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Movement of spherical colloid particles carried by flow in tubes of periodically varying diameter
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We provide analytical formulas for the movement of spherical particles in a corrugated tube, in the
approximation of small amplitude of the tube diameter variation. We calculate how the particle is pushed toward
the wall at some places and pulled off the wall at others. We show that this effect causes rectification of the
particle movement, when the direction of the fluid flow is alternated, thus leading to the hydrodynamic ratchet
effect. We propose such scheme as a particle-separation device.
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I. INTRODUCTION

One of the key tasks in microfluidics [1,2] is separation of
tiny particles according to their size, shape, rigidity, and other
physical properties [3–8]. Applications range from colloids
[9] to separation of cancer cells flowing in human blood
[10]. Soft matter in narrow pores is a very intriguing field in
general [11].

There are numerous approaches to microparticle sorting
relevant to microfluidics. Let us first mention the microfluidic
Brownian ratchets [12,13], which combine Brownian motion,
alternating fluid flow, and mirror-asymmetric geometry of the
channel, to produce rectification of otherwise indiscriminate
Brownian motion. The effect was demonstrated by older
[9,14] as well as very recent experiments [15]. It was amply
studied theoretically by direct simulations [16] and using the
mapping on one-dimensional diffusion problem [17] based on
the Fick-Jacobs theory [18] and its generalizations [19–30]. It
turns out that a combination of hydrodynamics and Brownian
motion results in phenomena like hydrodynamically enforced
entropic trapping [17] and spatially dependent diffusion con-
stant due to hydrodynamic interactions [31].

In these settings, Brownian motion has a decisive role. This
somewhat limits the applicability to small enough particles
and/or low enough fluid velocity. Beyond this limit there
are several approaches which rely purely on hydrodynamics.
Perhaps the most straightforward method is sorting by de-
terministic lateral displacement [32]. A much more delicate
method relies on inertial migration, which is based on the
Segre-Silberberg effect [33]. Inertial forces induce focusing of
the particles at a specific distance from the tube axis [34,35].
In practice, this effect found numerous applications [36–41],
notably in blood filtration.

There is a certain dichotomy between microfluidic Brown-
ian ratchets mentioned above and sorting by inertial migra-
tion. The former relies on oscillatory flow, but, at least in
the studies cited above, in a purely Stokes regime (at zero
Reynolds number). The sorting is due to entropic barriers.
The latter, on the other hand, relies purely on inertial effects
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(the Reynolds number must not be small), but the flow is
steady and the sample passes the apparatus in one single run.
In a recent paper [42], we combined the two. We showed
that in the microfluidic Brownian ratchet the inertial effects
are not only important but within some range of parameters
they can be even dominant over entropic effects. Here we
intend to go even further and show that hydrodynamics alone
is sufficient to produce the ratchet effect, even if the Brow-
nian motion is absent (or, more precisely, is infinitesimally
small).

The setup we want to investigate closely follows the exper-
iments presented in [9,14]. A spherical particle is carried by
periodic flow in a tube of variable diameter. There are at least
three length scales in play, resulting in three characteristic
Reynolds numbers. The first scale is set by the average tube
diameter d and associated to it is the tube Reynolds number
Ret = Ud/ν, where U is the average velocity within the
tube, defined through the volumetric flow Q as U = 4Q/πd2.
Next, there is the scale of particle radius R, and correspond-
ing particle Reynolds number Rep = (2R/d )2 Ret . The third
scale is the inverse of spatial frequency of tube modulation �,
and the corresponding Reynolds number Rec = 1

2�d Ret . To
fix the typical scales, we can take the values from a standard
experiment, e.g., from Ref. [38]. Translating their geometry
to our situation, we can consider as typical the values d =
20 μ m, R = 1 μm, Ret = 20, which in turn correspond to
Rep = 0.2 and average velocity U = 1 ms−1. Note that the
velocity is quite large. Anticipating the value �d = 0.3 we
shall use most, we get Rec = 3.

Note also that the particle Reynolds number is significantly
smaller than the tube Reynolds number. Such a separation
of scales justifies a two step approach used in solving the
equations for the movement of a spherical particle in the tube.

First, we solve Navier-Stokes (NS) equations for the free
flow of the fluid in the tube, assuming that the amplitude of the
diameter variations is small. We limit ourselves to the lowest
approximations and truncate the expansion of the solution at
linear terms in the amplitude.

The approaches to flow in tubes of variable diameter which
are available in the literature can be classified in three groups,
namely expansion in the slow variation, expansion in the small
amplitude of variation, and fully numerical solution.
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First, there are results which neglect completely the inertial
effects, solving just the Stokes equation. Although they are
not much relevant for our purpose, they are useful at least
methodically, so we mention them briefly. An interesting
exact analytic result [43] shows that in a channel with sharp
enough corners, eddies occur inevitably even for slow flow.
In approximate analytic calculations either slow-variation
[44,45] or small-amplitude [46–48] expansions were used.
Fully numerical solutions were also found [49,50].

Now let us turn to results for full Navier-Stokes equations.
The expansion in the slow variation was pioneered by Blasius
[51]. He considered an exponentially diverging channel and
proceeded up to quadratic terms in the speed of variation. The
successive corrections to the velocity field are expressed in
terms of polynomials of the relative distance from the axis.
This method was later widely used for channels and tubes of
periodically varying diameter [52–59]. The advantage of this
approach consists in the fact that the correction terms have
polynomial form, so they can be handled very easily and the
expansion can proceed to high orders. However, for us, this
type of expansion is not applicable, because we admit the
period of spatial variation to be of the same order as the tube
diameter, so the variation cannot be described as “slow.”

Instead, we shall use the amplitude of modulation as a
small parameter. The expansion in the amplitude of variation
was used by Belinfante [60]. He considered a sinusoidally
modulated tube and expanded the periodic velocity field in
Fourier components. The resulting ordinary differential equa-
tions were then solved either in the form of power series
or iteratively, in terms of Bessel functions, which physically
amounts to the expansion in powers of Reynolds number.
However, his solution suffers from the fact that the nonslip
boundary conditions are satisfied only up to linear terms in
the amplitude of variation and not exactly. This drawback
was cured later [61–65], but in these works the ODEs were
eventually solved numerically, so no analytical formula re-
sulted. Our goal had been to obtain closed analytical formulas
in the first order of the expansion in the small amplitude of
diameter variation, with boundary conditions satisfied exactly.
We sketched the results of our calculations in our previous
paper [42], but without detailed derivation and explanation.
Here we present the solution in much more detail and at
the same time use the formulas in a completely different
regime.

The flow in periodically modulated channels and tubes was
also thoroughly studied numerically by different techniques,
either assuming stationary and spatially periodic flow [66–74]
or solving full time-dependent NS equations [75–81]. The
latter group of results is important, because it provides, be-
sides the linear stability analysis [65,71,73,74], an estimate
of the critical Reynolds number at which the stationary flow
becomes unstable and oscillations first appear. Extrapolating
these results to the values of parameters used throughout our
calculations, we assume that in our case the critical Reynolds
number is not lower than about 200. Therefore, in all our
calculations presented below we are safely in a hydrodynam-
ically stable regime.

Finally let us mention that the numerical solutions were
often accompanied by direct experimental verification; see,
e.g., [66,67,82,83].

With the solution for the free flow at hand, we shall proceed
to the second step. Now we insert a spherical particle into
the flow. As Rep � 1, we assume that the perturbation to
the flow caused by the particle is given by Stokes equation.
The boundary conditions at infinity are fixed by expanding the
obtained free fluid flow in the Taylor series around the point
where the particle is inserted. In this work, we truncate the
Taylor series at quadratic terms, but in principle it is possible
to go farther. The procedure of finding the perturbed flow
is fairly straightforward and standard [84–87] although we
decided to formulate it in our own way which we consider
more suitable for future systematic improvements, namely
taking higher terms in the Taylor expansion into account. At
this point we consider it fair to admit that the method used has
a serious limitation. Indeed, it fails if the particle is very close
to the tube wall (i.e., the distance is comparable with particle
diameter). Close to the wall, more sophisticated methods are
necessary, as, e.g., in [88–92]. The effect of wall proximity is
not considered here.

