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We construct a pathwise formulation for a multitype age-structured population dynamics, which involves an
age-dependent cell replication and transition of gene- or phenotypes. By employing the formulation, we derive
a variational representation of the stationary population growth rate; the representation comprises a tradeoff
relation between growth effects and a single-cell intrinsic dynamics described by a semi-Markov process. This
variational representation leads to a response relation of the stationary population growth rate, in which statistics
on a retrospective history work as the response coefficients. These results contribute to predicting and controlling
growing populations based on experimentally observed cell-lineage information.
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I. INTRODUCTION

Predicting and controlling evolution rather than recon-
structing it has been one of the pivotal challenges in evo-
lutionary biology [1]. Because the natural selection favors
changes in a population that can increase the fitness of the
population, predicting fitness response to perturbations is cru-
cial for anticipating the future evolutionary path. In the case of
controlling evolution, in contrast, the fitness response relation
can guide us in how to reduce fitness rather than increasing it
to suppress the outbreak of malignant pathogens and tumors
by drug applications or specific treatments [2].

The evaluation of the fitness or its proxy, the population
growth rate, has been conducted in the context of ordinary
or partial differential equations by focusing on the time-slice
distribution of the population [3–6]. In these approaches, the
problems are mostly reduced to eigenvalue problems of the
differential equations with appropriate boundary conditions,
the largest eigenvalue of which corresponds to the stationary
population growth rate. However, an eigenvalue is typically a
complicated or an implicit function of underlying parameters
of the population dynamics. As a result, the direct evaluation
of the fitness response from differential equations is not
practical especially when we apply the result to experimental
data.

The recent introduction of a pathwise formulation of the
population dynamics [7–12] has partially resolved this dis-
crepancy between the theory and the experiments by revealing
a variational representation of the population growth rate
and the associated fitness response relation. The formula-
tion was motivated for analyzing cell-lineage data obtained
by novel experimental technologies to trace replicating cells
over hundreds of generations under microfluidic devices such
as the mother machine [13] and the dynamics cytometer
[8,9]. By using the pathwise formulation, Wakamoto et al.
revealed a fitness response relation of an age-structured but
phenotypically homogeneous population [8]. Another fit-
ness response relation was also obtained for phenotypically

heterogeneous but not age-structured population [10,11]. In
both relations, the sensitivities of the fitness to perturbations
were characterized by empirical age or type distributions eval-
uated over a sufficiently long genealogical path of a survived
cell, which is directly measurable by the long-term cell tracing
experiments. This shared properties strongly imply the gener-
ality and universality of the response relations. Nevertheless,
neither of them is sufficiently practical for applying to actual
populations of cells, each member of which replicates and dies
depending on both its age and phenotypic state.

In this work, we unify these two complementary lines of
studies by deriving a variational structure of a multitype age-
structured population dynamics (MTASP) and its associated
response relation. This paper is organized as follows. In
Sec. II, before working on the MTASP, we introduce a single-
cell dynamics by ignoring birth and death effects such as a
cell death and sister cells generated by cell division. Here, we
show that a history (path) of the single-cell dynamics, which
is observed in the mother machine, can be described by a
semi-Markov process [14–16]. In Sec. III, by incorporating
the birth and death effects, we formulate the MTASP, which is
represented by a McKendric equation with the type transition
[3–6]. In Sec. IV, we show a pathwise representation of the
MTASP. Here, it is revealed that the time-backward (retro-
spective) path probability observed in the dynamics cytometer
is given by biasing the time-forward (chronological) path
probability describing the single-cell dynamics. In Sec. V, by
employing the large deviation theory [17], we derive a coarse-
graining picture of the relationship between time-forward and
time-backward paths. We also find that the difference between
a time-forward and time-backward rate functions gives the
stationary population growth rate. In Secs. VI and VII, we
show that the variational principle relates the stationary pop-
ulation growth rate with the time-forward rate function via
the Legendre transformation. By using this relation, we also
derive the response relation for the population growth rate,
which shows that the response coefficients can be evaluated
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FIG. 1. (a) A schematic illustration of single-cell tracing by the
mother machine. (b) A schematic diagram of the stochastic laws
of the single-cell dynamics. The interdivision interval and the type
transition are governed by π (τ |x ) and T(x|τ ′, x ′), respectively.
(c) A schematic illustration of the transition dynamics of type x(t )
(the upper panel) and the age a(t ) (the lower panel). Upon a division
event, the type transition occurs and the age resets to 0. Also, we
denote an age of a mother cell at ith division event by τi .

by some statistics on the time-backward path. In Sec. VIII,
we derive the explicit form of the time-backward rate function
and show that the time-backward path can be mimicked by a
biased semi-Markov process called a retrospective process. In
Sec. IX, we verify the analytical results derived in the previous
sections by numerical simulations. Finally, we summarize this
paper in Sec. X.

II. SINGLE-CELL DYNAMICS OF AGE AND TYPE

We begin with describing the single-cell dynamics that can
be observed by tracing a dividing cell by ignoring its sister
cells generated by cell divisions. Such dynamics is measured
by using the mother machine [13] as in Fig. 1(a).

Let a ∈ [0,∞) and x ∈ � be an age and a type of cells,
respectively, where � denotes a finite state set of x. The age
a is defined as the elapsed time since the last division. In this
section, we tentatively assume that the cell is immortal and
can be traced for infinitely long time.

In the time evolution, the cell divides with an age- and
type-dependent rate r (a, x) � 0. With this rate, the proba-
bility density function of the interdivision interval can be

represented as

π (τ |x) := r (τ, x)e− ∫ τ

0 r (a,x)da, (1)

where e− ∫ τ

0 r (a,x)da is the probability that the cell did not divide
up to time τ and r (τ, x)dτ is the probability that the cell
commits division at age τ [see Fig. 1(b)].

