the particle velocity is vi = dri/dt . All particle-
particle interactions have the same pairwise form of a mod-
ified Bessel function, Fss

i = ∑N
i K1(rij )r̂ij that falls off ex-

ponentially for large r . Here rij = |ri − rj | is the distance
between particles i and j , and r̂ij = (ri − rj )/rij . This in-
teraction potential has been used previously for particle-based
models of skyrmions, and in the absence of pinning it causes
the particles to form a hexagonal lattice [37,41,51,54,60]. For
computational efficiency we cut off the skyrmion-skyrmion
interaction beyond a length of rij = 7.0 when it becomes
negligible. The driving force FD = FD x̂ is the same for all
particles. We increase the drive in increments of δFD = 0.002
and wait 104 simulation time steps between increments to
ensure we are in a steady state. The damping term α

γ

d aligns
the particle velocity in the direction of the net applied forces,
while the Magnus term α

γ
m generates velocity components that

are perpendicular to the net applied forces. As in previous
work, unless otherwise noted we normalize the two coef-
ficients such that (αγ

d )2 + (αγ
m)2 = 1.0 [41,42,60]; however,

we also consider systems with fixed α
γ

d and varied α
γ
m that

are not subject to this constraint. The intrinsic Hall angle
for species γ is θ

γ,int
Sk = arctan(αγ

m/α
γ

d ). It is known from
previous work on skyrmion systems with disorder that θ

γ

Sk

depends on the velocity of the particles and can be written as
θ

γ

Sk = tan−1(〈V γ

⊥ 〉/〈V γ

|| 〉) where 〈V γ

⊥ 〉 = N−1
γ

∑Nγ

i vi · ŷ and

〈V γ

|| 〉 = N−1
γ

∑Nγ

i vi · x̂, with the average taken over time in
the steady state [41,42,51,61]. In a system with αa

m = αb
m = 0,

θa
Sk = θb

Sk = 0. We initialize the particles in a triangular lattice
and assign Na randomly selected particles to be species a,
with the remaining particles set to species b. We measure
〈V a

⊥〉, 〈V a
|| 〉, 〈V b

⊥〉, and 〈V b
|| 〉, along with θa

Sk and θb
Sk . In our

system the typical skyrmion lattice constant is a0 = 1.5. For
reference, in the representative skyrmion-supporting material
MnSi, a typical skyrmion lattice constant is 50 nm, typi-
cal driving currents range from 108 to 109 A/m2, and the
skyrmion Hall angle ranges from 50◦ to 83◦ [37].

III. MAGNUS INDUCED DISORDERING TRANSITION

We first consider a system containing N = 572 particles at
a density of n = 0.4413 which forms a triangular solid when
FD = 0. We fix species a in the overdamped limit with αa

m =
0 and αa

d = 1.0, while species b has αb
m = 0.3 and (αb

m)2 +
(αb

d )2 = 1.0. In Fig. 1(a) we plot the average velocities 〈V a
|| 〉

and 〈V b
|| 〉 versus FD , and in Fig. 1(b) we show the correspond-

ing 〈V a
⊥〉 and 〈V b

⊥〉 versus FD curves. In Fig. 1(c) we plot
P6, the overall fraction of sixfold coordinated particles, versus
FD . Here P6 = N−1 ∑N

i δ(zi − 6), where zi is the coordina-
tion number of particle i obtained from a Voronoi tessellation.
When FD < 0.1175, we have 〈V a

⊥〉/〈V b
⊥〉 = 〈V a

|| 〉/〈V b
|| 〉 = 1.0

and P6 = 1.0, indicating that the system forms a triangular
lattice which moves elastically in the positive x and negative y

directions. Here, the skyrmions do not exchange neighbors as
they move, and any local fluctuations in position are invariant
with respect to the global drift velocity.
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FIG. 1. 〈V a
|| 〉 (red) and 〈V b

|| 〉 (blue) vs FD in a sample with
αa

m = 0, αa
d = 1, and αb

m = 0.3. (b) The corresponding 〈V a
⊥〉 (red) and

〈V b
⊥〉 (blue) vs FD . For FD < 0.1175, the system forms a moving tri-

angular crystal (MC) and the velocities are locked in both directions,
while for FD � 0.1175, the transverse velocity curves split with 〈V b

⊥〉
increasing more rapidly with FD than 〈V a

⊥〉, indicating that the two
species are now moving at different velocities. (c) The fraction P6

of sixfold-coordinated particles vs FD . For FD < 0.1175, P6 ≈ 1 as
expected for a triangular lattice, while P6 drops for FD � 0.1175,
indicating a disordering of the system. The letters a and b indicate
the values of FD at which the images in Fig. 2 were obtained. The
vertical dashed line marks the transition from the moving crystal
(MC) to the moving liquid (ML) state.

