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Diffusion-dynamics laws in stochastic reaction networks
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Many biological activities are induced by cellular chemical reactions of diffusing reactants. The dynamics of
such systems can be captured by stochastic reaction networks. A recent numerical study has shown that diffusion
can significantly enhance the fluctuations in gene regulatory networks. However, the universal relation between
diffusion and stochastic system dynamics remains veiled. Within the approximation of reaction-diffusion master
equation (RDME), we find general relation that the steady-state distribution in complex balanced networks is
diffusion-independent. Here, complex balance is the nonequilibrium generalization of detailed balance. We also
find that for a diffusion-included network with a Poisson-like steady-state distribution, the diffusion can be
ignored at steady state. We then derive a necessary and sufficient condition for networks holding such steady-state
distributions. Moreover, we show that for linear reaction networks the RDME reduces to the chemical master
equation, which implies that the stochastic dynamics of networks is unaffected by diffusion at any arbitrary time.
Our findings shed light on the fundamental question of when diffusion can be neglected, or (if nonnegligible) its
effects on the stochastic dynamics of the reaction network.

DOI: 10.1103/PhysRevE.99.012416

I. INTRODUCTION

Diverse biological phenomena, such as cellular signal
transductions and gene expression systems, are commonly
studied by stochastic reaction network modeling [1–3]. These
systems involve a set of reactant species which react through
several channels. In most of the existing studies, such sys-
tems are often assumed to be well mixed, meaning that
the diffusion coefficients of the reactants are infinitely large
[4–10]. However, experiments have shown that reactants in
cells diffuse at considerably low rates [11], and that the small-
est timescale of the system is a little larger than the timescale
of molecular diffusion. In such cases, the well-mixed assump-
tion cannot accurately obtain the stochastic dynamics of the
system. For example, living cells continuously receive signals
at their receptors, which are subsequently transmitted to the
nucleus through biochemical reaction networks [12–15]. This
process is strongly influenced by extrinsic and intrinsic noise
arising from fluctuations in the input and reactions. These
effects induce unavoidable fluctuations in the biomolecule
concentrations, which deteriorate the fidelity of information
transfer [16,17]. By accurately evaluating the fluctuations,
we would better understand the mechanism underlying signal
transmission in cells. In a numerical study of gene regulatory
networks, Ref. [18] showed that the fluctuations are larger in
the model with diffusion than in its well-mixed counterpart.
Thus, how diffusion relates to the stochastic dynamics of
reaction networks is a pertinent question. Recently, Ref. [19]
has numerically studied the effects of diffusion on single-cell
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variability in multicellular organisms, and the limits of slow
and fast diffusion have been investigated.

Two commonly used models for studying stochastic
reaction-diffusion systems are the reaction-diffusion master
equation (RDME) [20] and the Smoluchowski model [21].
The RDME, which is a mesoscopic model, is an extension
of the nonspatial chemical master equation (CME) [20] and
can be interpreted as an asymptotic approximation to spa-
tially continuous stochastic reaction-diffusion models [22].
The RDME has been successfully applied in studying many
biological systems [19,23–25]. It is worth noting that the
Langevin equation, which can be derived from an equiva-
lent Fokker–Planck equation or the Poisson representation,
can handle continuum-limit diffusion in reaction networks
[20,26]. However, the Langevin equation is applicable to bio-
chemical reactions occurring in infinite space with no physical
boundary, which is unrealistic in biological cells.

In the present work, we investigate the relations between
diffusion and the stochastic dynamics of reaction networks
within a physical reflecting boundary. In this system, reactants
diffuse within a closed three-dimensional space without es-
caping. With the aid of the RDME, we find an intriguing law
stating that diffusion does not affect the steady-state distribu-
tion of complex balanced networks, which have a Poisson-like
distribution. Our proof reveals that if the network presents
a steady-state distribution of product-of-Poissonians form,
diffusion can be neglected. We then calculate the necessary
and sufficient conditions for such steady-state network distri-
butions. We also find another result, wherein steady state is not
a requirement. Specifically, we prove that for linear reaction
networks, one can derive the CME from the RDME, which
indicates that diffusion can be ignored in this case. This result
can be restated as follows: the stochastic dynamics of linear
networks are diffusion-independent, which is consistent with
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the Smoluchowski model. In addition, we perform stochastic
simulations on both linear and nonlinear networks to verify
our results.

II. MODELS

We consider a general reaction network consisting of N

reactant species X1, . . . , XN and K reactions R1, . . . , RK .
Assume that all reactions occur inside a cell with fixed volume
�, and that reaction Rj (1 � j � K ) is of the form

s1jX1 + · · · + sNjXN

kj−→ r1jX1 + · · · + rNjXN, (1)

where sij , rij ∈ N�0 are the stoichiometric coefficients and
kj ∈ R>0 is the macroscopic reaction rate. Here, N�0 denotes
the set of nonnegative integers. R>0 and R�0 are defined
analogously. If

∑N
i=1 sij � 1 for all j = 1, . . . , K , then the

reaction network is linear; otherwise, it is nonlinear. The state
of the system is fully determined by the molecule-number vec-
tor of all reactant species in the system, n = [n1, . . . , nN ]�,
where ni ∈ N�0 is the number of molecules of species Xi .
Assuming mass-action kinetics, the time evolution of a well-
mixed system can be described by the following chemical
master equation (CME):

∂tP (n, t ) =
K∑

j=1

(E−V j − 1)fj (n,�)P (n, t ), (2)

where V = [rij − sij ] ∈ ZN×K is a stoichiometric matrix, V j

denotes the j th column of matrix V , and Ex is an operator
that replaces n with n + x. P (n, t ) is the probability of the
system being in state n at time t , and the propensity function
fj (n,�) of reaction Rj is given by

fj (n,�) = kj�
1−∑N

i=1 sij

N∏
i=1

ni!