Next, we denote the probability of the type transition from
x ′ to x upon division by T(x|τ ′, x ′), where the transition
is supposed to be dependent on the age of the cells at the
division, τ ′. In this work, we suppose that the type rep-
resents either genotype or epigenetic state that can change
only upon division by mutation or error in epigenetic state
transmission, respectively. Also, we assume that the transition
matrix T(x|τ ′, x ′) is primitive (ergodic) for any age τ ′: for
any age τ ′, there exists a certain natural number m such that
Tm(xm|τ ′, x0) := �{xi }m−1

i=1
�m

i=1T(xi |τ ′, xi−1) > 0 for all pairs
of indices xm, x0 ∈ �. This assumption can be biologically
rephrased as follows: a cell can aperiodically reach any types
by the finite number of transitions. Then, the joint dynamics
of both division and type can be described by a semi-Markov
process [14–16] generated by the semi-Markov kernel:

Q(x; τ ′|x ′) := T(x|τ ′, x ′)π (τ ′|x ′). (2)

Suppose that we observe a cell up to time T .
Then, the history (path) of the cell, χT := {n; a0, x1, τ1,

x2, τ2, ..., xn, τn, xn+1, τn+1}, can be characterized by the ini-
tial age of the cell a0, the number of division events n up to T ,
the interdivision intervals {τi}n+1

i=1 , and the types {xi}n+1
i=1 before

the ith division [see Fig. 1(c)]. For notational simplicity, τn+1

is specially defined as the time interval between nth division
and T . Also, since τ1 represents the interdivision interval until
the 1st division, the time interval between the start of the
observation and the 1st division is calculated as τ1 − a0 [see
Fig. 1(c)]. The probability density PF [χT ] to observe such
a history is obtained by multiplying the semi-Markov kernel
over the history as

PF [χT ] = δ

(
T −

{
n+1∑
i=1

τi − a0

})
× e− ∫ τn+1

0 r (a,xn+1 )da

×
{

n∏
i=1

T(xi+1|τi, xi )π (τi |xi )

}

× e
∫ a0

0 r (a,x1 )daρ0(a0, x1), (3)

where ρ0(a0, x1) denotes the probability density to sam-
ple a cell with age a0 and type x1 at the start of the
observation. Also, we note that we used the fact that
the probability until the 1st division can be represented

as r (τ1, x1)e− ∫ τ1
a0

r (a,x1 )da
ρ0(a0, x1) = π (τ1|x1)e

∫ a0
0 r (a,x1 )daρ0

(a0, x1). While PF [χT ] characterizes the intrinsic division and
type transition dynamics of the single cell, χT may not typi-
cally be observed in a growing population of cells, because
PF [χT ] is obtained by ignoring the death of the cell and the
fates of the sister cells. If a cell divides more frequently than
others, then the cell has more daughter cells than the others,
which means that its tribe is overrepresented in the population.
Moreover, by considering death of the cell, a certain history
χT may be less observable than being expected from PF [χT ]
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FIG. 2. (a) A schematic illustration of the dynamics cytometer.
(b), (c), (d) Schematic images of the cell death, division, and death
upon division, respectively. (e) A schematic illustration of the lineage
tree generated by the MTASP. Such a lineage tree can be observed by
the the dynamics cytometer. The gray color denotes cell death. The
dashed arrow represents a retrospective tracking.

if a cell with the history χT is more likely to die than cells
with other histories.

III. MULTITYPE AGE-STRUCTURED
POPULATION DYNAMICS

To appropriately account for the contribution of the sister
cells and cell death that have been ignored in the previous
section, we introduce a model of a multitype age-structured
population dynamics (MTASP) (see Fig. 2). Such dynamics
is observed by using the dynamics cytometer [8,9] as in
Fig. 2(a).

Let γ (a, x) be the rate of cell death, which is dependent
on both age a and type x of a cell. Then, the probability that
a cell can survive from age 0 up to age τ can be represented
as e− ∫ τ

0 γ (a,x)da [see Fig. 2(b)]. Next, suppose that a cell that
divides at age τ ′ and with type x ′ asexually generates z′
number of its descendants including itself with a probability
p(z′|τ ′, x ′) [see Fig. 2(c)]. Because the age of the divided
cells is reset to 0 after division, all z′ � 2 descendants are

equivalent. The number of descendants z′ is typically 2, but
can be more than 2 when the cell is filamentous with multi-
ple chromosomal copies, which can generate multiple sister
cells simultaneously [18]. Upon division, each daughter cell
stochastically changes its type to x depending on T(x|τ ′, x ′)
[see Fig. 1(b)]. During and upon the transition, the cell is
assumed to experience a mortality risk and can survive with
the probability q(x; τ ′, x ′) depending on the age of the mother
cell at the division, τ ′, and the types (x, x ′) before and after the
division [see Fig. 2(d)]. Thus, the cell dies with the probability
1 − q(x; τ ′, x ′) due to the type transition. q(x; τ ′, x ′) can be
regarded as the death induced by division-related intracellular
events or by deleterious mutations.

Under this setup, the time evolution of the expected number
of cells with age a and type x, which we denote by Nt (a, x),
can be described by the McKendric equation [3–6]:

∂

∂t
Nt (a, x) =

[
− ∂

∂a
− {γ (a, x) + r (a, x)}

]
Nt (a, x), (4)

with a boundary condition,

Nt (0, x) =
∑
x ′∈�

∫ ∞

0
dτ ′ q(x; τ ′, x ′)T(x|τ ′, x ′)

× b(τ ′, x ′)r (τ ′, x ′)Nt (τ
′, x ′), (5)

where b(τ ′, x ′) represents the expected number of the daugh-
ter cells: b(τ ′, x ′) := �∞

z′=1z
′p(z′|τ ′, x ′). Here, the terms,

∂/∂a, γ (a, x) and r (a, x) in Eq. (4) represent the effects
by aging, death and division, respectively; also, the boundary
condition Eq. (5) can be interpreted such that the daughter
cells rejoin to the time evolution Eq. (4) as neonates Nt (0, x).
A derivation of Eq. (4) is shown in Appendix A. Figure 2(e)
is a schematic illustration of the cell lineage tree representing
the MTASP.