We illustrate the particle positions at FD = 0.05 in
Fig. 2(a), where a moving crystal (MC) phase appears. At
FD = 0.1175, a disordering transition occurs that is associ-
ated with a drop in P6 caused by the proliferation of 5–7 defect
pairs. At this same drive, the 〈V a

⊥〉 and 〈V b
⊥〉 curves in Fig. 1(b)

split, and the 〈V b
⊥〉 curve increases more rapidly with FD than

the 〈V a
⊥〉 curve, indicating that the disordering transition is

triggered by a partial decoupling of the two species, which
now move at different transverse velocities. In Fig. 2(b) we
show the particle positions at FD = 0.25 where the system

x(a)

y

x(b)

y

FIG. 2. Images of particle positions for species a (red) and b

(blue) for the system in Fig. 1 with αa
m = 0, αa

d = 1.0, and αb
m = 0.3

at the drives marked a and b in Fig. 1(c). (a) At FD = 0.05, the system
forms a triangular solid that is moving in the positive x and negative y

directions. (b) At FD = 0.25, the system is in a moving liquid phase.
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FIG. 3. The Hall angles θa
Sk (pink) and θb

Sk (green) vs FD for
the system in Fig. 1 with αa

m = 0, αa
d = 0, and αb

m = 0.3. In the
moving crystal (MC) phase, the species are locked together and
all the particles have θa

Sk = θb
Sk = −8.73◦, while in the disordered

moving liquid (ML) state, the magnitude of θa
Sk decreases toward

0◦ while θb
Sk gradually approaches θ

b,int
Sk = −17.45◦, marked by a

dashed line.

has disordered but the particle species remain mixed. In this
moving liquid (ML) phase, the particles undergo continual
dynamical rearrangements. Despite the fact that αa

m = 0, 〈V a
⊥〉

continues to increase with increasing FD in the ML phase,
indicating that although the two species are no longer fully
coupled, species b is able to drag species a in the transverse
direction. The vertical dashed line in Fig. 1 marks the MC-ML
transition and shows that the longitudinal velocities 〈V a

|| 〉 and
〈V b

|| 〉 in Fig. 1(a) are not affected by the transition. In Fig. 3
we plot the drive dependent Hall angles θa

Sk and θb
Sk versus FD

for the system in Fig. 1, where the intrinsic Hall angles are
θ

a,int
Sk = 0◦ and θ

b,int
Sk = −17.45◦. In the MC state, both species

are locked to the same Hall angle, θa
Sk = θb

Sk ≈ θ
b,int
Sk /2 =

−8.73◦, and at the disordering transition, θa
Sk approaches 0◦

while θb
Sk approaches its intrinsic value of θ

b,int
Sk = −17.45◦.

In Fig. 4(a) we plot the critical force Fc, equal to the drive
at which the MC-ML transition occurs, versus αb

m for the
system in Fig. 1 with αa

m = 0 and αa
d = 1.0. As αb

m increases,
the disordering transition shifts to lower drives, and we find
that the critical force can be fit to Fc ∝ C(αb

m)β with C =
0.0323 and β = −1.05. These results show that even when
the Magnus term is very small, application of an external
drive can induce a disordering transition. We note that under
our imposed normalization constraint, αb

m < 1.0. In skyrmion
systems, all the particles have a finite Magnus term, so in
Fig. 4(b) we plot Fc versus αb

m for a system in which we
vary αb

m while fixing αa
m = 0.7 with αa

d = αb
d = 1.0. Here, Fc

diverges at αb
m/αa

m = 1.0 according to Fc ∝ |αa
m − αb

m|−1.

IV. CLUSTER AND STRIPE FORMATION

In Figs. 5(a) and 5(b) we plot 〈V a
|| 〉, 〈V b

|| 〉, 〈V a
⊥〉, and 〈V b

⊥〉
versus FD for the system in Fig. 1 with αa

m = 0, αa
d = 1.0, and

αb
m = 0.3, while in Fig. 5(c) we show the corresponding P6

versus FD curve. Here we consider values of FD that are much
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FIG. 4. (a) Fc, the drive at which the MC-ML transition occurs,
vs αb

m for the system in Fig. 1 with αa
m = 0 and αa

d = 1.0. The solid
line is a power law fit to Fc ∝ C(αb

m)β with C = 0.0323 and β =
−1.05. (b) Fc vs αb

m in a system with fixed αa
m = 0.7 for αa

d = αb
d =

1.0, showing a divergence at αb
m/αa

m = 1.0.

higher than those presented in Fig. 1 to access the transition
from the ML state to a phase separated (PS) cluster state. The
ML phase ends at FD = 2.5, where we find a jump of 〈V a

⊥〉 to
〈V a

⊥〉 = 0, indicating that the motion of species a has locked
to the x direction, parallel to the applied driving force. This
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FIG. 5. (a) 〈V a
|| 〉 (red) and 〈V b

|| 〉 (blue) vs FD for the system from
Fig. 1 with αa

m = 0, αa
d = 1.0, and αb

m = 0.3. (b) The corresponding
〈V a

⊥〉 (red) and 〈V b
⊥〉 (blue) vs FD . (c) The corresponding P6 vs FD .

MC is the moving crystal state. There is a transition at FD = 2.5
from the moving liquid (ML) phase to a perpendicular stripe (PS) or
cluster phase.

x(a)

y

x(b)

y

FIG. 6. Images of particle positions for species a (red) and b

(blue). (a) At FD = 4.0 for the system in Fig. 5 with αa
d = 1.0,

αa
m = 0, and αb

m = 0.3, a perpendicular stripe (PS) state forms with
a conformal crystal structure on each side. (b) The PS state for a
system with αa

d = 1.0, αa
m = 0, and αb

m = 0.75 at FD = 6.0, where
the stripe is more compressed.

jump coincides with a jump in 〈V b
⊥〉 to more negative values,

and both curves are much smoother above the jump, indicating
that fluctuations are reduced in the PS state compared to the
ML flow. The ML-PS transition is also associated with a jump
up in P6 from P6 = 0.55 in the ML phase to P6 = 0.9 in the
PS phase as the system becomes more ordered into a moving
perpendicular stripe.