(ni − sij )!
. (3)

To include diffusion in stochastic spatial dynamics, many
researchers apply the RDME, in which space is partitioned
discretely into many voxels. It is known that the RDME is
accurate if an appropriate combination of the time- and length-
scale is chosen [22,27–30]. We assume from now on that the
volume of the system is optimally divided into small voxels
and as such, the RDME yields a good description of the time
evolution of the probability distribution. Diffusion then occurs
among the voxels, and the reaction can occur within the same
voxel considered to be a well-mixed system. Assume that the
volume � is divided into a set V of voxels labeled by integers
v = 1, 2, . . . , |V|. Each voxel v occupies a constant volume ω

and contains nvi molecules of reactant species Xi . The state
vector of voxel v is denoted as nv = [nv1, . . . , nvN ]�. The
state of the whole system is then described as the molecule-
number vector n of each species in each voxel, namely, n =
[n�

1 , . . . , n�
|V|]

�. We also define a vector 1vi ∈ Z|V|N , in which
the number of molecules of all species in all voxels is zero
except for species Xi in voxel v (which is one), and a vector
Ṽ vj ∈ Z|V|N , in which all elements are zero except in voxel
v (which holds V j ). As the diffusion of each species into
neighboring voxels can be modeled as a first-order reaction,
the diffusion-included reaction network can be described in

the following form:

s1jX
v
1 + · · · + sNjX

v
N

kj−→ r1jX
v
1 + · · · + rNjX

v
N,

Xv
i

di−→ Xv′
i , ∀ 1 � i � N, v ∈ V, v′ ∈ Ne(v), (4)

where Xv
i refers to species Xi in voxel v, di is the diffusion

rate of species Xi , and Ne(v) is the set of voxels neighbor-
ing v. The stochastic dynamics of the system can then be
described by the following RDME:

∂tP (n, t ) =
∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

(E1vi−1v′ i − 1)dinviP (n, t )

+
∑
v∈V

K∑
j=1

(E−Ṽ vj − 1)fvj (n, ω)P (n, t ), (5)

where fvj (n, ω) is the propensity function, given by

fvj (n, ω) = kjω
1−∑N

i=1 sij

N∏
i=1

nvi!

(nvi − sij )!
. (6)

In the large-diffusion limit, the RDME converges to the
CME [31].

Before stating our results, we describe several existing con-
cepts and results of deterministic reaction networks. For each
reaction Rj (1 � j � K ), the linear combinations

∑N
i=1 sijXi

and
∑N

i=1 rijXi of the species in Eq. (1) are called the
complexes of the reaction. Defining C = {C1, C2, . . . , CM}
as the set of complexes, with M = |C|, each reaction can be

expressed as Ci

aii′−→ Ci ′ , where aii ′ denotes the reaction rate.
For each 1 � i, i ′ � M, aii ′ = 0 if Ci → Ci ′ is not present
in the reaction network; otherwise, aii ′ = kj for some j (1 �
j � K ). The matrix A ∈ RM×M , called the Kirchhoff matrix
of the reaction network, is defined as follows:

[A]ii ′ =
{

−∑M
j=1 aij , if i = i ′

ai ′i , if i �= i ′
. (7)

Let X = {X1, . . . , XN } be the set of species and R =⋃
i,i ′:aii′ >0{Ci → Ci ′ } be the set of reactions in the network.

The triple {X , C,R} then defines a reaction network. A reac-
tion network {X , C,R} is called weakly reversible if for any
reaction Ci → Ci ′ ∈ R, there exists a sequence of complexes
Ci1 , . . . , Cip ∈ C such that Ci ′ → Ci1 , Ci1 → Ci2 , . . . , Cip →
Ci ∈ R. One can construct a directed graph G corresponding
to a reaction network in the following manner. For each 1 �
i, i ′ � M , draw a directed edge from Ci to Ci ′ if and only
if Ci → Ci ′ ∈ R. We denote by � the number of connected
components of the underlying undirected graph of G. The
deficiency of a reaction network is an integer defined as
δ = |C| − � − rank(V ). According to Ref. [32], δ is always
nonnegative.

In a deterministic system, the vector of species concentra-
tions, c = [c1, c2, . . . , cN ]� ∈ RN

�0, temporally evolves as de-
scribed by the following differential equations, which express
the different form of rate equations:

∂t c = Y · A · �(c). (8)

Here, Y = [yij ] ∈ NN×M
�0 is the matrix of stoichiometric com-

positions of the complexes, i.e., yij is the stoichiometric
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coefficient of Cj corresponding to species Xi , and � : RN �→
RM is a mapping given by

�j (c) =
N∏

i=1

c
yij

i , j = 1, . . . ,M. (9)

A reaction network is called complex balanced at c ∈ RN
>0

if A · �(c) = 0. This condition means that for each complex
Ci ∈ C,

∑
Ci→Ci′

aii ′�i (c) = ∑
Ci′ →Ci

ai ′i�i ′ (c). In this case,
c is a positive equilibrium of the network.

