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Lipid lateral self-diffusion drop at liquid-gel phase transition
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A drop of lipid lateral self-diffusion coefficient at the liquid-gel phase transition in lipid membranes is
calculated. So far this drop was missing theoretical description. Our microscopic model captures so-called
subdiffusion regime, which takes place on 1 ps–100 ns timescale and reveals a jump of self-diffusion coefficient.
Calculation of the jump is based on our recent study of liquid-gel phase transition. Subdiffusive regime is
described within the free volume theory. Calculated values of self-diffusion coefficient are in agreement with
quasielastic neutron scattering measurements. Self-diffusion coefficient is found to be composed of two factors:
one is related to an area per lipid change at the phase transition, and the other one is due to an order of magnitude
change in the stiffness of entropic repulsive potential.
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I. INTRODUCTION

Cells of living organisms are well separated from each
other. One of the main barriers separating cells from envi-
ronment is lipid membrane. For decades lipid membrane was
considered just as a platform for proteins, with all biological
functions, such as signaling or transport, attributed to proteins
alone [1]. This point of view started to change as a number of
studies showed the influence of lipid environment exercises
on the protein functioning [2–5]. These observations cause an
ongoing increase of interest to the lipid membrane.

Cell membrane consists of more than the hundred different
types of lipids [6,7]. This makes cell membrane a complex
multicomponent system which is difficult to investigate in situ.
One of the popular approaches to understand its thermody-
namic properties is analyzing the model systems, consisting of
limited and controlled amounts of components. The simplest
one is a single-component lipid membrane.

Lipid membrane is a two-dimensional liquid crystal. At
lower temperatures it undergoes a first-order phase transition
to a gel phase, so-called main phase transition [8]. More
precisely, depending on the lipid type, the membrane can
undergo a number of phase transitions in the vicinity of the
main phase transition. These intermediate phases may include
the ripple phase [9,10] and interdigidated gel phase [11]. At
least some of these phases need a certain symmetry breaking
at the phase transition. We will limit our model to merely
two main phases liquid and gel ones, and assume that all
possible intermediate transitions are uncoupled and do not
affect the main phase transition. We also assume that there
is no symmetry breaking at the main phase transition.

For most lipids a corresponding single-component lipid
membrane undergoes this transition at a temperatures signif-
icantly lower than the room temperature, with an exception
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of lipids with a saturated hydrophobic chains, such as DMPC
(Tm = 24◦C) and DPPC (Tm = 41◦C). A number of studies
also suggest that cholesterol might induce gel phase in lipid
membrane [12,13].

One of the important dynamic properties of the lipid
membrane is the lateral self-diffusion coefficient. With dif-
fusion being the main mechanism of lateral movement of the
membrane components the value of self-diffusion coefficient
influences cell phenomena involving protein rearrangements,
such as fusion [14,15] and fission [16,17]. Microscopic pic-
ture of diffusion and its behavior at the main phase transition
is still actively debated in the literature [18–22]. At the main
phase transition the value of self-diffusion coefficient jumps
by several times. Despite the wide interest attracted by the
lipid self-diffusion this change of self-diffusion coefficient
at the liquid-gel phase transition is still lacking theoretical
description.

There are a number of ways to measure the self-diffusion
coefficient in lipid bilayers: neutron scattering [23–25], in-
elastic x-ray scattering [26], NMR [18], fluorescence recovery
after photobleaching [27], and many others. The general
conclusion is that the self-diffusion coefficient obtained by
methods operating on a nanosecond time scale is two orders of
magnitude lower then one provided by the methods measuring
it on a microsecond time scale [28].

This discrepancy has been explained within free volume
theory [29] by varying effectiveness of diffusion events:
only some jump events at the nanosecond scale contribute
to diffusion on a microsecond scale due to lipids jumping
forward and backward [28]. The greater number of jumps
on the nanosecond timescale led to a regime named “rattling
in a cage”. During the past decade a number of molecular
dynamics studies probed the microscopic picture, and found
that self-diffusion on a nanosecond timescale appears to be
driven by collective movements of nanoclusters of about
five lipid molecules [30,31] rather than jumps of individual
lipids. However, a new generation of quasi-elastic neutron
scattering (QENS) study allowed to study self-diffusion in
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lipid bilayers with picosecond resolution and the conclusion
is that lipids move independently [32], but due to a steric
hindrance this motion causes a rearrangement of the nearest
neighbor molecules, thus providing a picture compatible with
diffusion of loosely bound dynamic nanoclusters.