The averaged expansion rate of the total population size
(the stationary population growth rate) is mathematically de-
fined as

λ := lim
t→∞

1

t
log

N tot
t

N tot
0

= lim
t→∞

1

t
log

∑
x∈�

∫ ∞
0 da Nt (a, x)∑

x∈�

∫ ∞
0 da N0(a, x)

,

(6)

where the denominator N tot
0 and the numerator N tot

t represent
the total populations at time 0 and time t , respectively. In the
partial-differential-equation approach that is often employed
in the field of mathematical demography [3–6], this growth
rate is calculated by the largest eigenvalue of the operator in
Eq. (4):

Ĥ := − ∂

∂a
− {γ (a, x) + r (a, x)}, (7)

under the boundary condition Eq. (5). (Detailed calculation
to obtain λ in this approach is shown in Appendix B.) In
contrast, we employ a path-wise formulation in this study, to
relate the single-cell dynamics PF [χT ] with the population-
level quantities such as λ. In the course of introducing the
formulation, a retrospective picture hidden in the MTASP will
be revealed.
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IV. PATHWISE REPRESENTATION OF THE MULTITYPE
AGE-STRUCTURED POPULATION DYNAMICS

Let NT [χT ] be the expected number of the
cells at time T that have a history (path) χT =
{n; a0, x1, τ1, x2, τ2, ..., xn, τn, xn+1, τn+1}. We can evaluate
NT [χT ] as

NT [χT ]

= δ

(
T −

{
n+1∑
i=1

τi − a0

})
e− ∫ τn+1

0 {γ (a,xn+1 )+r (a,xn+1 )}da

×
[

n∏
i=1

q(xi+1; τi, xi )T(xi+1|τi, xi )

× b(τi, xi )e
− ∫ τi

0 γ (a,xi )daπ (τi |xi )

]

× e
∫ a0

0 {γ (a,x1 )+r (a,x1 )}daN0(a0, x1), (8)

where N0(a0, x1) denotes the number of the cells hav-
ing the age a0 and type x1 at time 0. For n = 0 (no
division cases), the product part in Eq. (8) vanishes
(we define �0

i=1 = 1), and we obtain NT [{0; a0, x1, τ1}] =
exp [− ∫ a0+T

a0
{γ (a, x1) + r (a, x1)}da]N0(a0, x1). The details

of a derivation of Eq. (8) are shown in Appendix C. Here, we
note that Eq. (8) consists of iterations of the following kernel
except the initial and final parts:

q(xi+1; τi, xi )T(xi+1|τi, xi )b(τi, xi )e
− ∫ τi

0 γ (a,xi )daπ (τi |xi ),

(9)

where q(xi+1; τi, xi )T(xi+1|τi, xi ) represents the fraction
of the daughter cells that had switched their type from
xi to xi+1 and survived after the transition. However,
b(τi, xi )e− ∫ τi

0 γ (a,xi )daπ (τi |xi ) is the expected number of the
cells generated by a mother cell with the type xi that has
survived until the age τi and has committed cell division at
the age τi . By using Eq. (3) and assuming that the initial
population can be written as ρ0(a0, x1) = N0(a0, x1)/N tot

0 , we
obtain

NT [χT ] = e− ∫ τn+1
0 γ (a,xn+1 )dae

∑n
i=1 k(xi+1:τi ,xi )e

∫ a0
0 γ (a,x1 )da

×PF [χT ]N tot
0 , (10)

where we define the growth kernel k(xi+1 : τi, xi ) as

ek(xi+1;τi ,xi ) := q(xi+1; τi, xi )b(τi, xi )e
− ∫ τi

0 γ (a,xi )da. (11)

The first line in Eq. (10) summarizes the effect of growth
and death, whereas the second line expresses the single-cell
dynamics. Because of this specific contribution of the second
line, we define a pathwise growth kernel K[χT ] by

K[χT ] := e− ∫ τn+1
0 γ (a,xn+1 )dae

∑n
i=1 k(xi+1;τi ,xi )e

∫ a0
0 γ (a,x1 )da.

(12)

Because NT [χT ] is the number of the cells at time T

that have the history χT , the probability to observe a history
χT by retrospectively tracking a randomly sampled cell at
time T [8,10,11,19–21] [see Fig. 2(e)] can be evaluated by

normalizing NT [χT ] as

PB[χT ] := NT [χT ]

N tot
T

= eK[χT ]PF [χT ]

〈eK[χT ]〉PF [χT ]
= eK[χT ]−�T PF [χT ],

(13)

where 〈·〉PF [χT ] denotes the average over all paths during the
time interval [0, T ] with respect to PF [χT ]. Also, �T is
the population growth during time interval [0, T ], which is
defined by

�T := log
N tot

T

N tot
0

= log〈eK[χT ]〉PF [χT ]. (14)

We should note that the number of division events, n, is
stochastic, therefore we need to integrate it out in the average:

〈·〉PF [χT ] :=
∞∑

n=0

∑
{xi }ni=0

∫ ∞

0
· · ·

∫ ∞

0
da0

n+1∏
i=1

dτi[·]PF [χT ].

(15)

The deviation of PB[χT ] from PF [χT ] clarifies that the chance
to observe a certain history of a cell χT differs, depending
on how we sample and trace a cell. A history χT is observed
with the probability density PF [χT ] when we sample a cell
at the beginning of an experiment and trace it chronologically
over time by ignoring its sister cells as in the mother machine
[see Figs. 1(a) and 1(b)]. In contrast, χT is observed with
the probability density PB[χT ] when we sample a cell at the
end of an experiment from a cultured population and trace its
ancestors back in a retrospective manner as in the dynamics
cytometer [see Figs. 2(a) and 2(e)]. The difference between
them is due to the fact that we have more chance to sample
the histories that are overrepresented by faster divisions and
lower death. In terms of stochastic processes, χT ∼ PB[χT ]
can be regarded as an exponentially biased process of the
semi-Markov process χT ∼ PF [χT ] by the growth kernel
K[χT ]. We note that Eqs. (13) and (14) are formally the same
as the correspondence between the chronological and the
retrospective paths employed in Refs. [8,10,11,19–21] under
simpler and thereby less realistic models. This means that
this correspondence is a quit general structure underlaying the
population dynamics.