III. RESULTS

The following states our first result.
Theorem 1. If a reaction network is complex balanced, its

steady-state distribution is unaffected by diffusion.
Proof. As the network is complex balanced, there exists

a positive equilibrium c = [c1, . . . , cN ]� ∈ RN
>0 such that A ·

�(c) = 0. We note that the only requirement in our proof is
the existence of some c such that A · �(c) = 0. Here, c is
not the steady-state concentration in the presence of diffusion.
Let � ⊆ NN

�0 be the state space of the network, which may
depend on the initialization. First, we prove the following
ansatz: that the steady-state distribution of the RDME is given
by a product P� (n, t ) of Poisson distributions:

P� (n, t ) =
{
N�

∏
v∈V

∏N
i=1

(ωci )nvi

nvi !
, if

∑
v∈V nv ∈ �

0, if
∑

v∈V nv /∈ �
,

(10)

where N� is the normalizing constant. For each nv ∈ NN
�0, we

define P ∗
� (nv, t ) = ∏N

i=1(ωci )nvi /nvi!. P� (n, t ) can then be
expressed as P� (n, t ) = N�

∏
v∈V P ∗

� (nv, t ). Now, we need
to show that ∂tP� (n, t ) = 0. Substituting P� (n, t ) in Eq. (10)
into Eq. (5), the first term of the right-hand side becomes

∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

(E1vi−1v′ i − 1)dinviP� (n, t ) = 0. (11)

The second term on the right-hand side becomes the sum of
the following values over all voxels v ∈ V:

K∑
j=1

(E−Ṽ vj − 1)fvj (n, ω)P� (n, t )

= N�

∏
v′ �=v

P ∗
� (nv′ , t )

K∑
j=1

(E−V j − 1)fj (nv, ω)P ∗
� (nv, t ).

Exploiting the condition A · �(c) = 0, one can prove that [33]

K∑
j=1

(E−V j − 1)fj (nv, ω)P ∗
� (nv, t ) = 0. (12)

Therefore, the second term also disappears and we obtain
the desired result ∂tP� (n, t ) = 0. Let n̂ = ∑

v∈V nv represent
the number of molecules of all species, i.e., n̂i is the total
number of molecules of species Xi in the system. To complete
our theorem, we compute the steady-state distribution P� (̂n),
and show its diffusion-independence. For n̂ /∈ �, obviously

FIG. 1. Steady-state distributions (a) P� (̂n1) of species X1 and
(b) P� (̂n2) of species X2 of nonlinear reaction network. Each panel
shows the distributions of the 1-voxel system (green region), 100-
voxel system (blue dots), and 225-voxel system (red line). The pa-
rameters are k1 = 4, k2 = 1, k3 = 2,� = 128. The diffusion rates of
species X1, X2 are d1 = 1, d2 = 2 (100 voxels), and d1 = 2, d2 = 1
(225 voxels). Insets show the absolute probability differences |P100 −
P1| (orange dots) and |P225 − P1| (violet dots), where P1, P100, and
P225 denote the probabilities in the 1-, 100-, and 225-voxel systems,
respectively.

P� (̂n) = 0. For n̂ ∈ �, the explicit form of P� (̂n) is obtained
as follows:

P� (̂n) =
∑

n:
∑

v nv=n̂

P� (n, t ) = N�

N∏
i=1

(�ci )̂ni

n̂i!
. (13)

As N� = (
∑

n̂∈�

∏N
i=1

(�ci )̂ni

n̂i !
)
−1

does not depend on diffu-
sion, the distribution P� (̂n) is also independent of diffusion.
The details of these derivations can be seen in Appendix A.

Our theoretical result is empirically verified in simulations
of the following complex balanced network:

∅
k1−→ X1 + 2X2

k2−→ X2
k3−→ ∅. (14)

We consider three cases with different numbers of vox-
els in the system volume: 1 voxel (a well-mixed system),
100 voxels, and 225 voxels. The diffusion coefficients of
the species in the 100-voxel system differ from those in the
225-voxel system. The steady-state distributions of species X1

and X2 are plotted in Fig. 1. As can be seen, the distributions
of both species are consistent in all three cases. From these
result, it is pertinent to ask which conditions define a com-
plex balanced network. Reference [32] proved that a weakly
reversible reaction network with zero deficiency is a complex
balanced network. This implies that in some cases, a complex
balanced network can be identified by its network topology.
In Ref. [34], complex balanced realizations of a given kinetic
polynomial system were computed by a linear programming
algorithm.

Thus far, we show that the steady-state distribution of a
complex balanced network is a product of Poisson distribu-
tions. A network with such a distribution implies that the
system is diffusion-independent at steady state. Therefore, we
desire to know the condition under which the system estab-
lishes a Poisson-like steady-state distribution. This condition
is embodied in the following theorem.

Theorem 2. The network possesses the steady-state distri-
bution defined in Eq. (10) in all state spaces � ⊆ NN

�0 if and
only if it is complex balanced.