In Fig. 6(a) we show the particle configurations from the
sample in Fig. 5(a) at FD = 4.0 in the PS phase, where the
particles undergo species and density phase separation into a
partially clustered state consisting of a stripe aligned in the y

direction, perpendicular to FD . The particle density is highest
at the center of the stripe. Species a moves only along the
x-direction, causing it to pile up behind species b, which is
moving in both the positive x and negative y directions. As a
result, the entire pattern translates in the positive x direction,
and the two halves of the pattern shear against each other
along the y direction. In Fig. 5(a), 〈V b

|| 〉 is slightly higher than
〈V a

|| 〉 in the ML phase, but in the PS phase 〈V b
|| 〉 and 〈V a

|| 〉
become locked together.

There is considerable local sixfold ordering of the particles
in the PS state illustrated in Fig. 6(a), but due to the density
gradient the lattice is distorted into conformal arch-like pat-
terns. Conformal crystals arise in two-dimensional systems of
repulsive particles in the presence of some form of density
gradient, such as magnetic particles in a gravitational field
[62], vortices in a Bean state [63–66], and colloidal particles
under a gradient that is imposed by the system geometry
[67]. The conformal crystals are the result of a competition
between the local sixfold ordering favored by the repulsive
particle-particle interactions and the need to spatially vary
the interparticle spacing to accommodate the density gra-
dient. Most conformal crystals have been observed under
equilibrium conditions, while the conformal crystal structure
illustrated in Fig. 6(a) is a strictly nonequilibrium state. As
FD increases, the conformal stripe state becomes more com-
pressed along the x direction. Increasing αb

m also compresses
the PS stripe, as illustrated in Fig. 6(b) for a system with
αa

m = 0, αa
d = 1.0, and αb

m = 0.7 at FD = 5.0. The width of
the stripe is controlled by both αm and FD . For fixed FD ,
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FIG. 7. (a) 〈V a
|| 〉 (red) and 〈V b

|| 〉 (blue) vs FD for a system with
αa

m = 0, αa
d = 1.0, and αb

m = 0.7 in the region on either side of the
ML (moving lattice) to PS (perpendicular stripe) transition. (b) The
corresponding 〈V a

⊥〉 (red) and 〈V b
⊥〉 (blue) vs FD curves. The dashed

line indicates 〈V⊥〉 = 0. The ML-PS transition is accompanied by
a locking of the parallel velocities and a jump in the perpendicular
velocities.

the stripe decreases in width with increasing αm, while for
fixed αm the stripe decreases in width with increasing FD . We
also note that Fig. 6(b) shows an increase in the fluctuations
along the interface of the two species for the thiner stripes.
This is a result of the increase in the strength of the repulsive
skyrmion-skyrmion interactions as the stripes become thin,
which eventually leads to the instability of the stripe and the
transition to a configuration with a more uniform density.

In Fig. 7(a) we plot 〈V a
|| 〉 and 〈V b

|| 〉 versus FD for the
system in Fig. 6(b) with αb

m = 0.7 in the vicinity of the ML-
PS transition, while in Fig. 7(b) we show the corresponding
〈V a

⊥〉 and 〈V b
⊥〉 versus FD curves. There is a clear parallel

velocity locking, with 〈V a
|| 〉/〈V b

|| 〉 = 1.0 in the PS state, while
〈V a

⊥〉 locks to zero velocity at the transition at the same
time as a jump in 〈V b

⊥〉 to a more negative value appears. The
velocity fluctuations are reduced in the more ordered PS phase
compared to the disordered ML state.

When FD or αb
m is increased, the stripes become more com-

pressed and the particle-particle interactions become strong
enough to generate an instability that causes the system to
enter a different phase consisting of multiple lanes with a
more uniform particle density. In Fig. 8 we plot 〈V a

|| 〉, 〈V b
|| 〉,

〈V a
⊥〉, and 〈V b

⊥〉 versus FD for a system with αb
m = 0.75. There

is a large jump in the velocities near FD = 7.75, where the
system undergoes a transition from the PS state to what we
term a diagonal-laned (DL) state. As illustrated in Fig. 9(a)
for FD = 8.0, this state is composed of multiple stripes of
particles oriented at an angle to the driving direction. Within
each stripe, the density gradient is reduced compared to what
is observed in the PS state. At the transition into the DL
state, 〈V a

|| 〉 jumps up since species b no longer blocks the
motion of species a along the x direction. At the same time,
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FIG. 8. (a) 〈V a
|| 〉 (red) and 〈V b

|| 〉 (blue) vs FD for a system with
αa

m = 0, αa
d = 1.0, and αb

m = 0.75 showing that the ML (moving
lattice) to PS (perpendicular stripe) transition is followed by a second
transition to a diagonal-laned (DL) state near FD = 7.75 that is
accompanied by large velocity jumps. (b) The corresponding 〈V a

