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The energy landscape is widely used to quantify the stability of multistable nonlinear systems, such as bistable
gene regulation networks. In physics, the potential can be obtained through integration only for gradient systems.
However, multidimensional nonlinear systems are often nongradient, for which the potential is calculated by
decomposing the dynamics to gradient and nongradient parts. This potential is then called a quasipotential.
Given that one-dimensional (1D) systems can be regarded as gradient systems, we attempt to separate the two-
dimensional (2D) system into two 1D systems working on distinct timescales, and the potential can be easily
calculated for the two 1D systems separately. This method is used in this study to estimate the energy landscape of
a two-variable gene autoregulation model. This elegant and comprehensive method is accessible for 2D nonlinear
systems in which the dynamics can be divided into slow and fast parts.
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I. INTRODUCTION

On the basis of Waddington’s epigenetic landscape, con-
siderable efforts have been made to describe the stability of
nonlinear dynamical systems, especially biological systems,
through energy landscape [1,2]. In systems described by non-
linear differential equations, energy landscape indicates the
graph of the potential function across the configuration space
of the systems. The following nonlinear system is considered:

dx
dt

= F(x),

where vector x(t ) = (x1(t ), x2(t ), . . . , xN (t )) denotes the de-
veloping state of the system and N represents the number
of dimensions. “Driving force” F(x) is often nonlinear for
biological systems. In physics, the potential can be obtained
through integration only for gradient systems. However, mul-
tidimensional nonlinear systems are generally nongradient. A
prevalent scheme is to decompose the nongradient driving
force F(x) to two components: gradient and nongradient
parts. The decomposition should guarantee that the poten-
tial corresponding to the gradient part exactly presents the
state-developing barriers of the systems, and the other part
is not required for state changing. The potential integrated
from the gradient component is defined as “quasipotential.”
As reviewed by Zhou et al. [2], several methods have been
introduced to decompose the driving force. The so-called
Helmholtz decomposition allows the three-dimensional (3D)
vector field to be uniquely decomposed into the sum of
the gradient field and divergence-free curl term. Zhou et al.
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proposed a decomposition of vector fields that permits the
computation of a quasipotential function that is equivalent to
the Freidlin-Wentzell potential [2]. Ao et al. [3,4] constructed
the quasipotentials through symmetric and antisymmetric de-
compositions. Numerous works have also attempted to de-
compose the driving force on the basis of probability flux,
which is included in the master equations [5–10]. Zhou et al.
discussed the mathematical details in Ref. [2].

Zhang et al. estimated the one-dimensional (1D) poten-
tial of a two-dimensional (2D) nonlinear system via quasi-
steady-state approximation on the slow variable [11]. This
approach is appropriate only for the systems in which vari-
ables evolve on dramatically different time scales. Although
Zhang’s method fails to calculate the potential for all state
points in the multidimensional space, it enlightens us to
divide the dynamics of the multidimensional system into
different timescales, i.e., decompose the 2D system into two
1D systems working on distinct timescales. After all, one-
dimensional systems can be regarded as gradient systems.
This assumption may simplify the task of calculating the 2D
potential to deal with two 1D potentials. This comprehensive
assumption also prevents us from understanding the com-
plicated mathematical conceptions about vector fields in the
currently available decomposition methods.

Energy landscape has been used to quantify the stability of
multistable nonlinear systems. Multistability is a widespread
phenomenon in biological, physical, and chemical systems
[12]. In biological systems, multistability is associated with
numerous biological functions. Complex gene networks store
memory by creating two or more discrete, stable states of net-
work activity [13–15]. In Escherichia coli, multistability has
been experimentally demonstrated to account for the main-
tenance of phenotypic differences in the absence of genetic
or environmental distinctions [16]. Multistability has been
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invoked to explain the cell cycle regulatory circuits in Xenopus
and Saccharomyces cerevisiae [17,18], and the generation
of switchlike biochemical responses [19,20]. In nonlinear
dynamics, multistability may originate from the interaction
between multiple positive or negative feedback. For example,
mutual regulation of multiple genes may produce multiple
stable states with distinct concentrations of corresponding
proteins [21,22].

In the gene regulation network, feedback loops act as
building blocks for shaping cellular functions, such as oscil-
lation, hysteresis, and bistability. NF-κB signaling pathway
regulates a number of cellular processes including survival,
inflammation, and immune response, in which the IκB family
and IKK mediate a strong negative feedback regulation on
NF-κB activation, resulting in the damped oscillation of the
NF-κB activation profile [23,24]. A genetic toggle switch
can transform a continuous morphogen gradient into distinct
domains of gene expression [25–27]. This type of transcrip-
tional mechanism exists in numerous biological subsystems,
in which the expression of one set of factors represses the
alternative identity, and vice versa, thereby creating a bistable
switch [28,29]. A genetic toggle switch plays an essential role
in the decision making of a cell and a discrete response to an
external signal [5,30–32]. In general, one transcription factor
(TF) regulates a number of genes including itself. This char-
acteristic determines the connectivity of the gene regulation
network. TFs in E. coli seldom regulate the transcription of
other genes besides itself. Thus, we focus on the autoregula-
tion network, in which the TF regulates the transcription of its
encoded gene.