V. COARSE-GRAINING BY CONTRACTION

The pathwise representations of Eqs. (3) and (13) hold
for general situations. However, the potential variety of the
possible paths is extremely huge, and therefore the path
probabilities are not practically observed by experiments. To
moderate the complexity and information that the pathwise
representations have, we coarse grain a history χT with the
following empirical distribution of triplets, (x; τ ′, x ′), in the
history χT :

je(x; τ ′, x ′) := 1

T

n∑
i=1

δx,xi+1δ(τ ′ − τi )δx ′,xi
. (16)

This empirical distribution measures how many times a divi-
sion event with a type transition from x ′ to x occurs at age τ ′ in
the history χT = {n; a0, x1, τ1, x2, τ2, ..., xn, τn, xn+1, τn+1}
[14]. Note that this empirical triplet depends on the history
χT , but we abbreviate it from the notation of je(x; τ ′, x ′) for
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simplicity. Also, we assume that the empirical distribution
je(x; τ ′, x ′) is normalized as �x,x ′∈�

∫ ∞
0 dτ ′ τ ′je(x; τ ′, x ′) =

1 for T → ∞. If paths are generated by following a path prob-
ability P[χT ], the probability to observe a certain j (x; τ ′, x ′)
is represented as P[j ] := 〈I[je = j ]〉P[χT ], where I[je = j ]
denotes the indicator functional: if je = j , then I[je = j ] =
1; otherwise, I[je = j ] = 0. For T → ∞, the empirical
triplet je(x; τ ′, x ′) converges to the typical triplet j ∗(x; τ ′, x ′)
due to the law of large numbers. If, for large but not infinite
T , the probability to observe j deviated from j ∗ decays expo-
nentially at rate I [j ] � 0 and thereby P[j ] is represented as
P[j ] ≈ e−T I [j ], then χT ∼ P[χT ] is said to satisfy the large
deviation principle and I [j ] is the rate function (also known
as the large deviation function) [17]. In the large deviation
theory, the typical triplet j ∗(x; τ ′, x ′) is given by the argu-
ment attaining the minimum of the rate function (that is 0),
I [j ∗] = 0.

The empirical triplet for the semi-Markov dynamics of a
single cell, PF [j ] := 〈I[je = j ]〉PF [χT ], has been shown to
satisfy the large deviation principle PF [j ] ≈ e−T IF [j ] where
its rate function has also been derived explicitly as

IF [j ] =
∑

x,x ′∈�

∫ ∞

0
dτ ′ j (x; τ ′, x ′) log

j (x; τ ′, x ′)
Q(x; τ ′|x ′)g(x ′)

,

(17)

where j (x; τ ′, x ′) should satisfy a shift-invariant property:

g(x ′) =
∑
x∈�

∫ ∞

0
dτ ′ j (x; τ ′, x ′) =

∑
x∈�

∫ ∞

0
dτ ′ j (x ′; τ ′, x).

(18)

If not, then IF [j ] is defined as IF [j ] = ∞. A derivation of the
rate function Eq. (17) and a detailed explanation for the large
deviation theory are shown in Refs. [14,22].

Next, we derive the rate function for PB[χT ] via Eq. (13).
By using je(x; τ ′, x ′), the summation of the growth kernel
k(x; τ ′, x ′) in Eq. (11) can be represented by an integral:

n∑
i=1

k(xi+1; τi, xi ) = T
∑

x,x ′∈�

∫ ∞

0
dτ ′ k(x; τ ′, x ′)je(x; τ ′, x ′).

(19)

By substituting Eq. (19) into Eq. (13) and averaging both sides
of Eq. (13) with I[je = j ], we can obtain a coarse-grained
relation between PF [j ] and PB[j ] for a sufficiently large T as

PB[j ] ≈ e�T eT
∑

x,x′∈�

∫ ∞
0 dτ ′ k(x;τ ′,x ′)j (x;τ ′,x ′)PF [j ], (20)

where PB[j ] := 〈I[je = j ]〉PB [χT ]. In Eq. (20), we ig-
nored the initial and final parts, − ∫ τn+1

0 γ (a, xn+1)da and∫ a0

0 γ (a, x1)da in K[χT ] of Eq. (12), because these terms do
not contribute to the equation for T → ∞. By substituting
Eq. (17) and taking the limit of T → ∞ for the logarithm of
the both sides of Eq. (20), we obtain

IB[j ] = λ −
∑

x,x ′∈�

∫ ∞

0
dτ ′ k(x; τ ′, x ′)j (x; τ ′, x ′) + IF [j ],

(21)

where IB[j ] denotes the rate function for PB[j ], that is
PB[j ] ≈ e−T IB [j ], and λ is the stationary population growth
rate: λ = limT →∞ �T /T [also see Eq. (6)].

This relation Eq. (21) constitutes the foundation of our
study, which represents that the rate function for the ret-
rospective history of the population dynamics is evaluated
by biasing the rate function of the semi-Markov single-cell
process composed of the interdivision distribution π (τ |x) and
the type transition matrix T(x|τ ′, x ′); furthermore, we find
that this bias is determined by the growth kernel k(x; τ ′, x ′).