⊥〉
(red) and 〈V b

⊥〉 (blue) vs FD curves.

there is a downward jump in 〈V b
|| 〉 since species b is no

longer being pushed as hard in the x direction by species
a. Interestingly, a small downward jump in 〈V b

⊥〉 occurs at
the PS-DL transition, indicative of negative differential con-
ductivity. This jump is produced by a Magnus force induced
velocity imparted by species a to species b. In the PS phase,
species a pushes against species b along the x direction,
and due to the Magnus term, additional velocity components
arise for species b in the negative y-direction. In the DL
state, the tilt of the stripes diminishes the magnitude of the
x-direction push from species a on species b, which reduces
the Magnus force contribution to the y-direction velocity of
species b. At the same time, species a now has a negative
y-direction component of force on species b that generates a
negative x-direction velocity component of species b through

x(a)

y

x(b)

y

FIG. 9. Images of particle positions for species a (red) and b

(blue) for the diagonal-laned (DL) state. (a) The system in Fig. 8
with αa

d = 1.0, αa
m = 0, and αb

m = 0.75 at FD = 8.0. (b) A system
with αa

d = 1.0, αa
m = 0, and αb

m = 0.85, showing the increased com-
pression of the diagonal stripes.

012606-5



C. J. O. REICHHARDT AND C. REICHHARDT PHYSICAL REVIEW E 99, 012606 (2019)

0 5 10 15 20
FD

-20

-10

0

10

20

<
V

a,
b ||>

 , 
<

V
a,

b ⊥
>

0 5 10
FD

-10

0

10

<
V

a,
b ||>

 , 
<

V
a,

b ⊥
>

ML

ML

DL

DL

DL2

DL2

(a)

(b)

a b

c d

FIG. 10. (a) 〈V a
|| 〉 (dark red), 〈V b

|| 〉 (dark blue), 〈V a
⊥〉 (pink), and

〈V b
⊥〉 (light blue) vs FD for a system with αa

m = 0, αa
d = 1.0, and

αb
m = 0.9. The system passes directly from the ML (moving lattice)

state to the DL (diagonal-laned) state, followed by a transition to the
DL2 (second diagonal-laned) state near FD = 13.5. (b) The same for
a system with αa

m = 0, αa
d = 1.0, and αb

m = 0.998. The letters a, b, c,
and d indicate the values of FD at which the images in Fig. 11 were
obtained.

the Magnus term. This produces the drop in 〈V b
|| 〉 at the PS-DL

transition. As αb
m increases, the PS-DL transition shifts to

lower values of FD , and when αb
m � 0.85, the system passes

directly from the ML to the DL phase without forming a PS
state. In Fig. 9(b) we illustrate the DL state at αb

m = 0.85 and
FD = 8.0, where the number of stripes has increased. Within
the DL phase, the stripes become more compressed as FD

increases until a transition occurs to a new diagonal-laned
state, DL2, containing a larger number of stripes with fewer
rows of particles in each stripe.

In Fig. 10(a) we plot 〈V a
|| 〉, 〈V b

|| 〉, 〈V a
⊥〉, and 〈V b

⊥〉 versus
FD for a system with αb

m = 0.9, which transitions directly
from the ML to the DL phase. A second transition appears
near FD = 13.5, as indicated by the jumps in the velocity
curves, which corresponds to a rearrangement into the more
uniform laned state DL2. In Fig. 11(a) we illustrate the DL
state for the system in Fig. 10(a) at FD = 10.3, where the
particles form a series of diagonal stripes, each of which is
composed of three rows of each species on either side. At
FD = 14.75 in the DL2 phase, as shown in Fig. 11(b), there
are still two to three rows of particles on each side of each
stripe, but the stripes are much more spread out so that the
particle density is considerably more uniform. In Fig. 10(b),
we plot 〈V a

|| 〉, 〈V b
|| 〉, 〈V a

⊥〉, and 〈V b
⊥〉 versus FD for a system

with αb
m = 0.998 where αb

m/αb
d = 15.79, in which the same

phases appear but the DL-DL2 transition is shifted to a lower
drive of FD = 6.5. Figure 11(c) shows an image of the DL
phase for the system in Fig. 10(b) at FD = 5.0, where dense
tilted stripes appear, each of which contains four to five rows

x(a)

y

x(b)

y

x(c)

y

x(d)

y

FIG. 11. Images of particle positions for species a (red) and b

(blue). (a) The DL state for the system in Fig. 10(a) with αa
d =

1.0, αa
m = 0, and αb

m = 0.9 at FD = 10.35. (b) The DL2 state from
Fig. 10(a) at FD = 14.75. (c) The DL state from the system in
Fig. 10(b) with αa

d = 1.0, αa
m = 0, and αb

m = 0.998 at FD = 5.0. (c)
The DL2 state from the system in Fig. 10(b) at FD = 7.5.

of particles on each side. In Fig. 11(d), the DL2 phase for
the same system at FD = 7.5 has a larger number of lower
density stripes containing two rows of particles on each side,
giving a more uniform particle density. The exact particle
configurations in the DL states are not unique, but generally
we find a small number of diagonal stripes with three or more
rows of particles on each side of each stripe in the DL phase,
while the DL2 phase is more uniform and each of the more
numerous stripes has two to three rows of particles on each
side. As FD is further increased, the stripes in the DL2 phase
become more compressed, and an additional transition can
occur to a DL3 state in which each stripe has only a single
row of particles on each side.