The energy landscape for gene regulation networks is
usually used to exhibit the cell fate decision, transition be-
tween multistates. We attempt to implement our method of
separating the timescales of a 2D system on a bistable gene au-
toregulation model. The energy landscape helps us understand
the convergence dynamics of the gene expression to its stable
states. The 2D dynamics of the gene autoregulation model is
divided into two 1D dynamics (slow and fast parts) through
similitude transformation, and the potentials are calculated on
different timescales. Then, the 2D potential surface is obtained
by integrating the two 1D potentials. In Sec. II, the gene
autoregulation model is introduced. In Sec. III, the central
manifold of the model is determined by dividing the dynamics
of the system to slow and fast parts. The 1D potentials of the
fast and slow dynamics are calculated. Then, the 2D energy
landscape is estimated by integrating the 1D potentials. In
Sec. IV, the conclusions are drawn.

II. MODEL

Following Ref. [33], we consider a gene autoregulation
loop, which is schematized in Fig. 1. On the basis of one
gene, successive transcription and translation processes lead
the production of encoded protein, which, in turn, regulates
the expression of that gene. The regulation can be repression
or activation. To obtain a multistable behavior, we focus on
the case of gene activation. Although diverse response of
mRNA abundance to protein concentration has been reported
in theoretical works [34,35], experimental results tend to
support a Michaelis-Menten type [36]. The model equations

FIG. 1. Schematic of the gene autoregulation loop.

are as follows:

ẋ = β
zm

γ + zm
+ ϕ − δx,

ż = ρx − τz, (1)

where x and z represent the concentrations of mRNA and
protein, respectively. Parameters δ and τ denote the effective
decay constants of mRNA and protein, which may involve
degeneration and dilution due to cell growth. ϕ is the basal
transcription rate, and m refers to the Hill coefficient which
often depends on the number of DNA binding sites. The
constant parameter values are β = 6, ρ = 0.5, δ = 0.5, τ =
0.1, and ϕ = 0.2. On the basis of these parameter settings,
Arani et al. reported that the system can be bistable only when
the Hill coefficient m > 1. Thus, we will set m = 2 when no
special statement exists. The system is bistable when 4.63 <

γ < 10.28, but monostable when γ < 4.63 or γ > 10.28.
All numerical integrations of the model are performed by

using the fourth-order Runge-Kutta scheme with a time step of
10−3 time unit. Simulations further verify time step reduction
does not considerably improve accuracy.

III. METHOD AND RESULTS

As previously mentioned, we attempt to calculate two
1D potentials on the basis of two separated timescales. The
timescales of variables x and z are not separated enough,
as shown in Figs. 2(a) and 2(b). To divide the slow and
fast dynamics of the system, we will perform similitude
transformation on the gene autoregulation model, and the
central manifold describing the trajectory of slow dynamics

FIG. 2. Timescales are separated by transforming variables (x, z)
to (η, ξ ). Solutions of the system converge to the stable fixed points
for different initial conditions: (a) x(t ), (b) z(t ), (c) η(t ), (d) ξ (t ).
The system is bistable for γ = 8.75.
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is obtained. Suppose that (xs, zs ) is a stable fixed point.
The right-hand sides in Eq. (1) are divided into linear and
nonlinear parts, where the former is the first-order term of the
Taylor series. The model can be rewritten as

d

dt

(
x

z

)
=

(−δ φ

ρ −τ

)(
x

z

)
+

(
β zm

γ+zm + ϕ − φz

0

)
, (2)

where φ = βγmzm−1

(zm+γ )2 |z=zs
and (−δ φ

ρ −τ ) is a Jacobian matrix.
The corresponding eigenvalues are as follows:

λ1,2 = −δ − τ ±
√

(δ − τ )2 + 4φρ

2
, (3)

which define two timescales with a large difference. For exam-
ple, λ2/λ1 = 4.426, 9.930 for parameter γ = 8.75, which cor-
respond to the two stable states. To divide the two timescales,
we perform a similitude transformation on Eq. (2).