In this paper, we aim at closed analytical formulas for the
fluid and particle flow. This should enable us to claim that
inertial effects lead to a ratchet effect in the movement of the
suspended particle and this ratchet effect is a genuine, rather
than casual, consequence of mirror-asymmetric tube design.

In fact, the ratchet effect of purely hydrodynamic origin
was already demonstrated in numerical simulations [93]. It
was found that the particles are sometimes pushed toward
the walls, contrary to the naive intuition that close to the
wall the velocity of the suspended particle goes to zero,
as does the velocity of the fluid. We shall see how this
effect emerges from our analytical formulas. Analogous effect
was also demonstrated experimentally in a deterministic (i.e.,
non-Brownian) microfluidic ratchet device [94], composed of
triangular, 6-μm large obstacles.

The paper is organized as follows. In Sec. II, formulas for
fluid flow in a tube are derived and the limits of their precision
(in terms of Reynold number) are estimated. In Sec. III, the
spherical particle is inserted and its movement is calculated.
In Sec. IV, the hydrodynamic ratchet is analyzed. Section V
draws conclusions from the results presented.

II. SOLUTION FOR THE FLOW IN THE TUBE

The system we shall investigate is depicted schematically
in Fig. 1. A Newtonian incompressible fluid of density ρf

and kinematic viscosity ν is flowing through an axially

FIG. 1. Schematic picture of the system investigated here. The
fluid is flowing through the tube of periodically varying diameter.
Within the fluid, there is a colloid particle of spherical shape, whose
movement is fully determined (in a nontrivial way) by the movement
of the fluid.
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symmetrical tube whose diameter changes periodically along
the coordinate z directed along the symmetry axis. We shall
use the cylindrical coordinates (ρ, z, φ), with a modification
which will be explained later. The velocity field of the fluid
u(ρ, z, φ) is described by Navier-Stokes equations, with usual
no-slip boundary conditions at the tube walls. Only axially
symmetric solutions (i.e., independent of the azimuthal coor-
dinate φ) are considered, so from a technical point of view
the three-dimensional (3D) physical situation reduces to an
effective 2D problem. This enables the use of the (Stokes)
stream function ψ (ρ, z), related to the cylindrical components

of the velocity field as

uρ = − 1

ρ

∂ψ

∂z
,

(1)

uz = 1

ρ

∂ψ

∂ρ
.

Then, the continuity equation is satisfied automatically and
the Navier-Stokes equation translates in the fourth-order equa-
tion for ψ (ρ, z), namely

1
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(
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(
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. (2)

Inertial effects are contained in the nonlinear term on the left-
hand side. Note that this term is proportional to 1/ν. Thus, the
presence of the factor 1/ν may serve as a fingerprint of the
presence of inertial effects, which will be used later.

We suppose that there are no time-dependent external fields
and the fluid velocity is small enough to ensure the stability of
time-independent solutions with the same spatial periodicity
as the tube itself.

The scheme of Fig. 1 shows also the spherical particle
carried by the flow. We assume the sphere is neutrally buoyant,
i.e., its density equals the density of the fluid. We also assume
that the inertia of the sphere itself is negligible, so that the
motion of the sphere is fully determined by the condition that
the total force as well as its moment, acting on the sphere,
are zero at all times. The influence of the sphere on the fluid
flow and the movement of the sphere will be investigated in
the next section. Now we shall explain the method we use for
calculating analytically the flow of the fluid alone.

A. Expansion in the amplitude of diameter variation

We suppose the fluid flows through an axially symmetric
tube with diameter d/[1 + λS(z)] which varies periodically
along the tube. We suppose the coordinate axis z coincides
with the tube axis and the function S(z) describing the modu-
lation can be expressed in Fourier components as

S(z) =
∑

k=1,2,...

(Ak sin k�z + Bk cos k�z). (3)

We should find a stationary solution for the flow in such a
tube. To this end we shall look for the stream function ψ

fully describing the axially symmetric flow. We introduce
generalized cylindrical coordinates

ρ̃ = [1 + λS(z)]ρ,

z̃ = z.
(4)

With such coordinates the tube wall is at fixed value ρ̃ = d/2,
which simplifies the treatment of boundary conditions. For
a straight tube the exact solution of NS equations is trivial,

because the inertial term in the NS equations vanishes iden-
tically due do the uniformity along the axis, i.e., ∂ψ/∂z = 0.
Therefore, the strategy of solution will consist in expansion
around this trivial situation. The small parameter of the model
is the amplitude of the variation of the tube diameter. This is
why we introduced the formal expansion parameter λ, which
controls the power in which the variation of the diameter
appears in the formula. (As λ is here just for housekeeping
purposes, we set λ = 1 at the end of the calculations.)

So, we write

ψ (ρ̃, z̃) = 2Q

π
[ψ0(ρ̃) + λψ1(ρ̃, z̃) + λ2ψ2(ρ̃, z̃) + · · · ].

(5)

We separated the explicit factor 2Q/π proportional to the total
volumetric flow Q from the rest for further convenience.

The NS equations then lead to a chain of equations for
subsequent corrections. Knowing ψ0, ψi, . . . , ψm−1, we ob-
tain linear partial differential equation of fourth order for the
next correction ψm. In this paper we truncate the expansion
at first order in λ, so we calculate just ψ0 and ψ1. The zeroth
term can be trivially found as it is formally identical to the
standard Poiseuille flow, but expressed in the variable ρ̃

ψ0(ρ̃) = 2

(
ρ̃

d

)2
[

1 − 2

(
ρ̃

d

)2
]
. (6)

Note that this expression does not contain the factor 1/ν,
which means that it does not include inertial effects. On the
other hand, the corrugation of the tube is already taken into
account, although in lowest approximation only.

Knowing ψ0, we can write a linear equation for ψ1. In
analogy to (3), we can expand it into a sum of Fourier
components

ψ1(ρ̃, z̃) =
∑

k=1,2,...

[αk (ρ̃) sin k�z̃ + βk (ρ̃) cos k�z̃]. (7)

Note that at linear level (first order in λ) Fourier components
are not mixed and each component is obtained independently
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of the others. This simplification is lost if we go beyond the
linear approximation, i.e., in calculation of ψ2 and further
terms.

The boundary conditions at the tube wall and at the axis
require that

αk

(
d

2

)
= α′

k

(
d

2

)
= βk

(
d

2

)
= β ′

k

(
d

2

)
= 0,

αk (0) = α′
k (0) = βk (0) = β ′

k (0) = 0. (8)

This has an important consequence that the volumetric flow
through the tube resulting from ψ1 is zero, so the total
volumetric flow is always Q as given by ψ0. Of course, the
quantity which is affected by nonzero ψ1 is the pressure.

We can easily see the following general feature. When we
insert (5) into Eq. (2) and rescale all lengths (z as well as ρ)
by the spatial frequency �, the dimensionless factor

Rec = 2Q�

πν
(9)

naturally appears on the left-hand side. This factor will be
appropriately called the corrugation Reynolds number, as
it measures the importance of inertial effects on the scale
determined by the periodic variation of the tube diameter.

Next, performing the linearization of Eq. (2) in the
expansion parameter λ, we obtain a linear equation for
ψ1(ρ̃, z̃; Rec ), which depends on Rec as a parameter. There-
fore, any solution can be split into two parts, even and odd in
Rec, respectively, as

ψ1 even(ρ̃, z̃) = 1
2 [ψ1(ρ̃, z̃; Rec ) + ψ1(ρ̃, z̃; −Rec )],

(10)
ψ1 odd(ρ̃, z̃) = 1

2 [ψ1(ρ̃, z̃; Rec ) − ψ1(ρ̃, z̃; −Rec )].