From the features in the transport curves and changes in
the particle configurations, we construct the dynamical phase
diagram shown in Fig. 12 as a function of FD versus αb

m/αb
d

for samples with fixed αa
d = αb

d = 1.0 and αa
m = 0. The ex-

tent of the MC phase increases as αb
m/αb

d goes to zero, and
similarly the ML-PS transition shifts to higher FD as αb

m/αb
d

decreases. The PS phase only occurs when αb
m/αb

d < 0.85,
while for higher values of αb

m/αb
d the system transitions di-

rectly from the ML phase to the DL state. The DL2 state
appears when αb

m/αb
d � 0.9.

V. VARIED DAMPING RATIOS

We next consider systems in which αa
m and αb

m are both
set equal to zero as the damping constant ratio is varied. We
fix αa

d = 1.0 and vary αb
d . This is very similar to systems

of oppositely driven particles [27], but here both species are
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FIG. 12. Dynamic phase diagram as a function of FD vs αb
m/αb

d

for the system in Fig. 10 with αa
d = 1.0 and αa

m = 0. MC: moving
crystal; ML: moving liquid; PS: perpendicular stripe; DL: diagonal-
laned phase; DL2: second diagonal-laned phase.

moving in the same direction. In Figs. 13(a) and 13(b) we plot
〈V a

|| 〉, 〈V b
|| 〉, 〈V a

⊥〉, and 〈V b
⊥〉, for a system with αa

d = 2.0. Since
the Magnus force is zero, 〈V a

⊥〉 and 〈V b
⊥〉 both fluctuate around

zero. At low drives, 〈V a
|| 〉 and 〈V b

|| 〉 are locked together and the
system forms an elastic triangular solid in the moving crystal
state. As the drive increases, there is a transition to a moving
liquid phase in which the species a particles, which have a
smaller damping coefficient, move faster in the direction of
drive than the species b particles, which have higher damping.
At FD ≈ 2.1, there is an abrupt decrease in the magnitude
of the fluctuations in both 〈V a

⊥〉 and 〈V b
⊥〉 as well as a cusp
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FIG. 13. (a) 〈V a
|| 〉 (red) and 〈V b

|| 〉 (blue) vs FD for a system with
αa

m = αb
m = 0, αa

d = 1.0, and αb
d = 2.0. (b) The corresponding 〈V a

⊥〉
(red) and 〈V b

⊥〉 (blue) vs FD , which both fluctuate around zero but
show a clear change in the magnitude of the fluctuations near FD =
2.1. (c) The corresponding P6 vs FD showing the moving crystal
(MC), moving liquid (ML), and laning states.

x(a)

y

x(b)

y

FIG. 14. Images of particle positions for species a (red) and b

(blue). (a) The system in Fig. 13 with αa
m = αb

m = 0, αa
d = 1.0, and

αb
d = 2.0 in the laned state at FD = 2.5. (b) The laned state for a

system with αa
m = αb

m = 0, αa
d = 1.0, and αb

d = 10 at FD = 2.5.

in 〈V a
|| 〉 and 〈V b

|| 〉, above which the velocities parallel to the
drive increase linearly with drive. In Fig. 13(c) we plot P6 for
all the particles versus FD , where we find that P6 = 1.0 in
the ordered MC phase. At the transition to the ML phase, P6

drops, but for drives above FD = 2.1, there is a recovery of
order to P6 ≈ 0.9 as the system enters a uniform laned state
of the type illustrated in Fig. 14(a) for FD = 2.5. This laned
state is the same as that found for oppositely driven Yukawa
particles [19], and it is relatively ordered due to the large
patches of triangular lattice that appear. Sliding of adjacent
lanes past each other is made possible by the presence of
aligned 5–7 dislocation pairs that can glide parallel to the
driving direction, which give the state a smectic character. The
zero Magnus term laned state is distinct from the DL and DL2

states that appear for a finite Magnus term in that the lanes
are aligned with the driving direction and the particle density
is uniform for all values of FD and αb

d , unlike the DL and
DL2 states, which can show strong density modulations. In
Fig. 14(b) we illustrate that the laned state for αb

d = 10 has
features similar to the laned states that form at lower αb

d . In
Fig. 15 we construct a dynamic phase diagram as a function

2 4 6 8 10

αb
d /αa

d

0.01

0.1

1

10

F
D

MC

ML

Laned

FIG. 15. Dynamic phase diagram as a function of FD vs αa
d/α

b
d

for the system in Figs. 13 and 14 with αa
m = αb

m = 0 and αa
d = 1.0,

showing the moving crystal (MC), moving liquid (ML), and laned
states.
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FIG. 16. (a) 〈V a
|| 〉 (red) and 〈V a

⊥〉 (blue) vs FD for a system
with αa

d = αb
d = 1.0, αa

m = 0, and αb
m = 6.0. (b) The corresponding

〈V b
|| 〉 (red) and 〈V b

⊥〉 (blue) vs FD . The dashed lines indicate zero
velocity, showing that there is a regime in which 〈V b

|| 〉 becomes
more negative as FD increases, meaning that species b is exhibiting
absolute negative mobility.

of FD versus αb
d/α

a
d , and highlight the MC, ML, and laned

states. As αb
d/α

a
d → 1, there is a divergence in the value of FD

at which the MC-ML transition occurs, along with a similar
divergence of the transition from the ML to the laned state.