d

dt

(
η

ξ

)
=

(
λ1 0
0 λ2

)(
η

ξ

)
+ T−1

(
β zm

γ+zm + ϕ − φz

0

)
, (4)

where (ηξ ) = T−1(xz), and the similitude transformation matri-
ces are given by

T =
(

2φ 2φ

δ − τ + M δ − τ − M

)
,

T−1 = 1

4φM

(
δ − τ − M −2φ

τ − δ − M 2φ

)
, (5)

where M =
√

(δ − τ )2 + 4φρ. Eigenvector η is a slow vari-
able, whereas ξ is a fast variable. Figure 2 shows the
transient process of the bistable system, for which two
stable fixed points are given by (xs, zs ) = (0.478, 0.239)
and (8.457,4.229), or (ηs, ξs ) = (−0.691,−0.048) and
(−6.482,−0.275). The stable states are in agreement with the
bifurcation diagram shown in Ref. [33]. Starting from differ-
ent initial conditions, variables x and z converge to the fixed
points at almost the same time scale, whereas η converges to
the fixed points considerably slower than ξ . Thus, the slow and
fast dynamics are separated successfully. It should be pointed
out that the separation of timescales is completely different
from the separation of gradient and nongradient components
[2,5–10].

After a short transient process, ξ̇ ≈ 0 allows us to obtain
an equation, which will be denoted by x = f (z) as follows:

x =
2β zm

γ+zm + 2ϕ − 2φz

δ + τ + M
− 2φz

τ − δ − M
. (6)

After a short transient process, the system will converge to
the manifold determined by Eq. (6), namely, central manifold,
and then slowly approach one of the stable fixed points along
the central manifold. The dark line in Fig. 3(a) represents the
central manifold curve of the bistable autoregulation model
with γ = 8.75, and the two solid circles indicate the stable
states separated by one unstable fixed point (hollow circle).
In Eq. (6), curve x = f (z) depends on the stable fixed points
(xs, zs). When we determine the central manifold on the basis
of one of the two stable fixed points, the other will slightly
deviate from the central manifold. As a compromise, we
obtain the left part of the central manifold on the basis of the

FIG. 3. (a) The central manifold of the bistable gene autoreg-
ulation model for γ = 8.75. The black thick line represents the
central manifold curve, while the red triangles depict how the system
converges to the steady states from different initial states. The dashed
blue line separates the attraction region of the two stable states. The
solid circles are the stable fixpoints, whereas the hollow circle is the
unstable one. (b) The 1D potential curve along the central manifold
shown in (a).

left stable fixed point, whereas the right part is calculated on
the basis of the right one. The two parts are divided by the
unstable fixed point. Figure 3(a) shows that all time evolutions
of the system may be divided into two 1D parts: quickly
converging to the central manifold and slowly approaching the
stable fixed points along the central manifold.

We focus on the slow dynamics along x = f (z). This
dynamics is governed by the following 1D equation:

η̇ = λ1η + g[z(η)]

= λ1η + δ − τ − M

4φM

(
β

zm

γ + zm
+ ϕ − φz

)
. (7)

The 1D slow dynamics allows us to obtain the 1D energy
landscape along the central manifold by

φ(x, z) = φ(η) = −
∫ η

η0

{λ1η
′ + g[z(η′)]}dη′

= −
∫ η

η0

(λ1η
′)dη′ −

∫ z

z0

g(z′)
dη′

dz′ dz′, (8)

where the last part of the integration over η is transformed
to z by deriving their relationship on the basis of Eq. (6) and
transformation matrix T. The derivative is given by

dη

dz
= 1

2φM

(
δ − τ − M

δ + τ + M

βγmzm−1

(zm + γ )2
+ φ

2M

τ − δ − M

− φ
δ − τ − M

δ + τ + M

)
(9)

Figure 3(b) shows the bistable 1D potential along the
central manifold. The two valleys on the energy landscape
indicate two stable fixed points, whereas the peak corresponds
to an unstable one. The extrema of φ are in good agreement
with the position of fixed points.

We should focus on the fast dynamics to extend the 1D en-
ergy landscape along the central manifold to 2D configuration
space. The system quickly converges to the central manifold
along the straight lines [Fig. 3(a)]. The slopes of all straight
lines are approximately the same, which also equals that of
the blue line in Fig. 3(a). The slopes can be estimated on the

012415-3



WANG, HE, TANG, BAI, AND MA PHYSICAL REVIEW E 99, 012415 (2019)

FIG. 4. (a) Red circles illustrate how the system converges to
the fixed points from different initial conditions. The dashed blue
lines show the theoretically obtained slopes of the straight lines; (b)
theoretical estimated slopes as a function of the points in the central
manifold. The model is bistable for γ = 8.75.

basis of the fast dynamics of the system. In fact, slow variable
η(t ) changes slightly compared with ξ (t ), thus, we can obtain
the slope by setting a constant value of η(t ).