Taking into account the expansion (7) we find that the
functions αk (ρ̃) and βk (ρ̃) can be expressed using a set of
functions g(m)(x; r ) in such a way that we can write

ψ1 even(ρ̃, z̃) =
∑

k=1,2,...

∞∑
l=0

(−1)l (k Rec )2lg(2l)

(
k�ρ̃;

k�d

2

)

× (Bk cos k�z̃ + Ak sin k�z̃) (11)

and

ψ1 odd(ρ̃, z̃) =
∑

k=1,2,...

∞∑
l=0

(−1)l+1(k Rec )2l+1

× g(2l+1)

(
k�ρ̃;

k�d

2

)
× (Ak cos k�z̃ − Bk sin k�z̃). (12)

The nontrivial part of the solution is contained in the (still
unknown) functions g(m)(x; r ).

The equations for these functions are obtained by inserting
the expansions (11) and (12) into the NS equations (2) lin-
earized to the first order in λ, and comparing terms with equal
power of Rec, as well as corresponding Fourier coefficients.

In the course of the calculations it appears useful to define the
following differential operators:

L1 =
(

x

r

)2
[

1 −
(

x

r

)2
](

− x2 d2

dx2
+ x

d

dx
+ x2

)
, (13)

L2 = x4 d4

dx4
− 2x3 d3

dx3
+ (3x2 − 2x4)

d2

dx2

+ (−3x + 2x3)
d

dx
+ x4, (14)

and the following functions:

k1 = x6

r4

[
8

r2
+ 1 −

(
8

r2
+ 2

)(
x

r

)2

+
(

x

r

)4
]

(15)

k2 = x6

r2

[
16

r2
+ 1 −

(
x

r

)2]
. (16)

With these objects defined, the NS equations for the stream
function transform into the chain of equations for the desired
functions g(m), namely

L2 g(0) = −k2,

L2 g(1) = L1 g(0) + k1,

L2 g(m) = L1 g(m−1) for m � 2.

(17)

The equations are complemented by boundary conditions

g(m)(r; r ) = 0

d

dx
g(m)(x; r )

∣∣∣∣
x=r

= 0 (18)

and

g(m)(0; r ) = 0

d

dx
g(m)(x; r )

∣∣∣∣
x=0

= 0, (19)

which are direct translations of the boundary conditions (8).
As the operator L2 is of fourth order, a general solution is

a linear combination of four linearly independent solutions of
a homogeneous equation plus a particular solution due to the
right-hand side. However, two of the four solutions contradict
the boundary conditions at the center of the tube (19) and
only the remaining two independent solutions are applicable.
Therefore, the solution will have the following general form:

g(m)(x; r ) = h
(m)
1 (r )H1(x) + h

(m)
2 (r )H2(x) + P (m)(x; r ),

(20)
where H1(x) and H2(x) are the two independent solutions
of the homogeneous equation L2φ(x) = 0 compatible with
the boundary conditions (18) and (19). The values of the two
coefficients h

(m)
1 and h

(m)
2 are determined by the two equations

(18). The terms P (m)(x; r ) come from particular solutions.
The first one is the particular solution of the equation

L2P
(0)(x; r ) = −k2. (21)

Finding the functions P (m)(x; r ) for m � 1 is some-
what simplified by the observation that L1H1(x) = 0 and
L1P

(0)(x; r ) + k1 = 0. (We do not see any deep reason for
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these identities. They just appeared as a result of the calcula-
tion.) These identities imply that

P (m)(x; r ) =
m∑

n=1

h
(m−n)
2 (r )P (n,2)(x; r ) (22)

and the functions P (n,2) are particular solutions of the inho-
mogeneous equations

L2P
(1,2)(x; r ) = L1H2(x),

L2P
(m,2)(x; r ) = L1P

(m−1,2)(x; r ) for m � 2.
(23)

In principle, we can recursively calculate the functions
g(m)(x; r ) to an arbitrary order. In practice, we used the MAPLE

software [95] for finding the solution and stopped at the order
m = 1, where the inertial effects first appear. The result of this
computation (as found using MAPLE) is expressed using the
Bessel functions of imaginary argument In(x) and Kn(x) (see,
e.g., [96]). For the solutions of the homogeneous equation we
find

H1(x) = xI1(x) (24)

and

H2(x) = x2K1(x)
[
xI 2

0 (x) − xI 2
1 (x) − 2I0(x)I1(x)

]
+ 2xI1(x)

∫ x

0
x ′K1(x ′)I1(x ′) dx ′. (25)

The particular solution is very simple in the lowest order,
namely

P (0)(x; r ) =
(

x

r

)4

−
(

x

r

)2

. (26)

The coefficients ensuring the satisfaction of the boundary
conditions are

h
(0)
1 (r ) = −2[K1(r ) + 2I1(r ) φ2(r )]φ3(r ) (27)

and

h
(0)
2 (r ) = 2I1(r ) φ1(r ) φ3(r ), (28)

where we defined auxiliary functions

φ1(r ) = 1

r2I 2
0 (r ) − r2I 2

1 (r ) − 2rI0(r )I1(r )
, (29)

φ2(r ) = φ1(r )
∫ r

0
x ′K1(x ′)I1(x ′) dx ′, (30)

and

φ3(r ) = 1

r2[K1(r )I0(r ) + I1(r )K0(r )]
. (31)

In the first order, the particular solution can be written as

P (1)(x; r ) = 2x [I1(x)f1(x; r ) − K1(x)f2(x; r )]h(0)
2 (r )

(32)
and the coefficients as

h
(1)
1 (r ) = −2[f1(r; r ) + 2 f2(r; r ) φ2(r )]h(0)

2 (r ), (33)

h
(1)
2 (r ) = 2f2(r; r ) φ1(r ) h

(0)
2 (r ), (34)

where

f1(x; r ) =
∫ x

0

∫ x ′

0
x ′K1(x ′)[I1(x ′)K1(y)

−K1(x ′)I1(y)]f3(y; r ) dy dx ′, (35)

f2(x; r ) =
∫ x

0

∫ x ′

0
x ′I1(x ′)[I1(x ′)K1(y)

−K1(x ′)I1(y)]f3(y; r ) dy dx ′, (36)

and

f3(y; r ) =
[(

y

r

)4

−
(

y

r

)2]
× I1(y)[K1(y)I0(y) + I1(y)K0(x)]. (37)

This completes the solution of the first two equations in the
chain (17).

B. Sample profile

Now let us apply the approximation to a specific example.
Let us choose the profile of the tube according to

S(z) = A sin 2�z + B cos �z (38)

and truncate the expansion in powers of Rec at first order.
Collecting all terms, we obtain for the stream function

ψ (ρ̃, z̃) = 2Q

π

{
2

(
ρ̃

d

)2[
1 − 2

(
ρ̃

d

)2]
+ g(0)

(
�ρ̃;

�d

2

)
B cos �z̃ + g(0)(2�ρ̃; �d )A sin 2�z̃

+
[
g(1)

(
�ρ̃;

�d

2

)
B sin �z̃ − 2 g(1)(2�ρ̃; �d )A cos 2�z̃

]
Rec + O

(
Re2

c

)}
. (39)

The first thing to do is to check the accuracy of the
analytical approximation (39) against the exact numeric so-
lution. We performed the numerical solution using the COM-
SOL Multiphysics software. We found that the most critical

region (worst agreement) is where the tube is narrowest, as
is naturally expected. We plot in Fig. 2 such a worst-case
comparison for the profile we use most often, defined by
(38). As expected, the agreement worsens with increasing
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FIG. 2. Comparison of the analytical results based on formula
(39) (lines) with exact numerical solution by COMSOL Multiphysics
(×). The profile is defined by (38) with A = 0.15, B = 0.2, d =
0.3/�. In the upper panel, the longitudinal component of the velocity
uz, calculated at the plane perpendicular to the axis at z = 1/�, i.e.,
close to the narrowest profile, for Reynolds number Rec = 4.5. In the
lower panel, the same for Rec = 15.