Proof. We use the Fock space representation [35] to de-
scribe the molecule-number changes of each species inside
each voxel. A state vector |n〉 with configuration n means
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that nvi molecules of species Xi exist in voxel v. Using the
annihilation and creation operators avi, a

†
vi , i.e., avi |nvi〉 =

nvi |nvi − 1〉, a†
vi |nvi〉 = |nvi + 1〉, we can map the probability

distribution P� (n, t ) to a state vector |ψ (t )〉� , defined by

|ψ (t )〉� =
∑

n

P� (n, t )|n〉 =
∑

n

P� (n, t )(a†)n|0〉. (15)

This expression sums over all possible configurations n
weighted by their occurrence probabilities at time t . To estab-
lish the time evolution of this state vector, we apply the master
equation to obtain the following Schrödinger equation:

∂t |ψ (t )〉� = −H(a†, a)|ψ (t )〉�, (16)

where H(a†, a) represents the Hamiltonian action on
the Fock space, expressed as shown in Appendix B.
In general, H(a†, a) is the sum of several sub-actions
created by each reaction of the system, e.g., a reaction of

the form
∑N

i=1 sijX
v
i

kj−→ ∑N
i=1 rijX

v
i yields a sub-action

kjω
1−∑N

i=1 sij (
∏N

i=1(a†
vi )

rij − ∏N
i=1(a†

vi )
sij )

∏N
i=1(avi )sij . The

action H(a†, a) is considered to be normally ordered, i.e.,
a
†
vi is always to the left of avi . In a steady-state system,
H(a†, a)|ψ (t )〉� = 0. Consequently, H(a†, a)|ψ (t )〉 is also
0, where the state |ψ (t )〉 is defined as follows:

|ψ (t )〉 =
∑

�

|ψ (t )〉�
N�

=
N∏

i=1

|V|∏
v=1

∑
nvi�0

(ωcia
†
vi )

nvi

nvi!
|0〉.

= e
∑

v,i ωcia
†
vi |0〉.

In other words, the condition

H(a†, a)e
∑

v,i ωcia
†
vi |0〉 = 0 (17)

must hold. To derive a further condition with no involve-
ment of a† and a, we consider the coherent states |φvi〉 and
〈φvi |, defining the right and left eigenstates of avi and a

†
vi ,

respectively. Specifically, avi |φvi〉 = φvi |φvi〉 and 〈φvi |a†
vi =

〈φvi |φ∗
vi , with complex eigenvalue φvi ∈ C. Multiplying both

sides of Eq. (17) by the left coherent state 〈φ|, we obtain

0 = 〈φ|H(a†, a)e
∑

v,i ωcia
†
vi |0〉 ⇔ 0 = H(φ∗, ω̃c), (18)

where c̃ ∈ R|V|N is defined as c̃vi = ci . As H(φ∗, ω̃c) is
a polynomial of φ∗, this result is possible only when the
coefficients of all monomials are zero. Each reaction of the
form Ci

aii′−→ Ci ′ in voxel v contributes to H(φ∗, ω̃c) a quantity
ωaii ′ (�i ′ (φ

∗
v ) − �i (φ

∗
v ))�i (c). Therefore, by collecting the

coefficients of �i (φ
∗
v ) for each i = 1, . . . ,M and v ∈ V , we

obtain the following relation:

H(φ∗, ω̃c) = 0, ∀φ ∈ C|V|N ⇔ A · �(c) = 0, (19)

meaning that the network is complex balanced at c. The
details of these calculations are shown in Appendix B. From
these results, we conclude that the necessary and sufficient
condition for a steady-state distribution [Eq. (10)] is that the
network is complex balanced.

We note that the sufficient condition of Theorem 2 has
been studied in Ref. [36] [i.e., if the network is complex
balanced, then the steady-state distribution has a form as in
Eq. (10)]. Above we investigate the relation between diffusion

and the distributions of the reactant species in steady state. We
now present another result that holds under non-steady-state
conditions.

Theorem 3. When the reaction network is linear, the
RDME can be reduced to the CME. Equivalently, the diffusion
can be ignored in such case.

Proof. The system volume � is related to the voxel
volume ω as � = |V|ω. Now, for each state vector
n̂ = [̂n1, n̂2, . . . , n̂N ]� ∈ NN

�0 representing the number of
molecules of the reactant species, i.e., n̂i is the total number
of molecules of species Xi in the system, we define the
set S (̂n) = {n ∈ N|V|N

�0 | ∑
v∈V nv = n̂}. Let P (̂n, t ) be the

probability of the system being in state n̂ at time t . In terms of
P (n, t ), this probability becomes P (̂n, t ) = ∑

n∈S (̂n) P (n, t ).
As

∑
n̂ P (̂n, t ) = ∑

n P (n, t ) = 1, P (̂n, t ) is a probability
distribution. To show that this probability distribution satisfies
the CME given by Eq. (2), we calculate the time derivative of
P (̂n, t ) as follows:

∂tP (̂n, t ) =
∑

n∈S (̂n)

∂tP (n, t ). (20)

Substituting Eq. (5) into the right-hand side of Eq. (20), we
obtain an equation with both diffusion and reaction terms on
the right. After some algebraic transformations, the diffusion
term disappears and only the reaction term remains (see
Appendix C). As the reaction network is linear, i.e.,

∑
i sij �

1 ∀ j = 1, . . . , K , the propensity function fvj (n, ω) must be
one of two forms: fvj (n, ω) = kjnvi or kjω. Substituting the
exact form of each propensity function into Eq. (20), we
finally obtain the following master equation for P (̂n, t ):

∂tP (̂n, t ) =
K∑

j=1

(E−V j − 1)fj (̂n,�)P (̂n, t ). (21)

Obviously, this differential equation is identical to the CME
stated in Eq. (2), and contains no diffusion factors. Therefore,
it can be concluded that diffusion can be ignored in linear
reaction networks.