Thus, lipid self-diffusion on a nanosecond time scale is a
good fit for single-molecule mean-field approaches. One of
the approaches to a lipid diffusion is a free-volume theory,
mentioned above. According to this theory [20,29], the diffu-
sion coefficient D is averaged over the distribution P (Av ) of
the nearby void area formed by membrane dynamical defects,
accessible for the chain: D = ∫ ∞

An
D(Av ) P (Av ) dAv , where

D(Av ) is a diffusion constant inside the accessible area Av ,
and An is minimal accessible area necessary for a chain’s
rattling (Brownian movement).

The value of the lipid self-diffusion coefficient should
not be confused with the value of diffusion coefficient of
membrane inclusions, such proteins or lipid rafts. Diffusion of
inclusions in a lipid membrane is a completely different phe-
nomenon, with a larger characteristic length scale, and hence
described via continuous hydrodynamics based approaches.
See, e.g., [33] for a recent review.

In this paper we apply a microscopic flexible strings model
of a lipid in an entropic repulsive mean-field to a free-volume
approach, augmented with an activation energy contribution
[34]. Thus, the jump of a lipid into the nearby void from the
cage Av depends on two independent events: availability of
the large enough cage area Av for the lipid to rattle, P (Av ),
and an activation energy E for the lipid to jump P (E):

D =
∫ ∞

An

∫ ∞

Ea

D(Av ) · P (Av ) · P (E) dE dAv. (1)

Here, Ea is a minimal energy required for the jump into the
void.

This paper is organized as follows. In Sec. II we briefly
recap the flexible strings model [35,36] as well as its applica-
tion to the description of liquid-gel phase transition. In Sec. III
we use the model to calculate lipid self-diffusion coefficient
using Eq. (1) of lipid membrane above and below the main
phase transition temperature and compare with experimental
data. Section IV contains a discussion of obtained results
and clarification of the physical mechanism underlying the
self-diffusion drop and conclusions.

II. CALCULATION

A. Flexible strings model

Flexible strings model is treated within a mean-field theory,
that considers a lipid in a self-consistent field of other lipids
in the same monolayer. Layers of a bilayer membrane are
assumed to slide freely with respect to each other. The lipid
of a single monolayer is modeled as an effective flexible
string with a given incompressible area, An, and finite bending
rigidity, Kf (see Fig. 1), subjected to the confining parabolic
potential. The latter allows for a repulsive entropic force
induced between the neighboring lipid molecules in the same
monolayer, due to excluded volume effect (see Fig. 2). In-
teraction between heads is effectively included into surface
tension in the hydrophobic region. Energy functional of the

FIG. 1. Hydrocarbon tails of lipid are modeled as a flexible
string. Schematic representations.

string consists of kinetic energy and bending energy of a
given dynamical string conformation, as well as potential
energy in the confining potential induced by collisions with
the neighboring strings:

Et =
∫ L

0

[
ρṘ2

2
+ Kf

2

(
∂2R
∂z2

)2

+ BR2

2

]
dz. (2)

Here, ρ is a string linear density, R(z) = {Rx (z), Ry (z)} is a
vector in the plane of the membrane giving the deviation of a
string from the straight line as a function of the coordinate
along the axis normal to the membrane plane (see Fig. 1),
and B is a parameter of the confining potential determined
self-consistently. A self-consistent parabolic potential has
been used previously to model a polymer chain in confined
geometry [37]. That approach is conceptually close to the
statistical kink-model [38,39], which was used to find the
probability distribution function of chain conformations and
macroscopic membrane characteristics, minimizing the free
energy of the membrane. In contrast to that model we use a
continuous description of the lipid chain bending fluctuation
and include an option of the direct self-assembly of lipids in
membrane.

FIG. 2. Collisions with neighboring lipids are modeled by self-
consistent confining potential. Potential is parabolic in the string
deviation from axis z (arrows size mimics local force strength).
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Boundary conditions for the model flexible string take
into account the following physical assumptions [the same is
assumed also for component Ry (z)]:

R′
x (0) = 0 a chain terminates perpendicularly to the

membrane surface,

R′′′
x (0) = 0 net force acting on a head is zero,

R′′
x (L) = 0 net torque acting at a chain’s free end is zero,

R′′′
x (L) = 0 net force acting at a chain free end is zero. (3)

The first boundary condition reflects the orientational
asymmetry of the monolayer due to water-lipid interface
which is clearly seen from data on the molecules orientational
order parameter [40,41]: lipid tails are more ordered in the
vicinity of head groups constrained by the hydrophobic ten-
sion. Yet, the chains are not permanently perpendicular to the
membrane surface, and boundary conditions are approximate
and necessary to keep the model analytically solvable.