Reynolds number. However, the velocity profile for Rec = 4.5
still agrees very well with the numerics. However, we can
see that for example for Rec = 15 the disagreement is severe,
especially at the center of the tube. We observed generally that
the disagreement is largest on the tube axis at the narrowest
place. This should be expected, as the velocity is largest
around there. So, we consider the relative velocity difference
�uz/uz = |(uanalytic

z − unumeric
z )/unumeric

z | calculated at �z = 1
and ρ = 0 as an upper estimate of the error. We show in
Fig. 3 how this error bound depends on the Reynolds number.
The error of course also increases with increasing A and B.
However, we do not consider it reasonable to go beyond the
values A = 0.15, B = 0.2 chosen in Figs. 2 and 3, as the
basic assumption of the whole analytical calculations is that
the amplitude of the corrugation is small. So, we conclude,
on the basis of comparison with exact numerics, summarized
in Fig. 3, that our analytical formulas are reliable enough

Rec

Δ
u

z
/u

z

1614121086420

0.2

0.15

0.1

0.05

0

FIG. 3. Comparison of the analytical results based on formula
(39) with exact numerical solution by COMSOL Multiphysics. The
profile is defined by (38) with A = 0.15, B = 0.2, d = 0.3/�. Here
we show how the relative difference between numeric and analytic
value of the velocity on the axis (i.e., ρ = 0) at the position z = 1/�

depends on the corrugation Reynolds number.

for Reynolds numbers Rec � 4.5 and profile parameters A �
0.15, B � 0.2.

We illustrate the solution (39) in Fig. 4 showing the stream-
lines of the flow for two values of the corrugation Reynolds
number. (Here and in the following figures, we use 1/� as the
unit of distance). We can see that if we change the direction
of the flow, with all other parameters intact, the shape of
the streamlines changes due to inertial effects. We can see
it already at the value Rec = 4.5, up to which the analytical
approximation is considered reliable. For pedagogical reasons
we also included graphs for larger value Rec = 50, in order to
show how the strength of the inertial effects increases with
increasing Reynolds number, although for such large
Reynolds numbers the values may not be quantitatively pre-
cise enough.

III. PARTICLE IN THE TUBE

A. Spherical particle in ambient flow

Now let us insert a spherical particle of radius R into the
computed flow. The particle is considered neutrally buoyant.
As a first step, we consider an abstract problem of behavior
of a sphere in a given ambient flow. The specific form of the
ambient flow is given by Taylor expansion of the flow (39) in
powers of the Cartesian coordinates. The origin of coordinates
is taken at the point where the sphere center will be placed.
This should work for small enough particles and we shall see
that this procedure generates indeed an expansion in powers
of the radius of the sphere. If we truncate the Taylor expansion
at quadratic terms, we obtain correctly contributions up to the
order R2. So, we suppose the particle is inserted in the flow
u(x) expressed in coordinates as

ui = βi + βij xj + βijkxjxk. (40)

(Summation over repeating indices is assumed everywhere.)
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FIG. 4. Streamlines of the flow in tube with profile given by (38), as calculated according to the approximation (39). In the left two panels,
the average flow is oriented from the left to the right, while in the right two panels, the orientation is opposite. The Reynolds number is
Rec = 4.5 in the top two panels and Rec = 50 in the bottom two panels. The parameters of the tube are A = 0.15, B = 0.2, d = 0.3/�.

The coefficients βi , βij , and βijk must obey certain rela-
tions, in order that (40) be a possible solution of Navier-Stokes
(NS) equations. First of all, the equation of continuity requires

βii = 0,

βiik = βiki = 0.
(41)

Next, the NS equations require the following combinations to
be symmetric with respect to exchange of indices i ↔ s,

βilβls + 2βislβl,

βilβlsk + βislβlk + βiklβls,

βislβlkm + βiklβlsm + βimlβlsk.

(42)

Under these conditions one can determine uniquely the corre-
sponding pressure field p(u) as

1

ρf

p(u) = (−βilβl + 2νβill )xi −
(

1

2
βilβlj + βijlβl

)
xixj

− 1

3
(βilβljk + βijlβlk + βiklβlj )xixjxk

− 1

6
(βijlβlkm + βiklβljm + βimlβljk )xixjxkxm.

(43)

Before we proceed to the calculation of the perturbation
caused by the presence of the sphere, we perform an error
analysis, comparing the truncated Taylor expansion (40) with
the correct flow u(x), at a distance equal to the diameter

2R of the sphere from the center. We suppose this is the
typical distance at which the correction will be significant and
therefore errors caused by the truncation of the Taylor series
would be important. To estimate the error, we draw a line l1
parallel to the tube axis at distance �ρ from the axis. At each
point on this line we perform the Taylor expansion (40) of the

Ωz/2π

Δ
u

z
/u

z

10.80.60.40.20

0.01

0.005

0

−0.005

−0.01

FIG. 5. Relative error due to truncation of the Taylor expansion,
for particle radius R = 0.01/�, calculated at a line shifted by �ρ =
0.03/� (solid line), 0.05/� (dashed line), 0.07/� (dotted line),
0.09/� (dot-dashed line) from the axis. The profile is defined by
(38) with A = 0.15, B = 0.2, �d = 0.3. The Reynolds number is
Rec = 4.5.
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FIG. 6. Maximum relative error due to truncation of the Taylor
expansion. The profile is defined by (38) with A = 0.15, B = 0.2,
�d = 0.3. The Reynolds number is Rec = 4.5.

flow u(x) and calculate the axial component of the velocity uz

at a point located by 2R farther from the axis, in the direction
perpendicular to the axis. At this point we calculate the rela-
tive difference between correct and Taylor expanded velocity
�uz/uz = (uTaylor

z − ucorrect
z )/ucorrect

z . We show in Fig. 5 how
the relative error depends on the position on the line l1. We
can see that if the line is farther from the axis (i.e., for larger
�ρ) the error increases. Of course, we cannot go with the line
l1 farther from the axis than the particle size allows. We can
also see that the error is larger in the narrow regions of the
tube, which is due to larger overall velocity and also due to
the closeness of the particle to the wall. But in Fig. 5 we can
see that for the particle size R = 0.01/� even the maximum
error observed (the maximum is taken over all positions along
the line l1 and all shifts �ρ of the line from the axis) is still
under 1%. This implies that the truncation of the Taylor series
to quadratic terms is well justified. To see how the situation
depends on the particle size, we plot the maximum observed
error (calculated in the same way as described above), against
the particle diameter R. The result is shown in Fig. 6. We
confirm that for particles smaller than R = 0.01/� the error
is under 1%, but for larger particles the error quickly increases
and beyond R = 0.03/� it becomes unbearable.

Now let us turn to the calculation of the perturbation due
to the colloid particle. The perturbation to the ambient flow
and thus the force acting on the particle can be computed
easily as long as the particle is spherical. After insertion of
a spherical particle of radius R, the ambient flow u(x) is
modified to v(x) and we suppose the difference flow w(x) =
u(x) − v(x) is sufficiently well approximated by a solution of
Stokes equation. This can be justified not far from the sphere
if the particle Reynolds number Rep < 1 although the tube
Reynolds number may be large.

The procedure of obtaining the difference flow w(x) is
standard [84–87] and we sketch it just briefly here. The
boundary conditions require that w vanish at infinity and at
the surface of the sphere we have

w(x) = −u(x) for |x| = R. (44)

We assume the difference flow can be expressed using an
auxiliary vector field φ(x) as w(x) = ∇ × ∇ × φ(x). Then
the Stokes equation translates into �2∇ × φ(x) = 0. The
solution can be found in the form of expansion,

φi =
smax∑
s=0

αii1i2...is

∂s

∂xi1∂xi2 . . . ∂xis

f (s)(x). (45)

The corresponding pressure field will be

1

ρf

p(w) = ν

smax∑
s=0

αji1...is

∂s+3

∂xk∂xk∂xj ∂xi1 . . . ∂xis

f (s)(x). (46)

In our case smax = 2. Larger values of s would be necessary, if
we took higher terms in the Taylor expansion of the ambient
flow (40).