In Theorem 3, we demonstrate that the RDME reduces
to the CME in the case of linear reaction networks, which
implies that diffusion does not affect the stochastic dynamics
of the system at an arbitrary time. From the view of the
Smoluchowski model, this statement appears to be obvious.
By regarding the network as interacting many-particle system
and introducing diffusion and reaction operators [37], the
same result can be derived. However, it is not evident from the
view of the RDME. The agreement of results in these different
models serves as validation for the RDME.

We numerically verify the result of Theorem 3 on a sim-
ple linear reaction network, namely, a coarse-grained model
of enzymatic reactions and gene expressions. The network
consists of two reactant species X1 and X2 and four reactions
[6,38]:

∅

k1

�
k2

X1, X1
k3−→ X1 + X2, X2

k4−→ ∅. (22)
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FIG. 2. Probability distributions (a) P (̂n1, t = 1), (b) P (̂n2, t =
1), (c) P (̂n1, t = 10), and (d) P (̂n2, t = 10) of two species X1, X2

at times t = 1 (upper panels) and t = 10 (lower panels) of linear
reaction network. Each panel shows the distributions of the 1-voxel
system (green region), 100-voxel system (blue dots), and 225-voxel
system (red line). The parameters are k1 = 1, k2 = 1, k3 = 2, k4 =
1, � = 128. The diffusion rates of species X1, X2 are d1 = 1, d2 = 2
(100 voxels) and d1 = 2, d2 = 1 (225 voxels). Insets show the abso-
lute probability differences |P100 − P1| (orange dots) and |P225 − P1|
(violet dots), where P1, P100 and P225 indicate the probability in the
1-, 100-, and 225-voxel systems, respectively.

Again, we divide the cell volume into 1, 100, and 225 voxels
with different diffusion coefficients of X1 and X2. The result is
displayed in Fig. 2. As before, the distributions of each species
at times t = 1 and t = 10 are identical in all three cases. These
numerical results empirically validate Theorem 3.

IV. CONCLUSIONS

In summary, within the approximation of the RDME, we
proved that diffusion in complex-balanced networks does
not affect the steady-state distribution of the system. We
also showed that a diffusion-included reaction network has a
Poisson-like steady-state distribution if and only if it is com-
plex balanced, analogously to the well-mixed case described
in [39]. Moreover, we demonstrated that the RDME can be
reduced to the CME in the case of linear reaction networks.
These results help to clarify the conditions under which
diffusion is negligible. Under such conditions, the system can
be described by the CME instead of the intractable RDME.
In nonlinear networks that are not complex-balanced, how
diffusion affects the stochastic system dynamics, or whether
it can be ignored, requires further investigation.

It appears that functional biological networks satisfying
the complex balanced condition are not widespread in real-
world systems. Nevertheless, weakly reversible networks have
been successfully applied in modeling signal transduction
pathways [40] and asymmetric stem-cell division [41]. Be-
sides that, complex balanced networks whose Fano factor is
equal to one can be used in analyzing and approximating
cascade networks or metabolic pathways, wherein noise is not
propagated from upstream to downstream [42]. Although our
results are obtained with the approximation of the RDME, it
is expected that the derived diffusion-dynamics laws provide
suggestive results for real physical systems.
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APPENDIX A: DETAILED CALCULATIONS IN THEOREM 1

1. Detailed calculations of Eq. (11)

The detailed calculation of Eq. (11) is given below:

∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

(E1vi−1v′ i − 1)dinviP� (n, t )

=
∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

[di (nvi + 1)P� (n + 1vi − 1v′i , t ) − dinviP� (n, t )]

=
N∑

i=1

di

∑
v∈V

∑
v′∈Ne (v)

⎡⎣N� (nvi + 1)
(ωci )nvi+1

(nvi + 1)!

(ωci )nv′ i−1

(nv′i − 1)!

∏
i ′ �=i

(ωci ′ )nvi′ (ωci ′ )nv′ i′

nvi ′ !nv′i ′!

∏
ṽ �=v,v′

P ∗
� (nṽ , t ) − nviP� (n, t )

⎤⎦
=

N∑
i=1

di

∑
v∈V

∑
v′∈Ne (v)

⎡⎣N�

(ωci )nvi

nvi!

(ωci )nv′ i

(nv′i − 1)!

∏
i ′ �=i

(ωci ′ )nvi′ (ωci ′ )nv′ i′

nvi ′ !nv′i ′ !

∏
ṽ �=v,v′

P ∗
� (nṽ , t ) − nviP� (n, t )

⎤⎦
=

N∑
i=1

di

∑
v∈V

∑
v′∈Ne (v)

[nv′iP� (n, t ) − nviP� (n, t )]

= 0.
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2. Detailed calculations of Eq. (12)

We here reveal the details of Eq. (12). The equation A · �(c) = 0 means that
∑

Ci→Ci′
aii ′�i (c) − ∑

Ci′→Ci
ai ′i�i ′ (c) = 0 for

each complex Ci ′ ∈ C. The left side of Eq. (12) can be transformed as

K∑
j=1

(E−V j − 1)fj (nv, ω)P ∗
� (nv, t )

=
K∑

j=1

[fj (nv − V j , ω)P ∗
� (nv − V j , t ) − fj (nv, ω)P ∗

� (nv, t )]

=
∑

Ci→Ci′

aii ′ω
1−∑N

k=1 yki

[
N∏

k=1

(nvk + yki − yki ′ )!