η = (δ − τ − M )x − 2φz = const (10)

and the slope is

k = δ − τ − M

2φ

∣∣∣∣
z=zcm

. (11)

These results allow us to calculate the 1D energy landscape
along the straight lines.

z − zcm = k(x − xcm) (12)

where (xcm, zcm) corresponds to the points along the central
manifold. In Fig. 4(a), the dashed blue lines indicate the slopes
obtained using the theoretical method. Theoretical results are
in good agreement with the time evolution of the systems (red
circles). However, when the system tends to converge to states
far from the unstable fixed point, the theoretically estimated
values of k will deviate from the time evolutions.

By plugging Eq. (12) into Eqs. (1), we can obtain a 1D
system ẋ = h(x). The 1D system potential can be calculated

FIG. 5. 1D potential curves are calculated along the straight
lines, where γ = 8.75.

FIG. 6. 2D potential surfaces for the bistable gene autoregulation
model with γ = 8.75.

as

φ(x) = −
∫ x

x0

h(x ′)dx ′. (13)

Figure 5 shows the 1D potentials calculated along the
fast process [triangles in Fig. 3(a) and circles in Fig. 4(a)]
for (xcm, zcm). The minimum values of the potential curves
correspond to the intersection point of the straight lines and
central manifold, thereby implying that the system converges
to the manifold along the straight lines.

By integrating the potential along the central manifold and
straight lines, we can obtain the 2D energy landscape of the
system. Figure 6 shows the energy landscape of the bistable

FIG. 7. Energy landscape of the monostable gene autoregulation
model. 2D energy landscapes are displayed by colored contour
figures in (a) γ = 11.5 and (c) γ = 3. (b) and (d) show the cor-
responding 1D potential along the central manifolds. The potential
values of the white area in (a) and (c) are considerably larger than
those represented by the colored bars.
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FIG. 8. The ratio of two eigenvalues λ2/λ1 for different values
of parameter γ . The shadowed region indicates bistable area, outside
which the system is monostable. The three red lines highlight the
three values of γ , for which the energy landscapes are calculated in
the paper.

gene autoregulation model. The valleys on the 2D surfaces
represent the positions of the stable fixed points.

This theoretical method can also be used to estimate the en-
ergy landscape of the monostable system. Figure 7 represents
the energy landscapes of the monostable gene autoregulation
model for γ = 11.5 and 3. The model has only one fixed
point (xs, zs ) = (0.453, 0.227) for γ = 11.5, and (xs, zs ) =
(11.383, 5.691) for γ = 3. The minimal values of potential in
Fig. 7 are in good agreement with the stable fixed points. In
this paper, the energy landscapes are much steeper than that
obtained through decomposing the gradient and nongradient
components [2,5,6], i.e., the potential value on the central
manifold is much lower than that outside it. The high steep-
ness indicates the dynamics outside the central manifold is
very fast. That illustrates the rationality for our method to
separate timescales, and imply our method is only adapted for
the 2D system, whose dynamics could be separated to distinct
timescales.

Our method is based on a notion that the 2D dynamics
can be divided into two 1D parts with separated timescales.
The method is further effective when the difference between
timescales is large. As shown in Eqs. (3) and (4), λ2/λ1 can be
used to quantify the difference between timescales. The ratio
is depicted as a function of the bifurcation parameter γ of
the gene autoregulation model in Fig. 8. The value of λ2/λ1

in the bistable region is considerably larger than that in the
monostable region, which may imply that the method is more
effective for the bistable model than the monostable model.
On the other hand, we can see that there are two values for
the ratio in the bistable region, which are calculated on the
basis of the two stable fixed points. One of the two values
will increase dramatically when the value of γ approaches the
bifurcation points. However, a large increase in ratio does not
correspond to improved effectiveness because the other ratio
is decreased.

IV. SUMMARY

We present an elegant and comprehensive method estimat-
ing the 2D energy landscape of a bistable gene autoregula-
tion model. The 2D system is divided into two 1D systems
theoretically working on distinct timescales, and the two
1D potentials are calculated through integration because 1D
systems can always be regarded as gradient systems. Then,
the 2D energy landscape is obtained by integrating the two 1D
potentials. For the gene autoregulation model, the slow part
represents the dynamics process along the central manifold,
whereas the fast part indicates the convergence process to the
central manifold along straight lines.

Our method is an approximation because the separation
of fast and slow dynamics is based on an approximation: the
slow variable is constant in the 1D fast system, and vice versa.
The approximation is reasonable when the two timescales are
distinct. Thus, the more distinct the fast and slow dynamics,
the more effective the method. Our method is suitable for
all 2D systems, the dynamics of which can be divided into
fast and slow parts, regardless if the system is monostable
or bistable. In fact, a nonlinear biological system with this
type of characteristic is ubiquitous, such as the genetic toggle
switch [10,25] and double-gene positively interlinked regu-
latory [11,13,21] models. We can separate the slow and fast
dynamics for these models via similitude transformation. A
model type is even represented by the FitzHugh-Nagumo
neuron model, in which two variables in the original system
are working on two distinct timescales [37].
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