The set of functions f (s)(x) should satisfy the equation
�2f (s)(x) = 0 and are simply

f (s)(x) = a(s)|x| + b(s)

|x| . (47)

The problem of finding the difference flow thus reduces to
finding the coefficients αii1i2...is , a(s), and b(s) such that the
boundary condition at the surface of the sphere are satisfied.
After lengthy but straightforward calculations we obtain

wi = −1

4

(
3R

|x| + R3

|x|3
)

βi − 3

4

(
R

|x|3 − R3

|x|5
)

βjxixj − 1

2

(
R3

|x|3 + R5

|x|5
)

βikxk + 1

2

(
R3

|x|3 − R5

|x|5
)

βkixk

− 5

2

(
R3

|x|5 − R5

|x|7
)

βjkxjxkxi − 1

8

(
2R3

|x| − R5

|x|3 − R7

|x|5
)

βill − 1

8

(
2R3

|x|3 − 7R5

|x|5 + 5R7

|x|7
)

βjllxj xi

− 1

8

(
3R5

|x|5 + 5R7

|x|7
)

βijkxjxk + 5

8

(
R5

|x|5 − R7

|x|7
)

(βjik + βkij )xjxk − 35

8

(
R5

|x|7 − R7

|x|9
)

βjklxixjxkxl. (48)

From here we compute the total force acting on the sphere immersed in the flow (40) and its moment with respect to the sphere
center. We find

Fi = 6πρf νR

(
βi + R2

3
βill

)
+ 4

3
πR3ρf βilβl + 4

45
πR5ρf (βilβlmm + 2βimlβlm + 4βmlβlim),

Mi = 4πρf νR3εimnβnm. (49)
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Here εimn is the totally antisymmetric unit tensor. In our case
the particle is freely carried by the flow, and its velocity and
rotation are calculated by the transition to moving frame.
Indeed, the forces (49) were calculated supposing the sphere
does not move. Actually, the sphere moves in such a way
that the forces acting on it equal zero (we neglect inertia of
the sphere itself). Movement of the sphere with translational
velocity si and angular velocity ωi is taken into account by
transformation of the coefficients βi and βij as

βi → βi − si,

βij → βij − εimjωm.
(50)

Inserting the transformed β’s (50) into (49) and equating Fi =
Mi = 0 we obtain equations for the vectors si and ωi . While
the solution for ωi is trivial and yields

ωi = 1
2εimnβmn (51)

the solution for si is slightly more complicated, as it requires
matrix inversion. To this end we define Tij such that(

δim + R2

9ν
(βim + βmi )

)
Tmj = δij . (52)

Then, we obtain for the velocity si of the particle

si = βi + 1

3
R2βill + R4

ν
Tim

(
− 4

135
(βmk + βkm)βkll

+ 2

135
(βmkl + 2βlmk )(βlk + βkl )

)
. (53)

When using these results we must keep in mind that
the ambient flow (40) we started with is a truncated Taylor
expansion. Including higher terms would result in corrections
of order R4 in Eq. (53). So, to be consistent we can keep just
terms to the order R2. Therefore, we write

si = βi + 1

3
R2βill + O(R4) (54)

or, in compact notation,

s = u + R2

6
�u + O(R4). (55)

We shall use the latter equation in the following computations.
In fact, Eq. (55) looks familiar: it is just the Faxén law,
because the corrections beyond the R2 term vanish identically
if the ambient flow is governed by the Stokes equation [87].
Note also that although we do not have full formulas for the
corrections of the order R4, we can infer already on the basis
of (53) that the corrections will contain terms nonlinear in u,
so the complexity of the problem rises qualitatively.

B. Inserting sphere in the tube

We shall consider only the axially symmetric flow u(x) in
the tube. From (55) we can see that also the velocity field
s(x), representing the velocity of the particle if its center
is exactly at position x, is axially symmetric. Moreover, the
flow u(x) is incompressible, i.e., ∇ · u(x) = 0. From (55)
it is clear that also ∇ · s(x) = 0. For any axially symmetric
field with zero divergence it is possible to define a stream
function. For the velocity field of the fluid it was done in (1).
However, an analogous stream function must also exist for the
velocity field s(x), namely, its cylindrical components can be
written as

sρ = − 1

ρ

∂ψp

∂z
,

(56)

sz = 1

ρ

∂ψp

∂ρ
.

We shall call the function ψp defined by (56) a particle stream
function.

The linear relation (55) between u(x) and s(x) should
induce a linear relation between the corresponding stream
functions ψ and ψp. To derive such a relation requires some
calculations but the final result is fairly simple:

ψp = ψ + R2

6

(
∂2

∂z2
+ ∂2

∂ρ2
− 1

ρ

∂

∂ρ

)
ψ + O(R4). (57)

Note that the differential operator present in (57) is not
the Laplacian operator expressed in cylindrical coordinates,
as one might be tempted to guess simply looking at the
form of (55).

Let us take again the specific example of profile (38). The
particle stream function then reads

ψp(ρ̃, z̃) = ψ (ρ̃, z̃) + 2Q

π

�2 R2

6

{
− 32

(1 + A sin 2�z̃ + B cos �z̃)2

(�d )2

(
ρ̃

d

)2

− 4

[
1 − 4

(
ρ̃

d

)2](
ρ̃

d

)2
B cos �z̃ + 4A sin 2�z̃

1 + A sin 2�z̃ + B cos �z̃
+ 4

[
1 − 12

(
ρ̃

d

)2](
ρ̃

d

)2( −B sin �z̃ + 2A cos 2�z̃

1 + A sin 2�z̃ + B cos �z̃

)2

+G(0)

(
�ρ̃;

�d

2

)
B cos �z̃ + 4G(0)(2�ρ̃; �d )A sin 2�z̃

+
[
G(1)

(
�ρ̃;

�d

2

)
B sin �z̃ − 8 G(1)(2�ρ̃; �d )A cos 2�z̃

]
Rec + O

(
Re2

c

)} + O(R4), (58)

where we introduced functions originating from the spatial derivatives,

G(m)(x; r ) = g(m)′′(x; r ) − 1

x
g(m)′(x; r ) − g(m)(x; r ). (59)
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FIG. 7. Streamlines of the flow of spherical particle in tube with profile given by (38), as calculated according to the approximation (58).
In the left two panels, the average flow is oriented from the left to the right, while in the right two panels, the orientation is opposite. The
Reynolds number is Rec = 4.5. The parameters of the tube are A = 0.15, B = 0.2, d = 0.3/�. The radius of the particle is R = 0.01/� in
the top two panels, while R = 0.03/� in the bottom two panels.

(Primes denote differentiation with respect to x.) This result
is illustrated in Fig. 7. For particle radius zero the flow would
be identical to that of Fig. 4. Nonzero particle size brings a
fundamental difference in the flow near the tube walls. Indeed,
we can clearly observe in Fig. 7 that there are streamlines
which start and end at the wall. For pure fluid flow this is
impossible. Here it means that at some places the particle
is repelled from the wall (the places where the streamlines
emerge from the wall), while at other places the particle is
pushed toward the wall (the places where the streamlines end
at the wall). This may act as a trap for the particle, in a
similar way as the well-known trapping of particles within
flow vortices. In a stationary flow, the only way the particle
can escape from the trap at a certain section of the wall is
Brownian motion. This fact suggests the necessity to include
the effects of diffusion even for nominally non-Brownian
particles.

IV. HYDRODYNAMIC RATCHET EFFECT

There is another possibility for how to release particles
from the wall traps, namely by changing periodically the
direction of the flow. The simplest scenario is taking the
volumetric flow Q time dependent and periodic, where for
simplicity we assume that in the first half period we have
Q = |Q| and in the second half period we have Q = −|Q|.
We suppose the period of the changes is long enough to assure
stationary flow within nearly all the duration of each of the
two half periods. Thus, we work in adiabatic regime.