Assuming the membrane to be locally isotropic in the
lateral plane, the partition function can be split in the product
of the two equal components, Z = ZxZy = Z2

x , and thus the
free energy of the lateral oscillations of the chain equals to

Ft = −2kBT log Zx. (4)

The partition function Zx could be written as a path integral
over all chain conformations:

Zx =
∫∫

e− E{Rx (z),Ṙx (z)}
kB T DRxDṘx (5)

Under the boundary conditions Eq. (3) potential part of
the energy functional Eq. (2) can be equivalently rewritten
in terms of linear Hermitian operator Ĥ = B + Kf

∂
∂z4 in the

form

Et (pot) =
∑

α=x,y

Eα, Eα ≡
∫ L

0
[Rα (z)ĤRα (z)] dz. (6)

Then, an arbitrary conformation of the chain is expressed
as the deviation of the centers of the string, Rx,y (z), from
the straight vertical line (see Fig. 1), and is parametrized by
an infinite set of coefficients Cn of the linear decomposition
of the function Rx,y (z) over the eigenfunctions Rn(z) of the
operator Ĥ :

Rα=x,y (z) =
∑

n

Cn,αRn(z), ĤRn(z) = EnRn(z). (7)

Substituting Eq. (7) into Eq. (2) and using the standard
orthogonality property of the eigenfunctions of operator Ĥ ,
enables a simple decomposition of the energy functional into
the series

Et =
∑

n

1

2

{
ρĊ2

n + EnC
2
n

}
. (8)

We thus see that energy of a fluctuating string in a parabolic
potential maps on the sum of energies of harmonic oscillators
with rigidities En. Hence, the Boltzmann’s probability of
the state of a string in an arbitrary conformation Rx,y (z),
P ({Rx,y (z)}), is proportional to the infinite product of the
Boltzmann’s probabilities of the states of these oscillators due

to the obvious relation

P ({Rx,y (z)}) ∝ exp

{
− Et

kBT

}
∼

∏
n

exp

{
− εn

kBT

}
,

εn ≡ 1

2

{
ρĊ2

n + EnC
2
n

}
. (9)

Therefore, the distribution of the coefficients Cn prove to
be just Gaussian Boltzmann’s distribution, which makes the
whole thermodynamic theory of the lipid membrane analyti-
cally tractable. The corresponding eigenvalues En and eigen-
functions Rn(z) of the operator Ĥ = B + Kf

∂
∂z4 are [35]

n = 0 ⇒
{
E0 = B

R0(z) = √
1/L

,

n ∈ N ⇒

⎧⎪⎨
⎪⎩

cn = πn − π
4

En = B + c4
n

Kf

L4

Rn(z) =
√

2
L

[
cos

(
cn

z
L

) + cos(cn )
cosh(cn ) cosh

(
cn

z
L

)].
(10)

This gives the following product of the Gaussian integrals for
the partition function:

Zx =
∫ +∞

−∞

∏
n

e− (ρĊn )2

2ρkbT
− C2

nEn
2kB T

d(ρĊn) · dCn

2πh̄
=

∏
n

kBT

h̄

√
ρ

En

.

(11)
To derive the dependence of the monolayer thickness, L,

on the temperature we relate it to the contour length of the
lipid chain LR proportional to the number of CH2 groups in
the lipid tail:

LR =
∫ L

0

√√√√1 +
〈(

∂ �R
∂z

)2〉
dz. (12)

Expanding this finally yields the equation for L which might
be solved numerically:

LR = L + 2kBT L2

Kf

×
∑
n=1

c2
n

∫ 1
0

(
sin(cnx) − cos cn

cosh cn
sinh(cnx)

)2
dx

B + c4
n

Kf

L4

(13)

(for derivation see Appendix A).
To derive the self-consistency equation for so far unknown

parameter B, we differentiate both sides of Eq. (4) with
respect to B and readily obtain the self-consistency equation
for this parameter:

∂Ft

∂B
= L

〈
R2

x

〉
, (14)

where brackets denote the thermodynamic (Boltzmann) aver-
age over chain conformations. The right-hand side of Eq. (14)
is directly expressed via the thermodynamic average area per
lipid A in the membrane plane and effective incompressible
area of lipid chain An:

π
〈
R2

x + R2
y

〉 = 2π
〈
R2

x

〉 = (
√

A −
√

An)2. (15)

Here, an isotropy of the membrane in the x, y plane is
assumed for simplicity. Using this relation one can rewrite
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FIG. 3. Entropic repulsion stiffness B at the phase transition
changes by an order of magnitude: in gel phase area per lipid
A/An ≈ 1.9, B ≈ 9×109 erg/cm3, whereas in liquid phase A/An ≈
3.4, B ≈ 1×109 erg/cm3. DPPC lipid bilayer is used as a reference.
The choice of the microscopic model parameters: LR = 17 Å, An =
20 Å

2
, Kf = 5.797×10−21 erg cm, and U = 745 kcal Å

6
/mol, are

made to match respective DPPC micro- and macroscopic parameters,
such as main transition temperature and area per lipid in the vicinity
of the transition.

Eq. (14) in the explicit form exploiting Eq. (11):

∑
n=0

1

B L4

Kf
+ c4

n

= Kf An

πkBT L3

(√
A

An

− 1

)2

. (16)

Solving this equation one finds B(A).
Now, like in our recent work [42], we add van der Waals

attraction energy between the lipid chains to the free energy
of the string, which now contains as well the sum of the lipid
tail free energy Eq. (10) and hydrophobic tension energy γA:

FT

kBT
= Ft (A)

kBT
+ γA

kBT
− 9π7/2

28

UN2

LA5/2kBT
(17)

One obtains the area per lipid in a membrane by minimizing
free energy Eq. (17). In the previous work [42] this led
us to a description of the liquid-gel phase transition. Here,
it is important to mention that solving the self-consistency
equation (16) we obtain, besides the abrupt change of the area
per lipid, also a jump in the magnitude of the stiffness B of
the entropic repulsion potential acting on the lipid chain in
the membrane at the liquid-gel transition, see Fig. 3. Thus,
we have found a physical phenomenon, that constitutes an
abrupt change in the stiffness B of entropic repulsion between
fluctuating flexible lipid chains at the main phase transition.
In the next section we calculate the consequences of this
behavior for the temperature dependence of the lipids lateral
self-diffusion coefficient.

III. THE LIPIDS LATERAL SELF-DIFFUSION
COEFFICIENT

In terms of semi-flexible strings model, An of Eq. (1) might
be interpreted as the incompressible area of the string.

D(Av ) is considered to be slowly varying function of void
size, Av , and is estimated as D(Av ) ∼ lυ [29], where υ is
characteristic lateral velocity of the lipid molecule inside the

FIG. 4. Calculation results of self-diffusion coefficient for the
DPPC in rattling in a cage mode obtained using hybrid equation (20).
Our approach is limited to homogeneous phases, hence, in the
vicinity of the phase transition calculation is shown with dashes. Two
points with error bars are QENS measurements [45].

cage, and l is mean free path given by the cage diameter. υ

has been measured in [43], and was found to be υ0 = 1.12
m/s in the DMPC liquid-crystalline phase. Estimating l as a
void diameter one arrives at

D(An) = υ0 · 2

√
An

π
. (18)

The P (Av ) and P (E) distribution functions are defined as
follows [34]:

P (Av ) =
exp

(− Av

A−An

)
∫ ∞
An

exp
(− Av

A−An

)
dAv

,

P (E) = E

(kBT )2
exp

(
− E

kBT

)
. (19)

The expression for P (E) is the Boltzmann’s statistics distribu-
tion function for two-dimensional classic oscillators [44] (see
Appendix B). So that P (Av )P (E) dAv dE is the probability
that the lipid possesses energy in the interval E and E + dE

and there is an adjacent void of area, originated by dynamical
defects, in the range of Av and Av + dAv . Substitution of
Eq. (19) into Eq. (1) leads to

D = D(An)

(
1 + Ea

kBT

)
exp

(
− An

A − An

− Ea

kBT

)
. (20)

Whereas activation energy Ea might be estimated as an
average entropic repulsion energy given by the third term in
Eq. (2):

Ea = B〈R2〉L
2

≡ B(
√

A − √
An)2L

2π
. (21)

The results of the calculation of the temperature dependence
of the diffusion coefficient expressed by Eqs. (20) and (21) are
plotted in Fig. 4.