(nvk − yki ′ )!

(ωck )nvk+yki−yki′

(nvk + yki − yki ′ )!
−

N∏
k=1

nvk!

(nvk − yki )!

(ωck )nvk

nvk!

]

=
∑

Ci→Ci′

aii ′ω
1−∑N

k=1 yki

[
N∏

k=1

(ωck )nvk+yki−yki′

(nvk − yki ′ )!
−

N∏
k=1

(ωck )nvk

(nvk − yki )!

]

= ω
∑

Ci→Ci′

[
aii ′

�i (c)

�i ′ (c)

N∏
k=1

ωnvk−yki′ c
nvk

k

(nvk − yki ′ )!
− aii ′

N∏
k=1

ωnvk−yki c
nvk

k

(nvk − yki )!

]

= ω
∑
Ci′ ∈C

⎡⎣ ∑
Ci→Ci′

aii ′
�i (c)

�i ′ (c)

N∏
k=1

ωnvk−yki′ c
nvk

k

(nvk − yki ′ )!
−

∑
Ci′→Ci

ai ′i

N∏
k=1

ωnvk−yki′ c
nvk

k

(nvk − yki ′ )!

⎤⎦
= ω

∑
Ci′ ∈C

1

�i ′ (c)

N∏
k=1

ωnvk−yki′ c
nvk

k

(nvk − yki ′ )!

⎡⎣ ∑
Ci→Ci′

aii ′�i (c) −
∑

Ci′ →Ci

ai ′i�i ′ (c)

⎤⎦
= 0.

The same result (but omitting the details) is given in Ref. [33].

3. Detailed calculations of Eq. (13)

Finally, we compute the explicit form of the distribution P� (̂n) in Eq. (13). We have

P� (̂n) =
∑

n:
∑

v nv=n̂

P� (n, t ) = N�

∑
n1, . . . , n|V| ∈ NN

�0∑
v nv = n̂

∏
v∈V

N∏
i=1

(ωci )nvi

nvi!
= N�

N∏
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

n1i , . . . , n|V|i � 0∑
v∈V nvi = n̂i

∏
v∈V

(ωci )nvi

nvi!

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= N�

N∏
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ωci )̂ni

n̂i!

∑
n1i , . . . , n|V|i � 0∑

v∈V nvi = n̂i

(∑
v∈V nvi

)
!∏

v∈V nvi!

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = N�

N∏
i=1

(ωci )̂ni

n̂i!
|V |̂ni = N�

N∏
i=1

(�ci )̂ni

n̂i!
.

In transforming the fourth equation to the fifth one, we exploited the following equality:∑
x1, . . . , xm � 0∑m

i=1 xi = n

(x1 + · · · + xm)!

x1! . . . xm!
= mn,∀m ∈ N>0, n ∈ N�0.

APPENDIX B: DETAILED CALCULATIONS IN THEOREM 2

Before presenting the calculations, we state several properties of the bosonic operators a
†
vi and avi .

|nvi〉 = (avi
†)nvi |0〉,

(avi )
l (avi

†)k|nvi〉 =
l−1∏
j=0

(nvi + k − j )|nvi + k − l〉,

012416-6
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(avi
†)k (avi )

l|nvi〉 =
l−1∏
j=0

(nvi − j )|nvi + k − l〉,

[avi, av′i ′
†] = avia

′
v′i

† − av′i ′
†avi = δvv′δii ′ ,

[avi
†, a†

v′i ′] = [avi, av′i ′] = 0.

For a general configuration n, we define the corresponding state vector |n〉 as

|n〉 = (a†)n|0〉 =
∏
v∈V

N∏
i=1

(a†
vi )

nvi |0〉. (B1)

For convenience, we note that

ecavi f (a†
vi ) = f (a†

vi + c)ecavi , (B2)

eca
†
vi f (avi ) = f (avi − c)eca

†
vi , (B3)

where c ∈ C is a complex number and f is an arbitrary function.

1. Detailed calculations of Eq. (16)

We first derive the explicit form of the Hamiltonian action H(a†, a) in Eq. (16). Suppose that the network contains a set R of

reactions Rj of the general form
∑

v∈V
∑N

i=1 p
j

viX
v
i

kj−→ ∑
v∈V

∑N
i=1 q

j

viX
v
i , where p

j

vi and q
j

vi are the stoichiometric coefficients.
For each reaction Rj , we define a stoichiometric vector V j ∈ Z|V|N as V

j

vi = q
j

vi − p
j

vi . Starting from the master equation, we
have

∂t |ψ (t )〉� =
∑

n

∂tP� (n, t )(a†)n|0〉 =
∑

n

∑
Rj ∈R

kjω
1−∑

v,i p
j

vi

[∏
v,i

(nvi + p
j

vi − q
j

vi )!

(nvi − q
j

vi )!
P� (n − V j , t )

−
∏
v,i

nvi!