VI. VARIATIONAL STRUCTURE FOR THE STATIONARY
POPULATION GROWTH RATE

Let us minimize Eq. (21) with respect to j (x; τ ′, x ′); we
then find that the stationary population growth rate is given by
a variational principle:

λ = max
j

{ ∑
x,x ′∈�

∫ ∞

0
dτ ′ k(x; τ ′, x ′)j (x; τ ′, x ′) − IF [j ]

}
,

(22)

where we use the property of the rate function: minj IB[j ] =
0. This variational form represents that the stationary popula-
tion growth rate is evaluated by the Legendre transformation
of the rate function for the single-cell dynamics. Furthermore,
a maximizer of the variational form, Eq. (22), has an important
meaning as follows. The maximizer of Eq. (22), j ∗

B (x; τ ′, x ′),
satisfies IB[j ∗

B] = 0, and therefore it represents the typical
triplet on a retrospective history. Thereby, j ∗

B (x; τ ′, x ′) can be
observed by a long term tracking experiment such as one by
the dynamics cytometer. To be more precise, even if we arbi-
trarily choose a cell in the final population and trace its ances-
tors back, we can obtain the unique triplet j ∗

B (x; τ ′, x ′) if the
history is sufficiently long. The explicit form of j ∗

B (x; τ ′, x ′)
is calculated in Appendix D. By using this triplet j ∗

B (x; τ ′, x ′),
we can evaluate the stationary population growth rate as

λ =
∑

x,x ′∈�

∫ ∞

0
dτ ′ k(x; τ ′, x ′)j ∗

B (x; τ ′, x ′)

−
∑
x,x ′

∫ ∞

0
dτ ′ j ∗

B (x; τ ′, x ′) log
j ∗
B (x; τ ′, x ′)

Q(x; τ ′|x ′)g∗
B (x ′)

,

(23)

where we use the explicit form of the rate function, Eq. (17),
and g∗

B (x ′) is defined by Eq. (18).

VII. RESPONSE RELATION

By using Eq. (23), we can obtain the response of the
stationary population growth rate. First, we consider a vari-
ation of λ with respect to the growth kernel k(x; τ ′, x ′) and
the semi-Markov kernel Q(x; τ ′|x ′). Taking Eq. (23) into
account, we obtain

δλ =
∑

x,x ′∈�

∫ ∞

0
dτ ′ j ∗

B (x; τ ′, x ′)δk(x; τ ′, x ′)

+
∑

x,x ′∈�

∫ ∞

0
dτ ′ j ∗

B (x; τ ′, x ′)δ log Q(x; τ ′|x ′). (24)

012413-5



SUGHIYAMA, NAKASHIMA, AND KOBAYASHI PHYSICAL REVIEW E 99, 012413 (2019)

Here, the implicit variation of λ through j ∗
B (x; τ ′, x ′) vanishes,

because j ∗
B (x; τ ′, x ′) is the maximizer of Eq. (22), that is

δλ/δj ∗
B (x; τ ′, x ′) = 0. Next, we calculate δk(x; τ ′, x ′) and

δQ(x; τ ′|x ′) as follows. By using the definition of k(x; τ ′, x ′),
Eq. (11), we have

δk(x; τ ′, x ′) = δ log q(x; τ ′, x ′) + δ log b(τ ′, x ′)

−
∫ τ ′

0
δγ (t, x ′)dt. (25)

However, from the definition of Q(x; τ ′|x ′), Eq. (2), we get

δ log Q(x; τ ′|x ′) = δ log π (τ ′|x ′) + δ logT(x|τ ′, x ′). (26)

The perturbations δ log π (τ ′|x ′) and δ logT(x|τ ′, x ′) are
restricted by the stochastic conditions of π (τ ′|x ′) and
T(x|τ ′, x ′):

∫ ∞
0 π (τ ′|x ′)dτ ′ = 1 and �xT(x|τ ′, x ′) = 1, re-

spectively. Substituting Eqs. (25) and (26) into Eq. (24), we
obtain the response relation:

δλ =
∑

x,x ′∈�

∫ ∞

0
dt j ∗

B (x; t, x ′)δ log q(x; t, x ′) +
∑
x∈�

∫ ∞

0
dt g∗

B (t, x)δ log b(t, x) −
∑
x∈�

∫ ∞

0
dt μ∗

B (t, x)δγ (t, x)

+
∑
x∈�

∫ ∞

0
dt g∗

B (t, x)δ log π (t |x) +
∑

x,x ′∈�

∫ ∞

0
dt j ∗

B (x; t, x ′)δ logT(x|t, x ′), (27)

where, to derive the third term in Eq. (27), we use the
following property of integration:∫ ∞

0
dτ f (τ )

∫ τ

0
dt g(t ) =

∫ ∞

0
dt g(t )

∫ ∞

t

dτ f (τ ). (28)

Also, g∗
B (τ, x) and μ∗

B (a, x) represent marginal distributions
of j ∗

B (x; τ ′, x ′):

g∗
B (τ ′, x ′) :=

∑
x∈�

j ∗
B (x; τ ′, x ′), (29)

μ∗
B (a, x) :=

∫ ∞

a

dτ g∗
B (τ, x). (30)

The marginal distribution g∗
B (τ, x) counts how often interdi-

vision interval τ with type x appears in a sufficient long retro-
spective history. However, μ∗

B (a, x) expresses the occupation
density of a set (a, x) on the history (see Ref. [14]). Equa-
tion (27) represents the responses for any parameter change
(e.g., the expected number of the daughter cells b(τ, x), the
death rate γ (a, x), and so on). The response coefficients in
the first line of Eq. (27) represent responses with respect to
the changes in the growth kernel. In contrast, those in the
second line are the response coefficients for the single-cell
dynamics. All response coefficients can be evaluated only by
the typical statistics on the retrospective history. Therefore, we
can estimate them by a long-term culturing experiment, e.g.,
by the dynamics cytometer [8,9].