The self-diffusion coefficient in DPPC measured at the
nanosecond timescale above and below main transition tem-
perature has been reported in [45]. Those authors found the
self-diffusion coefficient to be D = (4 ± 1)×10−6 cm2/s at
336 K, and 1.4×10−7 cm2/s at 306 K (see Fig. 4).
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FIG. 5. “Compression” (solid) and “activation” (dashed) factors
of the self-diffusion coefficient [see Eq. (22)].

To understand the drop in the self-diffusion coefficient
let us split the self-diffusion coefficient into two factors,
“compression” and “activation”:

D = D(An) exp

(
− An

A − An

)
︸ ︷︷ ︸

compression

·
(

1 + Ea

kBT

)
exp

(
− Ea

kBT

)
︸ ︷︷ ︸

activation

.

(22)
Plotting the change of these factors with temperature follow-
ing from Fig. 3, one sees that “compression” gives a major
contribution to the drop of the self-diffusion coefficient (see
Fig. 5). This is obvious from the fact that at the phase tran-
sition the “compression” part changes by two times, whereas
the “activation” part changes only by about 20%. Still, without
the “activation” contribution the curve in Fig. 4 shifts up,
and does not match experimental data at lower temperatures.
Hence, both contributions are required to get a more faithful
description of the diffusion coefficient temperature depen-
dence.

The “compression” factor’s drop reflects the smaller avail-
able area for the lipid jumps in the gel phase as compared
with the liquid phase. The “activation” factor has entropic
nature: it is related to the stiffness, B, of the mean-field
confining potential [see Eqs. (21) and (7)], which reflects the
strength of entropic repulsion in the membrane. Liquid-gel
phase transition leads to twofold change in area per lipid,
which, according to Eq. (16), yields an order of magnitude
change in entropic repulsion stiffness.

Indeed, the inset in Fig. 3 shows the free energy of the lipid,
Eq. (17), at the main phase transition temperature, Tc. The two
minima of the inset are the areas per lipid in gel and liquid
phases at Tc. Figure 3 plots B(A) dependency defined by the
self-consistency equation (16). Substituting areas per lipid of
gel and liquid phases, one sees an order of magnitude change
in entropic repulsion stiffness.

IV. DISCUSSION

The problem of the variation of the lipids diffusion coeffi-
cient across the main phase transition was lacking a theoret-
ical description so far. The complexity of this phenomenon
reveals itself in the existence of the two time scales with
different qualitative mechanisms of the lateral lipid diffusion.

A diffusion process on the time scale greater than hundreds
of nanoseconds constitutes cooperative fluctuations of large
molecular clusters. On the other hand, a single molecule rat-
tling in cage processes are responsible for the lateral diffusion
on the shorter time scale, and our model is relevant for this
regime.

We should note that we use equilibrium thermodynamics,
neglecting fluctuations and collective phenomena, which yield
the abrupt jump in monolayer characteristics. More detailed
considerations would smear the jump and lead to a continuous
change in the diffusion coefficient. For this reason the value of
the self-diffusion coefficient is shown in dashes in the vicinity
of the phase transition in Fig. 4.

The self-diffusion coefficient is the product of “activation”
and “compression” factors. The later is a direct consequence
of area per lipid change at the phase transition, whereas the
former is due to a change in entropic repulsion stiffness.

In conclusion, we have found that the stiffness of entropic
repulsion between the fluctuating lipid chains, and area per
lipid may abruptly change at the liquid-gel phase transition.
This change causes, in turn, the drop of the lipids lateral self-
diffusion coefficient in the membranes on the short time scale.
In general, lipid lateral self-diffusion in the lipid membranes
is a complex phenomenon with two time scales differing by
underlying physical processes. Lipid self-diffusion is a col-
lective process on the time scale of hundreds of nanoseconds,
whereas at shorter times the diffusion constitutes individual
lipids jumps. The last regime fits single-molecule mean-field
theories and a free-volume theory of diffusion. We applied
flexible strings mean-field theory of the lipid membrane to
a free-volume theory augmented with an activation factor in
the expression for the diffusion coefficient. The self-diffusion
coefficient is composed of “activation” and “compression”
factors. The latter is a direct consequence of area per lipid
change at the phase transition, whereas the former is due to an
order of magnitude change in entropic repulsion.
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APPENDIX A: DERIVATION OF CHAIN’S CONSTANT
CONTOUR LENGTH CONDITION

Assuming the chain’s full (contour) length, LR , is constant
one has

LR =
∫ L

0

√√√√1 +
〈(

∂ �R
∂z

)2〉
dz. (A1)

Our goal here is to express the chain’s length in terms of
full length and other properties of the string. To that end we
evaluate the integral in Eq. (A1).
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One can rewrite the mean value under the square root