Because the tube profile is not mirror symmetric, inertial
effects in the flow lead to the asymmetry of streamlines. This
asymmetry in turn leads to a difference in the fraction of
particles trapped at the wall in the first and second half period.
Therefore, also the fractions of flowing particles differ and
this results in a net flow of particles in one specific direction,
when the flow is averaged over the entire time period. This
is the essence of the ratchet effect, well known from the
forced diffusion in mirror-asymmetric potentials [12]. Here
the ratchet effect is of purely hydrodynamic origin, based on
two ingredients. First, there is the trapping effect at the walls,
due to the finite size of the colloid particle, and second, there
is the inertial effect due to the mirror-asymmetric tube profile
and large enough Reynolds number.

To see better how the trapping effect works and how it
interferes with diffusion, we performed some numerical cal-
culations using COMSOL Multiphysics software on a schematic
model. In fact, for the very existence of the trapping effect it is
not crucial that the velocity field of the fluid is a true solution
of Navier-Stokes equations. For pedagogical purposes we
can equally well use just the zeroth approximation (6). The
trapping effect is also completely unrelated to the mirror
asymmetry of the tube, so we can use a simple sinusoidal
profile

S(z) = 1
2 cos(�z). (60)

The tube we investigate here consists of five periods of the
profile (60). We assume the tube connects two reservoirs with
uniformly dispersed particles (not shown in the figure).
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FIG. 8. Time evolution of the concentration of particles under the influence of hydrodynamic drift and very slow diffusion. The data were
obtained by numerical solution of advection-diffusion equation using the COMSOL Multiphysics software. The profile of the tube is given by
(60). The parameters are Q = 6, � = 10, d = 0.3, diffusion constant is Dp = 0.0003. The direction of the flow is from the left to the right. In
the left column, the particle radius is R = 0.05, in the right column, particle is pointlike, i.e., R = 0. In the first three rows, we show snapshots
of the concentration at times, from top to bottom, t = 0.01, 0.02, 0.06. In the bottom row, we show the concentration in stationary state.

The fluid flow is stationary and defined by the stream
function (6). We suppose first that the orientation of the flow
is from the left to the right (reversal of the flow will be
considered later). The particles carried by the flow move under
the influence of drift, according to formula (55), and also
by Brownian motion with diffusion constant Dp. As we are
interested in the regime of infinitesimally small diffusion, we
choose Dp as small as the numerical solution by COMSOL

Multiphysics reasonably allows. In practice we used Dp =
0.0003. We are interested in the process in which the particles
are trapped. To this end, we depict the transient process,
where the particles start flowing at time t = 0 from the left
reservoir and keep uniform and constant concentration at the
entrance of the tube, z = 0. In Fig. 8 we can see that pointlike
particles, whose drift velocity exactly equals the fluid velocity,
gradually fill the whole aperture of the tube, starting from
the left, and finally reach the stationary state, in which the
concentration of particles is uniform throughout the tube. For
particles of finite size, the picture is completely different.
Already in early stages of the transient, a high concentration
of particles builds up at the “dead ends” of the profile, more
precisely at the walls, where the tube has maximum diameter.
These are the particles trapped by the drift which pushes them
toward the wall. At the same time, a layer of finite width along
the wall is formed, which, on the contrary, contains few, if any,
particles. This is the depletion zone. The remaining volume
of the tube is gradually filled by a uniform concentration

of particles. In the stationary state, there are many particles
trapped in the “dead ends” and an area of uniform density
is bounded inside the area bordered by extremal streamlines.
It is easy to understand what are these extremal streamlines,
marking a certain “inner tube.” These are the streamlines
farthest from the axis, but still neither beginning nor ending
at the wall. At most, they may touch the wall at a single
point. The existence of such an “inner tube” is crucial, as only
through this tube are the particles transported from the left
reservoir to the right one.

The existence of finite diffusion complicates to some extent
the picture. In a true stationary state, there is a fraction of
particles trapped in the “dead ends,” but diffusion allows them
to escape, so that the trapped particles are in a dynamical
equilibrium. Globally, the same number of particles that enters
the tube from the left reservoir leaves the tube into the right
reservoir. However, if the diffusion is very slow, it lasts for
quite a long time before the stationary regime develops. In the
transient regime, the particles are trapped in the leftmost dead
ends and keep accumulating there. In the case of infinitesi-
mally slow diffusion all particles are trapped in the first (from
the left) period of the tube modulation and the only particles
that pass from the left reservoir to the right one are those
within the inner tube. Now we should consider alternating
the direction of the flow. If the frequency of the alternation
is small enough to guarantee stable stationary hydrodynamic
flow for the most time, we can apply adiabatic approximation
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Reservoir 2Reservoir 1

FIG. 9. Schematic picture of a modulated tube connecting two reservoirs, which should serve for rectifying the flow of colloid particles
from one reservoir to the other. The numerical simulation is done with exactly this geometry. The reservoirs are implemented by constant (unit)
particle density at both entrances and the total particle current is measured at the cross section in exact middle, here indicated by vertical red
line.

for the flow. On the other hand, if the frequency of the
alternation is large enough compared to diffusion speed, we
always remain in the early stages of the transient regime of
the trapping effect. Indeed, the particles flowing from the left
accumulate first at the leftmost dead end. The only way they
can proceed farther to the right is by diffusion. If the direction
of the flow changes fast enough, the trapped particles never
reach the right end of the tube, but instead, the inverted flow
pushes them back to the left reservoir. The same consideration
applies symmetrically at the right end of the tube. This means
that it is only the inner tube which contributes to the transport
of particles between reservoirs in such a regime. Due to the
inertial effects the shape and volume carried by the inner
tube depends on the orientation of the flow. The number of
particles carried by the inner tube from the left to the right
differs from the number of particles carried if the direction of
the flow is reverted. This is the essence of the hydrodynamic
ratchet effect. Let us stress again that this effect occurs only
in a certain window of time scales. If we denote the typical
transient time to reach the hydrodynamic stationary state Th

and the typical transient time to reach the stationary state due
to diffusion Td , the period T of the alternation of the direction
of the flow should fall within the bounds

Th � T � Td. (61)

The existence of a time scale with such properties requires that
the diffusion constant is small enough. Therefore, the regime
of hydrodynamic ratchet is the regime of infinitesimally small
diffusion.

But the story of time scales does not end here. There are
two more time scales related to the geometry of the tube.
The first one is the typical time needed for the particle to be
transported from one spatial period of the tube modulation
to the other. This time is of the order Tperiod = 2π/(�U ) =
π2 d2/(2�Q). If T < Tperiod, particles remain within the same
spatial period for an extremely long time and there is no
ratchet effect at all. But there is an even stronger lower bound
on the period T of the modulation. In fact, we assumed that
the tube has finite length L and connects two reservoirs with
suspended particles. But if the period T is not long enough
that the particles are actually transported from one reservoir
to the other, they remain “trapped” within the tube, never
reaching the other reservoir. Again, the ratchet effect does
not take place. This poses an additional bound T > Tlength =
L/U = π d2L/(4Q) on the period of alternation.

To see the effect we performed another numerical solution
using COMSOL Multiphysics. This time, we chose an asym-
metric tube profile according to (38) and the total volumetric

flow was a sinusoidally oscillating function of time. More-
over, we included the inertial hydrodynamic effects into the
lubrication approximation (6) in a phenomenological way.

Let us now describe the numerical procedure in more
detail. The stream function we use in the numerics has the
following form:

ψ (ρ̃, z, t ) = q(t )ψpois(ρ̃/d ) − Iq2(t ) S ′(z)

[1 + S(z)]2
ψiner (ρ̃/d ),

(62)
where the time-dependent volumetric flow is q(t ) =
Q sin(ωt ) and the spatial dependence of the stream function
is decomposed into the bare Poiseiulle flow,

ψpois(x) = 4

π
(x2 − 2x4) (63)

[this corresponds to (6)], and an inertial correction

ψiner (x) = x2 − 8x4 + 16x6. (64)

The form of ψiner (x) is the simplest function satisfying two
basic assumptions. First, it produces zero total volumetric flow
(so that the volumetric flow is given just by the Poiseuille
term) and second, it satisfies the nonslip boundary conditions
at the tube wall. The phenomenological constant I measures
the strength of the inertial effect and in practical use needs
to be fitted so that (62) is the closest possible to the true
solution of Navier-Stokes equations. For our purposes I is a
free parameter we choose at will. Finally let us note that the
factor S ′(z)/[1 + S(z)]2 comes from the derivative of the tube
profile with respect to z and clearly vanishes for a straight
tube, where the inertial effects disappear exactly.