VIII. RETROSPECTIVE PROCESS

Finally, we derive the explicit form of the time-backward
rate function IB[j ] and show that the retrospective history can
be generated by another semi-Markov process, the kernel of
which is characterized by QB (x; τ ′|x ′). We call this process
the retrospective process. From Eq. (21), we obtain

IB[j ] =
∑

x,x ′∈�

∫ ∞

0
dτ ′ j (x; τ ′, x ′)

× log
j (x; τ ′, x ′)

ek(x;τ ′,x ′ )−λτ ′
Q(x; τ ′|x ′)g(x ′)

, (31)

where we use the normalization condition
�x,x ′∈�

∫ ∞
0 dτ ′ τ ′j (x; τ ′, x ′) = 1.

Next, we define u0(0, x) by the left eigenvector corre-
sponding to the unit eigenvalue of the matrix:

Mλ(x|x ′) :=
∫ ∞

0
dτ ′ ek(x;τ ′,x ′ )−λτ ′

Q(x; τ ′|x ′). (32)

This matrix naturally appears in a derivation of the station-
ary solution of the McKendric equation, Eq. (4), as fol-
lows. Assume the stationary growing condition, Nt (a, x) =
eλtv0(a, x); then, Eq. (4) can be represented as

λv0(a, x) =
[
− ∂

∂a
− {γ (a, x) + r (a, x)}

]
v0(a, x). (33)

From the boundary condition, Eq. (5), v0(a, x) should satisfy

v0(0, x) =
∑
x ′∈�

∫ ∞

0
dτ ′ q(x; τ ′, x ′)T(x|τ ′, x ′)

× b(τ ′, x ′)r (τ ′, x ′)v0(a, x ′). (34)

The general solution of Eq. (33) is

v0(a, x) = v0(0, x)e−λae− ∫ a

0 {γ (t,x)+r (t,x)}dt . (35)

By substituting Eq. (35) into Eq. (34), we have

v0(0, x) =
∑
x ′∈�

∫ ∞

0
dτ ′ ek(x;τ ′,x ′ )−λτ ′

Q(x; τ ′|x ′)v0(0, x ′),

(36)

where we use the definitions of the semi-Markov kernel,
Eq. (2), and the growth kernel, Eq. (11). By using Mλ(x|x ′),
we get

v0(0, x) =
∑
x ′∈�

Mλ(x|x ′)v0(0, x ′). (37)

This equation indicates that the stationary fraction of the pop-
ulation with age 0 and type x, v0(0, x), is given by the right
eigenvector corresponding to the unit eigenvalue of Mλ(x|x ′)
up to a normalizing constant. In this section, we employ the
left eigenvector u0(0, x) corresponding to v0(0, x), that is,
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u0(0, x) satisfies

u0(0, x ′) =
∑
x∈�

u0(0, x)Mλ(x|x ′). (38)

The more detailed explanation for the matrix Mλ(x|x ′) is
shown in Appendices B and D.

By using u0(0, x) and the following equality:

∑
x,x ′∈�

∫ ∞

0
dτ ′ j (x; τ ′, x ′) log

u0(0, x ′)
u0(0, x)

= 0, (39)

which is derived by the shift-invariant property of j (x; τ ′, x ′),
we can rewrite IB[j ] as

IB[j ] =
∑

x,x ′∈�

∫ ∞

0
dτ ′ j (x; τ ′, x ′) log

j (x; τ ′, x ′)
QB (x; τ ′|x ′)g(x ′)

,

(40)

where QB (x; τ ′|x ′) is defined as

QB (x; τ ′|x ′) := u0(0, x)ek(x;τ ′,x ′ )−λτ ′
Q(x; τ ′|x ′)

1

u0(0, x ′)
.

(41)

Here, we note that QB (x; τ ′|x ′) satisfies the property of the
semi-Markov kernel:

∑
x∈�

∫ ∞

0
dτ ′ QB (x; τ ′|x ′) = 1, (42)

for any x ′, which is proved by the fact that u0(0, x) is the left
eigenvector of Mλ(x|x ′) with unit eigenvalue. This result rep-
resents that the large deviation property for the retrospective
history can be mimicked by that for the semi-Markov process
with the kernel QB (x; τ ′|x ′) in Eq. (41), which is an extension
of the retrospective process introduced in Refs. [10,11] to the
MTASP.

Since the retrospective process includes the growing effect
of the population, we can reduce the calculation for a statistics
on a cell-lineage tree to that on a realization of the retrospec-
tive semi-Markov process. This fact plays an important role in
a statistical inference based on the cell-lineage tree [23].

Before closing this section, we further derive a reduced
expression of the retrospective process by considering the
case that the type transition matrix T and the mortality risk q

upon the transition are not dependent on age τ ′: T(x|τ ′, x ′) =
T(x|x ′) and q(x; τ ′, x ′) = q(x; x ′); this property is known as
the direction time independence (DTI) [14–16]. For the DTI
case, we can get a more useful expression of the retrospective
kernel than Eq. (41). From Eq. (2), we can calculate the
probability density function of the interdivision interval for
the retrospective process as

πB (τ ′|x ′) =
∑
x∈�

QB (x; τ ′|x ′)

= b(τ ′, x ′)e− ∫ τ ′
0 γ (a,x ′)da−λτ ′

π (τ ′|x ′)
Z(x ′)

, (43)

where, by using Eq. (41) and the definition of the growth
kernel, Eq. (11), Z(x ′) is evaluated as

Z(x ′) = u0(0, x ′)∑
x∈� u0(0, x)q(x; x ′)T(x|x ′)

. (44)

By focusing on the form of Eq. (43), we can regard Z(x ′)
as the normalizing constant with respect to τ ′; thus, we get
another representation of Z(x ′) as

Z(x ′) =
∫ ∞

0
dτ ′ b(τ ′, x ′)e− ∫ τ ′

0 γ (a,x ′ )da−λτ ′
π (τ ′|x ′). (45)

(Note that, if we do not assume the DTI, we can not regard
Z as the normalizing constant, because Z is dependent on
age τ ′.) This result suggests that, for the DTI case, π (τ ′|x ′)
can be transformed into πB (τ ′|x ′) without knowing the type
transition matrix T(x|x ′), if the stationary population growth
rate λ is given. Since λ can be easily measured in experiments,
this formula contributes to the analysis for experimental data
[23]. However, the type transition matrix T is transformed as

TB (x|x ′) = QB (x; τ ′|x ′)
πB (τ ′|x ′)

= u0(0, x)q(x; x ′)T(x|x ′)Z(x ′)
1

u0(0, x ′)

= u0(0, x)q(x; x ′)T(x|x ′)∑
x∈� u0(0, x)q(x; x ′)T(x|x ′)

, (46)

where we use Eq. (44).