�R = Rx �ex + Ry �ey,

∂ �R
∂z

= ∂Rx

∂z
�ex + ∂Ry

∂z
�ey,(

∂ �R
∂z

)2

=
(

∂Rx

∂z

)2

+
(

∂Ry

∂z

)2

,

〈(
∂ �R
∂z

)2〉
=

〈(
∂Rx

∂z

)2
〉

+
〈(

∂Ry

∂z

)2
〉

≡ 2

〈(
∂Rx

∂z

)2
〉
. (A2)

Substituting Eq. (A2) into Eq. (A1) leads to

LR =
∫ L

0

√√√√1 + 2

〈(
∂Rx

∂z

)2
〉

dz

≈
∫ L

0

(
1 +

〈(
∂Rx

∂z

)2
〉)

dz

= L +
∫ L

0

〈(
∂Rx

∂z

)2
〉

dz. (A3)

The mean value under the integral is evaluated using the
following relations:

Rx =
∑

n

CnRn,

R′
x =

∑
n

CnR
′
n,

(R′
x )2 =

∑
n,m

CnCmR′
nR

′
m,

〈(R′
x )2〉 =

∑
n,m

〈CnCm〉R′
nR

′
m =

∑
n

kBT

En

(R′
n)2. (A4)

Upon calculating R′
n [see Eq. (10) in the main text],

substituting Eq. (A4) into Eq. (A3) and introducing the di-
mensionless coordinate x = z/L, one arrives at the equation
for L:

LR = L + 2kBT L2

Kf

∑
n=1

c2
n

∫ 1
0 (r ′

n)2 dx

B + c4
n

Kf

L4

, (A5)

which is Eq. (13) in the main text.

APPENDIX B: PROBABILITY DENSITY OF CLASSICAL
HARMONIC OSCILLATOR WITH THE GIVEN ENERGY

For simplicity, let us continue with the 1D case. Consider
N classical oscillators at temperature T . The number distri-
bution of oscillators with generalized coordinates x and px is
given by

n(x, px ) = N exp
(−E(x,px )

kBT

)
∫∫

exp
(−E(x,px )

kBT

)
dx dpx

. (B1)

Energy of the harmonic oscillator is given by

E = p2
x

2m
+ 1

2
m(2πν)2x2. (B2)

Dividing both parts of Eq. (B2) by E transforms Eq. (B2) into
an equation of ellipse with the area

V2 = π

(
E

πν

)
≡ E

ν
. (B3)

In the quasi-classical limit,

E = hν · n, (B4)

hence

V2 = hn ⇒ δV2 = h · δn. (B5)

On the other hand, δV2 = dxdpx , which leads to

dxdpx = h dn. (B6)

Using Eqs. (B4) and (B6) we are now in a position to calculate
the number of oscillators with generalized coordinates x and
px , Eq. (B1), that proves to be

n(x, px ) = ν

kBT
N exp

(−E(x, px )

kBT

)
. (B7)

Now consider the number of oscillators with energy in the
interval from E to E + dE:

n(E) dE = n(x, px ) · dV2

⇒ n(E) dE = ν

kBT
N exp

(
− E

kBT

)
δE

ν
, (B8)

which leads to the expression for the probability density of the
number of classical oscillators with energy E:

P1D (E) ≡ n(E)

N
= 1

kBT
exp

(
− E

kBT

)
. (B9)

In the 2D case one would have

V4 = π2

2

(
E

πν

)2

≡ 1

2

E2

ν2
(B10)

in place of Eq. (B3), which leads to

V4 = h2n2

2
,

δV4 = h2nδn ≡ dxdpx · dydpy, (B11)

in the quasi-classical limit. The 2D analog of Eq. (B7) is then

n(x, px, y, px )

= N exp
(−E(x,px )−E(y,py )

kBT

)
∫∫∫∫

exp
(−E(x,px )−E(y,py )

kBT

)
dx dpx dy dpy

= N exp
( −E

kBT

)
∫∫

exp
(−E(x,px )

kBT

)
dx dpx

∫∫
exp

(−E(y,py )
kBT

)
dy dpy

=
(

ν

kBT

)2

N exp

(
− E

kBT

)
,
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which leads to the analog of Eq. (B8):

n(E) dE =
(

ν

kBT

)2

N exp

(
− E

kBT

)
· EδE

ν2
, (B12)

which, in turn, leads to the second relation in Eq. (19) of the
main text.
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