With the fluid flow described this way, we studied numeri-
cally diffusion of particles of finite radius R. We supposed that
the tube connects two equal reservoirs with unit concentration
of colloidal particles, as sketched in Fig. 9. The presence of
reservoirs is implemented by keeping constant (unit) density
of particles at both ends of the tube. The profile of the tube
is given by (38). In all numerical calculations we kept the
geometry parameters as d = 0.3, A = 0.15, B = 0.2, � =
10. The length of the tube was L = π , so that it contained
precisely five periods of the spatial modulation of the di-
ameter. To measure how many particles flowed through the
tube, we measured the total flow of particles through the cross
section placed in the exact middle of the tube (indicated by
the vertical red line in Fig. 9), integrated from the time 0 to
t . This integrated current is denoted Qint and provides basic
information on the rectification of the colloidal flow, i.e., on
the ratchet effect.
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FIG. 10. Integrated current of particles through the cross section
in the middle of the tube connecting the two reservoirs, calculated
using COMSOL Multiphysics. The geometric parameters of the tube
are d = 0.3, A = 0.15, B = 0.2, � = 10, L = π . The amplitude
of the volumetric flow is Q = 6 and frequency ω = 8π . Diffusion
constant is Dp = 0.03. The remaining parameters are R = 0, I =
0.02 (dotted line), R = 0.03, I = 0 (dash-dotted line), and R =
0.03, I = 0.02 (solid line).

In practical calculations using COMSOL Multiphysics we
encountered certain difficulties. Essentially we are interested
in the limit of slow diffusion. While the simulations with
time-independent flow (Fig. 8) allowed the particle diffusion
constant as low as Dp = 0.0003, time-dependent flow allowed

safely just Dp = 0.03 at minimum, otherwise the computation
failed to converge (at least with facilities available to us). If
the diffusion constant is not small enough, two ratchet effects
act simultaneously. There is the ordinary ratchet effect due
to entropic barriers [17], as mentioned in the Introduction,
and second, there is a purely hydrodynamic ratchet effect due
to inertial effects. It is not easy to separate the two, if the
diffusion constant is finite, but nevertheless we believe that the
inertial effect is still dominant for diffusion constant as large
as Dp = 0.03 and the geometry described above. We demon-
strate this finding in Fig. 10. First, it is clear that for point
particles (R = 0) the ratchet effect is absent even in the pres-
ence of inertial terms. This should be expected, as the point
particles follow truly the fluid flow, which is zero after each
period of time modulation. If we switch off the inertial terms
(I = 0) but consider nonzero particle size, we observe small
ratchet current due to entropic effects. Then, if we switch on
the inertial term, we observe a much stronger ratchet effect.
We attribute it to the hydrodynamic inertial contribution.

The essence of the hydrodynamic ratchet explained, let us
proceed to a quantitative estimate of the ratchet current. The
nominal flow of particles through the tube, which depends on
the z coordinate, is equal to

Qp(z) = 2π

[
ψp

(
ρ̃ = d

2
, z

)
− ψp(ρ̃ = 0, z)

]
. (65)

It can be easily seen that ψp(ρ̃ = 0, z) = 0, and using the
boundary conditions (18) we get the expression

Qp(z)

Q
= 1 + 2

3
�2R2 Qp2(z), (66)

where we denoted

Qp2(z) = −8
(1 + A sin 2�z + B cos �z)2

(�d )2
− 2

( −B sin �z + 2A cos 2�z

1 + A sin 2�z + B cos �z

)2

+ g(0)′′
(

�d

2
;
�d

2

)
B cos �z

+ 4g(0)′′(�d; �d )A sin 2�z +
[
g(1)′′

(
�d

2
;
�d

2

)
B sin �z − 8 g(1)′′(�d; �d )A cos 2�z

]
Rec + O

(
Re2

c

)
. (67)

The question is how to understand the z dependence of the
nominal particle flow. Of course, the number of particles is
conserved. The excess of the flow should be interpreted in
terms of particles which are trapped at the tube walls. So, the
actual particle flow is given by the minimum of the function
(66) over the period of the tube radius modulation. This is just
the flow through the inner tube discussed earlier. The value
of the minimum depends on the Reynolds number Rec. If we
exchange periodically the flow direction as suggested above,
the net flow of particles is given by the difference of minima
of the function (66) taken for the same magnitude of Rec, but
opposite sign. We call this net flow ratchet current, and write

Qr = min
z

Qp(z; Rec = |Rec|)
− min

z
Qp(z; Rec = −|Rec|). (68)

We show in Fig. 11 how the position and value of the minima
differ when we exchange the direction and that the difference
increases when the Reynolds number grows.

We can immediately see from (66) that the ratchet current
is proportional to (�R)2. The dependence on the Reynolds
number is shown in Fig. 12. In the limit of small Rec the
dependence is linear. (In fact, we found that for even larger
Reynolds numbers, not shown in the figure, beyond Rec �
30, the dependence on Rec becomes again linear, but with
different slope than for small Rec. However, for such large
Reynolds numbers our approximation is unreliable, so we
cannot draw any conclusions.) Here we must note that the
formula (67) we use for Fig. 12 neglects the terms of order
O(Re2

c ). Therefore, also the nonlinear contribution seen in
Fig. 12 is affected by this neglect and just the linear behavior
for small Rec, as seen in the inset of Fig. 12, should be
considered reliable.
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FIG. 11. Nominal particle flow as function of the coordinate z.
The parameters of the tube are A = 0.15, B = 0.2, d = 0.3/�. The
radius of the particle is R = 0.01/�. Solid line corresponds to Rec =
|Rec|, dashed line corresponds to Rec = −|Rec|. The magnitude of
the Reynolds number is |Rec| = 20 in the top panel, and |Rec| = 50
in the bottom panel. The gray shaded area illustrates the difference
between the minima, which is proportional to the ratchet current.

We can also see in Fig. 12 that making the tube profile
more symmetric, for example by diminishing the coefficient
A, results in marked decrease of the ratchet current. On the
other hand, the effect of increasing the tube radius, while
keeping other parameters intact, makes little difference for
small corrugation Reynolds numbers, but decreases the ratchet
current when Rec is large. This is due to the fact that inertial
effects are relatively less pronounced in a tube of larger
aperture.

To see better the dependence on the profile of the tube,
we show in Figs. 13 and 14 the dependence of the ratchet
current on the parameters A and B. If either A = 0 or B = 0,
the shape is pure sinusoidal and therefore mirror symmetric.
We expect no ratchet effect, and this is confirmed in Figs. 13
and 14. We can also see that typically there is an optimal
value of one parameter, if we fix the other parameter. This
suggests a way for optimization of the tube profile. Indeed,
for a small value of B, e.g. B = 0.1, we find optimal A, in

Rec10
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Q
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Q
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2 R
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14121086420
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1
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FIG. 12. Ratchet current in adiabatic regime of time-periodic
flow. The parameters of the tube are A = 0.15, B = 0.2, d = 0.3/�

(solid line), A = 0.15, B = 0.2, d = 0.4/� (dashed line), and A =
0.02, B = 0.2, d = 0.3/� (dotted line).

this example A = 0.127, and vice versa. However, this works
only for not too high values of the fixed parameter. When
we tried to optimize globally (i.e., optimize with respect to
both A and B) we found that the globally optimal values of
the tube parameters are so high that there hardly remains any
free aperture in the tube. This regime surely lies beyond the
original and basic assumption of our approximation, that is,
that the tube diameter variation is small. This implies that
true optimization of the tube profile requires going beyond
linear approximation in the corrugation amplitude, and terms
of higher order in the auxiliary parameter λ are necessary.