IX. NUMERICAL SIMULATION

To demonstrate the analytical results derived in the pre-
vious sections, we conducted a numerical simulation. In this
section, we assume that a cell divides into two daughters:
b(τ, x) = 2 for any τ and x, and the type of the cells is in
either red or blue state, x ∈ {R,B}; we ignore the mortality
risk upon the transition: q(x; τ ′, x ′) = 1 for simplicity. Both
the interdivision interval π (τ |x) and the death time distribu-
tions are modeled by the gamma distributions as

π (τ |x) = β(x)−α(x)τα(x)−1

�(α(x))
e−τ/β(x), (47)

πγ (τ |x) = βγ (x)−αγ (x)ταγ (x)−1

�(αγ (x))
e−τ/βγ (x), (48)

where �(α) is Euler’s gamma function and πγ (τ |x) is related
to the death rate γ (a, x) as πγ (τ |x) = γ (τ, x)e− ∫ τ

0 γ (a,x)da ;
that is

γ (a, x) = πγ (a|x)∫ ∞
a

πγ (τ |x)dτ
. (49)

On average, the red type is assumed to have shorter interdivi-
sion interval and death time than those of the blue type, and
the parameters of the corresponding gamma distributions are
specified as

{α(R), β(R)} = {4, 0.5}, {α(B), β(B)} = {4, 1},
{αγ (R), βγ (R)} = {8, 0.5}, {αγ (B), βγ (B)} = {8, 1}.

(50)
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probabilities

probabilities

FIG. 3. (a) A schematic diagram of the two state model of
the cells used in the simulation. The left panel shows the values
of the state-switching probability and its stationary distribution:
�x′∈�T(x|x ′)ρst (x ′) = ρst (x ). The right panel represents the distri-
butions of the interdivision intervals and the death intervals for the
two states of the cells. (b) A lineage tree obtained by the conducted
simulation. The first 104 cells are shown in the lineage tree. (c) A
schematic diagram of the state-switching probability, the distribution
of the interdivision interval, and that of the death interval for the
retrospective process. The left panel shows the values of the transi-
tion probability for the retrospective process and the corresponding
stationary distribution: �x′∈�TB (x|x ′)ρst

B (x ′) = ρst
B (x ). In the right

panel, the solid curves are calculated by the analytic expressions,
Eq. (54), and the histograms are empirically obtained from a retro-
spective path from the lineage tree.

The stochastic transition matrix of the types is age-
independently set to be

T =
(

0.8 0.2

0.2 0.8

)
. (51)

Figure 3(a) illustrates the outline of the above model.
To approximately simulate the branching process defined

in Sec. III, we consider the population of the cells cultured
in the dynamics cytometer [see Fig. 2(a)] that has a lim-
ited chamber size. We set the capacity of the camber to be
Nmax = 100. In the dynamics cytometer, the cells exceeding
the capacity is washed out by the flowing medium at the
boundaries of the chamber. To mimic this property, when the
population size exceeds the capacity by the division event of
a cell in our simulation, we randomly choose one cell in the

TABLE I. The comparison of TB (x|x ′) obtained empirically
from a retrospective path with that obtained from the analytical
expression.

Empirical TB (x|x ′) Analytical TB (x|x ′)

x ′ x ′

R B R B

x R 0.910648 0.390727 x R 0.911539 0.391355
B 0.0893523 0.609273 B 0.0886272 0.608811

chamber including the newborn cells, and remove it from the
chamber so that the population size is kept to be no more
than the capacity. This assumption is almost equivalent to
introducing an age- and type-independent constant death rate
γflow that balances the stationary population growth rate of the
cells as λ = γflow. Owing to this property, we can estimate the
stationary population growth rate λ by counting the number of
the flown cells from the chamber up to time t, Nflow(t ), as

λ = lim
t→∞

1

Nmax

Nflow(t )

t
. (52)

Figure 3(b) is a cell-lineage tree obtained by conducting
the simulation up to the time when we have 104 new cells
in the population starting from one root cell. To obtain a
sufficiently long retrospective history (path) and its empirical
distributions, we conducted the same simulation up to the
time when 5 × 106 new cells are generated. Figure 3(c) shows
the histograms of the retrospective empirical distribution for
the interdivision interval calculated from a retrospective path
sampled from the lineage tree:

πB (τ |x) = No. of cells with τ and x on the path

No. of cells with type x on the path
. (53)

By following the theory developed in Sec. VIII, the empirical
histograms should coincide with the following distribution
obtained by using Eqs. (43), (47), and (49):

πB (τ |x) = 2e− ∫ τ

0 γ (a,x)da−λτ

Z(x)
π (τ |x)

= 2e−λτ
∫ ∞
τ

πγ (t |x)dt

Z(x)
π (τ |x)

= 2

Z(x)

β(x)−α(x)

�[α(x)]�[αγ (x)]

×�[αγ (x), τ/βγ (x)]τα(x)−1e−[λ+1/β(x)]τ , (54)

where �(α, τ ) := ∫ ∞
τ

tα−1e−t dt is the upper incomplete
gamma function and Z(x) is the normalizing constant calcu-
lated by Eq. (45). As demonstrated in Fig. 3(c), Eq. (54) is
perfectly fitted to the empirical histograms, where we calcu-
lated Eq. (54) by employing the parameter values, Eq. (50),
and the population growth rate λ = 0.255106 estimated with
Eq. (52). Similarly, we calculated the empirical TB from the
retrospective path as in Table I:

TB (x|x ′) = No. of transitions from x ′ to x on the path

No. of transitions from type x ′ on the path
. (55)
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TABLE II. The comparison of ρst
B (x ) obtained empirically from a

retrospective path with that obtained from the analytical expression.