(nvi − p
j

vi )!
P� (n, t )

]
(a†)n|0〉.

Note that the two terms inside the bracket can be obtained using operators as follows:∏
v,i

(nvi + p
j

vi − q
j

vi )!

(nvi − q
j

vi )!
P� (n − V j , t )(a†)n|0〉 =

∏
v,i

(a†
vi )

q
j

vi (avi )
p

j

vi P� (n − V j , t )(a†)n−V j |0〉,

∏
v,i

nvi!

(nvi − p
j

vi )!
P� (n, t )(a†)n|0〉 =

∏
v,i

(a†
vi )

p
j

vi (avi )
p

j

vi P� (n, t )(a†)n|0〉.

Using these equalities, ∂t |ψ (t )〉� is calculated as follows:

∂t |ψ (t )〉� =
∑

n

∑
Rj ∈R

kjω
1−∑

v,i p
j

vi

[∏
v,i

(a†
vi )

q
j

vi (avi )
p

j

vi P� (n − V j , t )(a†)n−V j |0〉 −
∏
v,i

(a†
vi )

p
j

vi (avi )
p

j

vi P� (n, t )(a†)n|0〉
]

=
∑
Rj ∈R

kjω
1−∑

v,i p
j

vi

[∏
v,i

(a†
vi )

q
j

vi (avi )
p

j

vi

∑
n

P� (n − V j , t )(a†)n−V j |0〉 −
∏
v,i

(a†
vi )

p
j

vi (avi )
p

j

vi

∑
n

P� (n, t )(a†)n|0〉
]

=
∑
Rj ∈R

kjω
1−∑

v,i p
j

vi

[∏
v,i

(a†
vi )

q
j

vi (avi )
p

j

vi −
∏
v,i

(a†
vi )

p
j

vi (avi )
p

j

vi

]
|ψ (t )〉�.

Thus, the general form of H is obtained as

H(a†, a) =
∑
Rj ∈R

kjω
1−∑

v,i p
j

vi

[∏
v,i

(a†
vi )

q
j

vi −
∏
v,i

(a†
vi )

p
j

vi

] ∏
v,i

(avi )
p

j

vi . (B4)

For a diffusion-included reaction network involving the following reactions

s1jX
v
1 + · · · + sNjX

v
N

kj−→ r1jX
v
1 + · · · + rNjX

v
N, Xv

i

di−→ Xv′
i ,∀1 � i � N, v ∈ V, v′ ∈ Ne(v),
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the Hamiltonian action H(a†, a) in Eq. (16) takes the following form

H(a†, a) =
K∑

j=1

∑
v∈V

kjω
1−∑N

i=1 sij

[
N∏

i=1

(a†
vi )

rij −
N∏

i=1

(a†
vi )

sij

]
N∏

i=1

(avi )
sij +

N∑
i=1

∑
v∈V

∑
v′∈Ne (v)

di (a
†
v′i − a

†
vi )avi . (B5)

We note that this form of H is already normal-ordered.

2. Detailed calculations of Eq. (18)

Equation (18) is derived through the following steps:

0 = 〈φ|H(a†, a)e
∑

v,i ωcia
†
vi |0〉 (B6)

⇔ 0 = 〈φ|e
∑

v,i ωcia
†
viH(a†, a + ω̃c)|0〉 (B7)

⇔ 0 = e
∑

v,i ωciφ
∗
vi 〈φ|H(a†, a + ω̃c)|0〉 (B8)

⇔ 0 = e
∑

v,i ωciφ
∗
vi 〈φ|H(φ∗, ω̃c)|0〉 (B9)

⇔ 0 = e
∑

v,i ωciφ
∗
viH(φ∗, ω̃c)〈φ|0〉 (B10)

⇔ 0 = H(φ∗, ω̃c). (B11)

In Eq. (B7), we use the property stated in Eq. (B3). In Eq. (B9), the operators avi (v ∈ V, i = 1, . . . , N ) are absorbed into
|0〉 (∵ avi |0〉 = 0), and the operators a

†
vi are replaced by φ∗

vi (∵ 〈φvi |a†
vi = 〈φvi |φ∗

vi ). The result Eq. (B11) is obtained by noting
that

e
∑

v,i ωciφ
∗
vi �= 0,

〈φ|0〉 =
∏
v,i

〈φvi |0〉 =
∏
v,i

e− 1
2 |φvi |2 �= 0.

3. Detailed calculations of Eq. (19)

Equation (19) is given by

H(φ∗, ω̃c) = 0,∀φ ∈ C|V|N ⇔ A · �(c) = 0.

The Hamiltonian action H(a†, a) is described by

H(a†, a) =
K∑

j=1

∑
v∈V

kjω
1−∑N

i=1 sij

[
N∏

i=1

(a†
vi )

rij −
N∏

i=1

(a†
vi )

sij

]
N∏

i=1

(avi )
sij +

N∑
i=1

∑
v∈V

∑
v′∈Ne (v)

di (a
†
v′i − a

†
vi )avi .