VI. VARIED MAGNUS FORCE

We next relax the constraint αb
m + αb

d = 1.0 and hold
αa

d = αb
d = 1.0 while fixing αa

m = 0.0 and increasing αb
m from

αb
m = 0 to αb

m = 40. This protocol produces more pronounced
differences in the longitudinal and transverse velocities of the
two species. In Fig. 16(a) we plot 〈V a

|| 〉 and 〈V a
⊥〉 versus FD

for a system with αb
m = 6.0, and in Fig. 16(b) we show the

corresponding 〈V b
|| 〉 and 〈V b

⊥〉 versus FD . When FD < 0.6, we
observe a disordered or partially disordered state, as illustrated
in Fig. 17(a) at FD = 0.5, where a diagonal stripe is beginning
to form.

For FD > 0.6 the system enters a DL state as shown in
Fig. 17(b) for FD = 1.25, where the lanes are aligned at an
angle of roughly θl = 60◦ to the driving direction. Within
the DL state, 〈V a

|| 〉 and 〈V a
⊥〉 are both positive, indicating

that species a is sliding along the positive x and positive
y directions due to the orientation of the lane. In contrast,
〈V b

|| 〉 and 〈V b
⊥〉 are both negative, indicating that species b

is moving opposite to the direction of the applied drive,
a phenomenon that is known as absolute negative mobility
[68–71]. The strong Magnus force of the species b particles
rotates the FD component of the velocity mostly into the
negative y direction, leaving a residual positive x direction
velocity. The overdamped species a particles move parallel to
the driving direction and pile up behind the species b particles,
exerting a force of magnitude Fss on them in both the positive
x and negative y directions with components Fss cos θl and

x(a)

y

x(b)

y

x(c)

y

x(d)

y

FIG. 17. Images of particle positions for species a (red) and b

(blue) for the system in Fig. 16 with αa
d = αb

d = 1.0, αa
m = 0, and

αb
m = 6.0. (a) The moving liquid state at FD = 0.5, just before the

transition into the diagonal-laned (DL) state. (b) The DL state at
FD = 1.25. (c) The DL state at FD = 3.0 where the stripes are more
compressed. (d) The DL2 state at FD = 3.75.

Fss sin θl , respectively. Under the Magnus force rotation, the
Fss cos θl portion of the particle-particle interaction produces
a species b velocity contribution that is mostly in the negative
y direction, while the Fss sin θl portion of the interaction
gives a velocity contribution that is mostly in the negative x

direction. Since the positive x direction velocities from FD

and Fss cos θl are small, the net value of 〈V b
|| 〉 is negative,

resulting in the absolute negative mobility that we observe.
As FD increases, the drift velocity of the entire diagonal lane
in the positive x direction increases due to the increase in
〈V a

|| 〉, but at the same time the lane becomes more compressed,
decreasing the distance between the species a and species b

particles at the center of the lane, and increasing the particle-
particle interaction force that is responsible for generating
the negative value of 〈V b

|| 〉. As a result, 〈V b
|| 〉 becomes more

negative with increasing FD .
We note that in previous studies of overdamped systems

in which negative mobility is observed, the particles are cou-
pled to some type of asymmetric substrate [68–71]. Magnus
force-induced negative mobility was predicted to occur for
monodisperse skyrmions, but only when the skyrmions are
coupled to a substrate [72]. The bidisperse system we consider
here is unique in that a negative mobility can appear in the
absence of a substrate.

The compression of the diagonal lane becomes more
intense with increasing FD , as illustrated in Fig. 17(c) at
FD = 3.0 for the αb

m = 6.0 system, until a transition occurs
at sufficiently high drive to the more uniform DL2 state
shown in Fig. 17(d) at FD = 3.75. The DL-DL2 transition is
accompanied by a jump up in 〈V a

|| 〉 and a drop in 〈V a
⊥〉 since
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FIG. 18. 〈V a
⊥〉 (pink) and 〈V b

|| 〉 (blue) vs FD for the system in
Fig. 17 with αa

d = αb
d = 1.0, αa

m = 0, and αb
m = 6.0 showing jumps at

the PS-DL, DL-DL2, and DL2-DL3 transitions. (b) Images of particle
positions for species a (red) and b (blue) in the DL3 state at FD =
10.5.

the lanes are now aligned closer to the driving direction at an
angle of θl = 20◦. This change in lane orientation also causes
〈V b

|| 〉 to abruptly jump from a negative value to a positive value
at the DL-DL2 transition.

In Fig. 18(a) we plot 〈V b
|| 〉 and 〈V a

⊥〉 versus FD for a sample
with αb

m = 6.0. Here, the negative value of 〈V b
|| 〉 is more

clearly visible. At higher drives we find an additional jump
in both 〈V b

|| 〉 and 〈V a
⊥〉 due to rearrangements that transform

the DL2 structure into what we call the DL3 state, illustrated
Fig. 18(b) for FD = 10.5. The DL3 lanes are very thin and are
nearly aligned with the x direction.