Quadratic dependence of the ratchet current on the particle
radius opens the perspective of sorting particles according
to their size. Larger particles can move more efficiently and
this mechanisms provides us with a kind of chromatogra-
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FIG. 13. Dependence of the ratchet current in adiabatic regime
of time-periodic flow on the parameter A of the tube profile (38), for
B = 0.1 (solid line), 0.2, (dashed line) 0.3 (dotted line), and 0.5 (dot-
dashed line). The tube diameter is d = 0.3/�, the Reynolds number
is Rec = 4.5.
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FIG. 14. Dependence of the ratchet current in adiabatic regime
of time-periodic flow on the parameter B of the tube profile (38),
for A = 0.1 (solid line), 0.15, (dashed line) 0.2 (dotted line), and
0.3 (dot-dashed line). The tube diameter is d = 0.3/�, the Reynolds
number is Rec = 4.5.

phy, which can separate those larger particles from the rest.
In practical use of the hydrodynamic ratchet mechanism it
is necessary to assess the inevitable influence of Brownian
motion. In all calculations presented here we assumed that
the diffusion is infinitesimally small. In fact, smaller particles
are more affected by Brownian motion and therefore less effi-
ciently rectified by the hydrodynamic ratchet. But at the same
time the ratchet effect itself is proportional to square of the
particle radius. Therefore, from this point of view the presence
of Brownian motion actually enhances the separation of the
large particles from the small ones. Quantitative assessment
of the competition between hydrodynamics and diffusion
would require much deeper analysis, which goes far beyond
the scope of this article and most probably would require
numerical simulations, rather than analytical approximations
of the kind we are using here. But there is another aspect
which complicates the interplay between hydrodynamics and
diffusion. In fact, it is possible to achieve particle separation
by ratchet effect originating purely from diffusion [23,26].
In fact, in our previous work [42] we briefly sketched how
the ratchet effect occurs in a rather special regime, where
the fluid velocity is very small but still sufficient to create
inertial effects and the diffusion is large enough to create a
ratchet effect. (Unfortunately, we did not find any formula
interpolating between the regime of strong diffusion used in
[42] and the regime of infinitesimally slow diffusion used
here.) In a generic situation, the separation of scales T � Td

cannot be applied. Both hydrodynamic and diffusion ratchet
effects come into play and it is a highly nontrivial question
which of them prevails, or rather how they combine together.
The regime of infinitesimally slow diffusion investigated in
this work is just one of several segments of the parameter
space, each requiring separate analysis.

Another complication arises if the separation of scales
Th � T is violated. In this regime we must go beyond the
adiabatic approximation and solve the time-dependent Navier-
Stokes equations. Here we expect complex interplay of non-

stationary diffusion and nonstationary hydrodynamic effects.
Clearly, this goes far beyond the scope of the present work.

V. CONCLUSIONS

We found analytical formulas describing the movement of
a spherical particle carried by the flow in a corrugated tube.
The flow was obtained within the first order in the expansion
in the amplitude of the corrugation. We have not checked
hydrodynamic stability of the solutions, but in analogy with
previous numerical results [76] we believe the results remain
stable at least up to Reynolds numbers Ret � 200. On the
other hand, we compared the analytical results with exact
numeric solution of Navier-Stokes equations and we found
good agreement (within a few percent) for Reynolds numbers
Rec � 4.5.

The principal effect we found consists in the fact that
the particles are pushed toward the wall at some places and
repelled from walls at others. More precisely, the streamlines
of the particle flow are not parallel with the tube wall but
cross the wall. This may lead to trapping of particles at certain
portions of the wall. The trapped particles are immobilized
and thus extracted from the flow.

If the profile of the tube is not mirror symmetric, inertial
effects induce a difference in streamlines when the orientation
of the flux is reversed. Therefore, also the amount of trapped
particles is different. This results in the hydrodynamic ratchet
effect. This effect occurs when the orientation of the fluid
flow is alternated, so that the average fluid flow remains zero.
While the fluid does not move on average, the movement of
particles is rectified and their current (the ratchet current) is
nonzero.

We found that the hydrodynamic ratchet current is pro-
portional to the square of particle radius. Therefore, large
particles can be separated from the smaller ones, thus provid-
ing an alternative mechanism for particle sorting in colloidal
suspensions. In fact, the feasibility of such sorting was already
demonstrated experimentally a long time ago [9], although
the full theoretical understanding of the experiment is still not
entirely complete [14]. We believe the hydrodynamic ratchet
effect mechanism studied here contributes to the effect seen in
the experiments.

As we already mentioned, the ratchet current is propor-
tional to the square of the particle radius. It also grows with
increasing Reynolds number, as expected, because it is due
to inertial effects. On the other hand, the dependence on the
geometry of the tube is far from obvious. The effect vanishes
if the profile is mirror symmetric, but the dependence on the
precise shape is nontrivial. This opens the perspective of op-
timization of the ratchet efficiency by appropriately choosing
the tube shape and diameter. However, we found that full op-
timization of the tube profile would require going beyond the
first order approximation in the amplitude of the corrugation.

In the calculation we assumed that the diffusion acting
on the particle is infinitesimally small. This assumption was
taken in parallel with adiabatic approximation, i.e., the in-
finitesimally small frequency of alternating the flow direction.
So, the results rely on separation of three time scales. The
shortest of the three is the time scale of hydrodynamic tran-
sient effects. The period of the alternation of the direction of
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the flow must be much larger. But the typical diffusion time
must be even larger than that.

This raises the question of the interplay between diffusion
and hydrodynamic effects, if the time scales are not well
separated, i.e., if the diffusion, as well as the frequency, are
finite. This goes beyond the methods applied in this work and
should be the subject of another study.

As for practical applications of the effect, we can see
mainly the sorting of particles according to their size, as
already mentioned. However, at this point it is necessary to
note that there are several other effects depending on size,
which we have not taken into account. First, there is the simple
geometric effect, which limits the movement of the center
of the particle to an effectively narrower tube, cutting the
layer of thickness R at the wall. This effect may dominate
the dependence on R, when the condition R � d is violated.
Also, close to the wall it can be too crude an approximation to
truncate the Taylor expansion of the ambient flow at second
order. Including higher orders does not pose fundamental
problems, just the complexity of the calculation increases.

Next, the very fact that the ratchet effect stems from the
behavior not far from the walls calls the effect of hydrody-
namic interactions between the particle and the wall into play.
This effect was neglected in our calculations, but in principle
it could be taken into account using techniques of [88–92]
where Stokes flow around spheres at a plane wall is calculated
analytically.

Finally, let us mention the technical difficulties which
should be expected when we try to go beyond the approxima-

tions used here. First, and most important, is the linearization
in the parameter λ measuring the amplitude of the tube cor-
rugation. The main advantage of the linearization was decou-
pling of the Fourier components in the expansion (7). At the
order λ2, the stream function can be equally well decomposed
in Fourier components, but if we insert it into the Navier-
Stokes equations, we find that the components couple with
each other. Therefore, we obtain a matrix differential equation
for the whole set of Fourier components. This is a much more
complicated problem than what was solved in this paper.

The second approximation is the truncation of the Tay-
lor expansion for the ambient flow at second order (40).
This induces a correction to the particle flow which is also
quadratic in particle size. Next the correction will be of fourth
order in particle size and to obtain it we need fourth-order
terms in the Taylor expansion for the ambient flow. Calcu-
lating the corresponding correction flow around the particle
would be rather laborious but essentially identical to what
was done at the quadratic level. However, as already noted,
a big difference is that the second-order correction to the
particle velocity is linear in the ambient flow but the fourth-
order correction contains nonlinear terms. This means that the
existence of the function we called the particle stream function
is not guaranteed and the formalism complicates a lot.
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