The case H(φ∗, ω̃c) = 0 is equivalent to

K∑
j=1

∑
v∈V

kjω
1−∑N

i=1 sij

[
N∏

i=1

(φ∗
vi )

rij −
N∏

i=1

(φ∗
vi )

sij

]
N∏

i=1

(ωc̃vi )
sij +

N∑
i=1

∑
v∈V

∑
v′∈Ne (v)

di (φ
∗
v′i − φ∗

vi )ωc̃vi = 0

⇔
∑

Ci→Ci′

∑
v∈V

ωaii ′
[
�i ′ (φ

∗
v ) − �i (φ

∗
v )

]
�i (c) +

N∑
i=1

di

∑
v, v′ ∈ V

v′ ∈ Ne (v)
v ∈ Ne (v′ )

[
(φ∗

v′i − φ∗
vi )ωc̃vi + (φ∗

vi − φ∗
v′i )ωc̃v′i

] = 0

⇔ ω
∑
v∈V

∑
Ci∈C

�i (φ
∗
v )

⎡⎣ ∑
Ci′→Ci

ai ′i�i ′ (c) −
∑

Ci→Ci′

aii ′�i (c)

⎤⎦ = 0,∀φ ∈ C|V|N

⇔
∑

Ci′ →Ci

ai ′i�i ′ (c) −
∑

Ci→Ci′

aii ′�i (c) = 0,∀Ci ∈ C ⇔ A · �(c) = 0.
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APPENDIX C: DETAILED CALCULATIONS IN THEOREM 3

The master equation of P (̂n, t ) is derived as follows:

∂tP (̂n, t ) =
∑

n∈S (̂n)

∂tP (n, t ) =
∑

n∈S (̂n)

⎧⎨⎩∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

[di (nvi + 1)P (n + 1vi − 1v′i , t ) − dinviP (n, t )]

+
∑
v∈V

K∑
j=1

[fvj (n − Ṽ vj , ω)P (n − Ṽ vj , t ) − fvj (n, ω)P (n, t )]

⎫⎬⎭. (C1)

As n ∈ S (̂n) → n + 1vi − 1v′i = ñ ∈ S (̂n), the first term of the right-hand side in Eq. (C1) becomes

∑
n∈S (̂n)

∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

[di (nvi + 1)P (n + 1vi − 1v′i , t ) − dinviP (n, t )]

=
∑

n∈S (̂n)

∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

di (nvi + 1)P (n + 1vi − 1v′i , t ) −
∑

n∈S (̂n)

∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

dinviP (n, t )

=
∑

ñ∈S (̂n)

∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

diñviP (̃n, t ) −
∑

n∈S (̂n)

∑
v∈V

∑
v′∈Ne (v)

N∑
i=1

dinviP (n, t )

= 0.

As the reaction network is linear, the propensity function fvj (n, ω) takes one of two forms: fvj (n, ω) = kjnvi or fvj (n, ω) =
kjω, where kj is the reaction rate and i is the index of some species. When fvj (n, ω) = kjnvi , the second term can be transformed
as follows: ∑

n∈S (̂n)

∑
v∈V

[fvj (n − Ṽ vj , ω)P (n − Ṽ vj , t ) − fvj (n, ω)P (n, t )]

= kj

∑
n∈S (̂n)

∑
v∈V

[(nvi − Vij )P (n − Ṽ vj , t ) − nviP (n, t )]

= kj

⎡⎣ ∑
n∈S (̂n)

∑
v∈V

(nvi − Vij )P (n − Ṽ vj , t ) −
∑

n∈S (̂n)

∑
v∈V

nviP (n, t )

⎤⎦
= kj

⎡⎣ ∑
n∈S (̂n)

∑
v∈V

nviP (n − Ṽ vj , t ) −
∑

n∈S (̂n)

∑
v∈V

VijP (n − Ṽ vj , t ) −
∑

n∈S (̂n)

n̂iP (n, t )

⎤⎦
= kj

⎡⎣ ∑
ñ∈S (̂n−V j )

∑
v∈V

(̃nvi + Vij )P (̃n, t ) − Vij

∑
v∈V

∑
n∈S (̂n)

P (n − Ṽ vj , t ) − n̂iP (̂n, t )

⎤⎦
= kj [(̂ni − Vij )P (̂n − V j , t ) + Vij |V|P (̂n − V j , t ) − Vij |V|P (̂n − V j , t ) − n̂iP (̂n, t )]

= kj (̂ni − Vij )P (̂n − V j , t ) − kj n̂iP (̂n, t ).

When fvj (n, ω) = kjω, we similarly have∑
n∈S (̂n)

∑
v∈V

[fvj (n − Ṽ vj , ω)P (n − Ṽ vj , t ) − fvj (n, ω)P (n, t )] = kj

∑
n∈S (̂n)

∑
v∈V

[ωP (n − Ṽ vj , t ) − ωP (n, t )]

= kj

⎡⎣ ∑
n∈S (̂n)

∑
v∈V

ωP (n − Ṽ vj , t ) −
∑

n∈S (̂n)

∑
v∈V

ωP (n, t )

⎤⎦
= kj

⎡⎣∑
v∈V

ω
∑

n∈S (̂n)

P (n − Ṽ vj , t ) −
∑
v∈V

ω
∑

n∈S (̂n)

P (n, t )

⎤⎦
= kj�P (̂n − V j , t ) − kj�P (̂n, t ).
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The master equation of P (̂n, t ) is then obtained as

∂tP (̂n, t ) =
K∑

j=1

[fj (̂n − V j ,�)P (̂n − V j , t ) − fj (̂n,�)P (̂n, t )]. (C2)
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