In Fig. 19 we construct a dynamic phase diagram as a
function of FD versus αb

m for the system in Figs. 17 and 18.
We find that the width of the moving crystal phase diverges
as αb

m → 0, while the PS phase only occurs when αb
m < 0.5.

These results show that the phases we observe are generic in
systems where the damping coefficient is fixed but the Magnus
term varies.
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FIG. 19. Dynamic phase diagram as a function of FD vs αb
m for

a system with αa
m = 0 and αa

d = αb
d = 1.0 illustrating the moving

crystal (MC), moving liquid (ML), perpendicular stripe (PS), and
diagonal-laned (DL, DL2, and DL3) phases. A regime of negative
mobility for species b appears in phase DL.
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FIG. 20. (a) 〈V a
|| 〉 (dark red), 〈V b

|| 〉 (dark blue), 〈V a
⊥〉 (pink), and

〈V b
⊥〉 (light blue) vs FD in a system with αa

m = 1.0, αb
m = −1.0, and

αa
d = αb

d = 1.0. (b) The corresponding P6 vs FD . At low drives we
find a moving crystal (MC) state, followed by moving liquid (ML)
and perpendicular-laned (PL) phases.

VII. MAGNUS TERMS OF OPPOSITE SIGN

Up to now we have focused on systems in which the
Magnus term is zero for one or both species, or where both
species have a finite Magnus force with the same sign but
different magnitude. Here we examine the case where both
species have a nonzero Magnus term of equal magnitude that
is opposite in sign. In Fig. 20(a) we plot 〈V a

|| 〉, 〈V b
|| 〉, 〈V a

⊥〉,
and 〈V b

⊥〉 versus FD for a system with αa
m = 1.0, αb

m = −1.0,
and αa

d = αb
d = 1.0, while in Fig. 20(b) we show the corre-

sponding P6 versus FD curve. Here 〈V a
⊥〉 is negative while

〈V a
|| 〉, 〈V a

⊥〉, and 〈V b
|| 〉 are all positive. At low FD the system

is in an elastic MC state, and it transitions with increasing
drive into a moving liquid in which P6 ≈ 0.45. An ordering
transition occurs near FD = 0.75, as indicated by the increase
in P6 to a value close to P6 = 0.865, and simultaneously 〈V a

|| 〉
and 〈V b

|| 〉 lock with 〈V b
⊥〉 as the system enters what we term

a perpendicular-laned (PL) state, illustrated in Fig. 21(a) at
FD = 1.5. The PL structure is very similar to the lanes that
form for oppositely driven Yukawa particles, except in this
case the lanes are oriented perpendicular to the drive. The
PL state is distinguished from the PS state by the fact that
the density of the system remains uniform out to arbitrarily
high drives in the PL phase. In general, we find no significant
density modulations whenever αa

m and αb
m are of the same

magnitude but opposite in sign as long as αa
d = αb

d , even when
αa

m or FD are very large. By setting the damping terms of
the two species to different values, it is possible to induce
clustering in the PL state with αa

m = −αb
m, as illustrated in

Fig. 21(b) for a system with αa
m = 1.0, αb

m = −1.0, αa
d = 1.0,

and αb
d = 3.0, where the perpendicular lanes are now com-

pressed. This compression arises because species a, which
has a smaller damping term than species b, moves faster and
collides with the band of slower moving particles, while the
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FIG. 21. Images of particle positions for species a (red) and b

(blue). (a) The system in Fig. 20 with αa
m = 1.0, αb

m = −1.0, and
αa

d = αb
d = 1.0 at FD = 1.5 showing the formation of a uniform

perpendicular-laned (PL) state oriented transverse to the driving
direction. (b) A system with αa

m = 1.0, αb
m = −1.0, αa

d = 1.0, and
αb

d = 3.0, in which the PL state shows compression or clustering.

opposite sign of the Magnus terms for the two species is
responsible for creating the perpendicular banding.

In Fig. 22 we construct a dynamic phase diagram as a
function of FD versus αa

m for the system in Fig. 20 with
αb

m = −αa
m, highlighting the fact that the widths of the MC

and ML phases diverge upon approaching the overdamped
limit of αa

m = 0. The ML phase also increases in extent with
increasing αa

m when αa
m > 5.0.

VIII. OTHER VARIABLES AND DISCUSSION

We have considered several other variables such as varied
damping and varied Magnus ratios and in general find the
same phases described above with some minor variations. For
example, in Fig. 23(a) we plot 〈V a

|| 〉, 〈V b
|| 〉, 〈V a

⊥〉, and 〈V b
⊥〉

versus FD for a system with αb
d = 1.0, αa

d = 2.0, αa
m = 0.1,

and αb
m = −1.0, where we find a series of pronounced veloc-

ity jumps at the transitions into different DL and DL2 phases.
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FIG. 22. Dynamic phase diagram as a function of FD vs αa
m for

the system in Fig. 20 with αa
d = αb

d = 1.0 and αb
m = −αa

m showing
the moving crystal (MC), moving liquid (ML), and perpendicular-
laned (PL) phase.
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FIG. 23. (a) 〈V a
|| 〉 (dark red), 〈V b

|| 〉 (dark blue), 〈V a
⊥〉 (pink), and

〈V b
⊥〉 (light blue) versus FD for a system with αb

d = 1.0, αa
d = 2.0,

αa
m = 0.1, and αb

m = −1.0, where a series of pronounced jumps
indicate transitions into different DL and DL2 phases. (b) Dynamic
phase diagram as a function of FD vs system density n for samples
with αa

d = αb
d = 1.0, αa

m = 0, and αb
m = 0.3, showing that the tran-

sitions between the moving crystal (MC), moving liquid (ML), and
perpendicular stripe (PS) phases shift to higher values of FD with
increasing density.

The same generic phases persist when the system density is
varied, as shown in the dynamic phase diagram as a function
of FD and n in Fig. 23(b) for a system with αa

d = αb
d =

1.0, αa
m = 0, and αb

m = 0.3. As n increases, the transitions
between the phases shift to higher values of FD . We observe a
similar trend for higher values of αb

m. We have also examined
systems in which Na �= Nb and find similar dynamic phases,
as illustrated in Figs. 24(a) and 24(b) for a sample with
Nb/Na = 0.9, αa

d = αb
d = 1.0, αa

m = 0, and αb
m = 3.0, where

we show that in the ML phase, some species segregation
occurs, while in the DL phase, thinner stripes appear. These
results indicate that the general features we observe are robust
for a wide range of parameters. We have tested systems with
different densities and find that the same general phases occur;
however, in denser systems, the increased skyrmion-skyrmion
repulsion shifts the transition to the thinner-stripe state up to
larger values of the Magnus term and driving force. We have
checked the effect of system size and find similar results in

x(a)

y

x(b)

y

FIG. 24. Images of particle positions for species a (red) and b

(blue) for a system with Nb/Na = 0.9, αa
d = αb

d = 1.0, αa
m = 0, and

αb
m = 3.0. (a) A moving liquid phase. (b) A diagonal-stripe state,

showing that phase separation persists even when the ratio of the
number of species a particles to species b particles is varied.
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larger samples. In the single-stripe state, a periodic array of
stripes can form in larger samples that has a stripe spacing
larger than the L = 36 samples which are our focus here. In
general, the width and periodicity of the stripes depend on
the values of the Mangus term, density, and drive. Increasing
the Magnus term and drive tends to decrease the stripe width,
while increasing the density tends to increase the stripe width.

In this work we have only considered bidisperse particles;
however, it would also be interesting to study three or more
particle species or even a continuum range of species with
a Gaussian distribution of types. In such assemblies, it is
possible that the system would generally form disordered or
moving liquid phases; however, other new types of pattern
formation could appear. We have only utilized particle-based
simulations since these allow us to simulate a large number
of particles over a wide range of parameters for long times,
but it would also be interesting to perform continuum based
simulations of multiple species or sizes of skyrmions to see
whether similar effects arise when the internal degrees of
freedom of the skyrmions are included. In our system, the
Magnus term leads to the appearance of a skyrmion Hall
angle, but there are recent studies which show that some
skyrmion systems can exhibit motion that is more toroidal
in addition to other types of complex dynamics [49,50]. It
would be interesting to study such systems in the presence
of multiple skyrmion species. Further effects could arise if
the applied driving were ac rather than dc, since the multiple
species could organize into different types of patterns under
cyclic driving.

IX. SUMMARY

We have examined a bidisperse system of particles with
uniform pairwise interactions under dynamics that include
both a damping term and a Magnus term. When both species
have equal damping but only one species has a finite Magnus
term, we find that the triangular lattice which forms under
zero drive moves elastically at low drives with a Hall angle
equal to the average Hall angle of the two species. At a
critical drive, a Magnus-induced disordering transition occurs
in which each species moves with a different velocity in the

direction perpendicular to the drive. The critical drive at which
the disordering transition appears diverges as the Magnus term
goes to zero. At higher drives, there is a transition to a perpen-
dicular stripe or cluster state with both density and species
phase separation. The stripes become more compressed as
the drive or difference in Magnus terms increases, and an-
other transition occurs to a density-modulated diagonal-laned
state at even higher drives. The transitions are associated
with pronounced jumps and locking of the transverse and
longitudinal velocities of each species as well as changes
in the global particle structures. We also find that multiple
transitions can occur within the diagonal-laned phase, each
of which is accompanied by a reduction in both the number
of particles in each row and the angle between the stripe and
the driving direction, giving rise to a rich variety of different
types of patterns. In some cases, one of the species can exhibit
absolute negative mobility in which the particles move in
the direction opposite to that of the applied drive due to the
Magnus-induced rotation of the interaction forces between the
two particle species. When both species have different damp-
ing terms but zero Magnus terms, we find dynamic phases
that are very similar to those observed for oppositely driven
Yukawa particles, which form uniform laned states. For equal
damping terms and Magnus terms that are equal in magnitude
but opposite in sign, uniform density states appear containing
lanes that are perpendicular to the applied drive. We show that
the diagonal-laned and density-modulated states are robust
for a wide range of parameters and densities, and should be
generic features of systems with dispersity in the Magnus
force. We discuss the relation between our results and studies
of skyrmion systems with dispersion in the Magnus force,
where we predict that a disordering transition should occur as
a function of increasing drive, and that a variety of clustered
and pattern-forming states could be observed. Similar effects
may arise in soft matter systems containing Magnus terms,
such as spinning magnetic particles in solution.
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