Empirical ρst
B (x ) Analytical ρst

B (x )

x x

R B R B

ρst
B (x ) 0.813904 0.186096 ρst

B (x ) 0.815353 0.184647

This empirical TB almost perfectly agrees with that calculated
from the analytical expression, Eq. (46). To numerically eval-
uate this analytical expression, we first calculated the matrix
Mλ(x|x ′), Eq. (32), as

Mλ(x|x ′) = T(x|x ′)
∫ ∞

0
dτ ′ 2e− ∫ τ ′

0 γ (a,x)da−λτ ′
π (τ ′|x ′)

= T(x|x ′)Z(x ′). (56)

Then, we numerically obtained the left eigenvector u0(0, x) of
the matrix Mλ(x|x ′) by using the actual value of T, Eq. (51).
Finally, we confirmed the agreement of the empirical distribu-
tion of the type obtained from the retrospective path:

ρst
B (x) = No. of cells with x on the path

No. of cells on the path
, (57)

with that of the analytical expression: ρst
B (x) =

u0(0, x)v0(0, x), which is derived as follows. From Eq. (46),
we obtain ∑

x ′∈�

T(x|x ′)Z(x ′)
ρst

B (x ′)
u0(0, x ′)

= ρst
B (x)

u0(0, x)
, (58)

which represents that ρst
B (x)/u0(0, x) corresponds to the

right eigenvector of Mλ(x|x ′) with unit eigenvalue, that is
ρst

B (x)/u0(0, x) = v0(0, x). Thus, we get the above analyt-
ical expression. This empirical distribution is also known
as the ancestral distribution in population genetics [10,11].
Here, u0(0, x) and v0(0, x) were calculated by numerically
solving the eigenvalue problem associated with the ma-
trix Mλ(x|x ′). Note that ρst

B (x ′) coincides with g∗
B (x ′) =

(1/T )�n
i=1δx ′,xi

= �x∈�

∫ ∞
0 dτ ′j ∗

B (x; τ ′, x ′) up to a normal-
izing constant (see Eq. (D9)). The details of the analytical
expression, u0(0, x)v0(0, x), is shown in Appendix D. As
Table II demonstrates, both distributions are almost identical.

Next, we verified the fitness response relation, Eq. (27).
Specifically, we calculated the population growth rate λ nu-
merically for perturbed values of the parameters, and com-
pared the results with the response predicted by Eq. (27)
(see Figs. 4–6). In Fig. 4, we perturbed π (τ |x) by chang-
ing {α(R), β(R)} [Fig. 4(a)] and {α(B), β(B)} [Fig. 4(b)].
Similarly, in Fig. 5, we perturbed γ (a, x) by changing
{αγ (R), βγ (R)} [Fig. 5(a)] and {αγ (B), βγ (B)} [Fig. 5(b)].
For perturbing T, we parameterized T with {θR, θB} as

T =
(

T
θR
R 1 − T

θB
B

1 − T
θR
R T

θB
B

)
, (59)

and we set TR = TB = 0.8 so that Eq. (59) becomes identical
to Eq. (51) when {θR, θB} = {1, 1}. In Fig. 6, we perturbed
T by changing {θR, θB}. To estimate the stationary popu-
lation growth rate for each parameter value, we generated

FIG. 4. The responses of the stationary population growth rate
and the response coefficients for the perturbations to π (τ |R) (a),
(c) and π (τ |B) (b), (d). (a), (b) The actual responses of the growth
rate (points) and the predicted responses (lines) respectively to the
perturbations for the state R (a) and the state B (b). The parameters
are perturbed around the same parameter values as in Eq. (50). (c),
(d) The response coefficient and the changes in π (τ |x ) induced by
the parameter perturbations of α(R) and β(R) (c) and α(B) and
β(B) (d).

a lineage tree with 5 × 104 cells and used Eq. (52). From
the same tree, a retrospective path was sampled, and the
response coefficients, g∗

B (τ, x), μ∗
B (a, x) and j ∗

B (x, x ′) =∫ ∞
0 dτ ′j ∗

B (x; τ ′, x ′) were empirically calculated from the path
(see right panels in Figs. 4–6). For all the cases we have tested,
the stationary growth rate exactly responds to the changes
in the parameters as predicted by Eq. (27), which clearly
demonstrate the validity of the relation.

FIG. 5. The responses of the stationary population growth rate
and the response coefficients for the perturbations to γ (a,R) (a),
(c) and γ (a,B) (b), (d). (a), (b) The actual responses of the growth
rate (points) and the predicted responses (lines) respectively to the
perturbations for the state R (a) and the state B (b). The parameters
are perturbed around the same parameter values as in Eq. (50). (c),
(d) The response coefficient and the changes in γ (a, x ) induced by
the parameter perturbations of αγ (R) and βγ (R) (c) and αγ (B) and
βγ (B) (d).

012413-9



SUGHIYAMA, NAKASHIMA, AND KOBAYASHI PHYSICAL REVIEW E 99, 012413 (2019)

FIG. 6. The responses of the stationary population growth rate
and the response coefficients for the perturbations to T. (a), (b)
The actual responses of the growth rate (points) and the predicted
responses (lines) respectively to the perturbations of θR (a) and θB
(b). (c) The changes in the value of the components in T(x|x ′) as a
function of either θR or θB . (d) The response coefficient j ∗

B (x, x ′). (e)
The changes in the components of T(x|x ′) induced by the parameter
perturbations of θR or θB . The components not shown in the chart are
zero.

X. SUMMARY

In this work, we have constructed the pathwise formu-
lation for the MTASP. By employing the formulation, we
have derived the variational representation of the stationary
population growth rate, which comprises a tradeoff between
growth effects and a single-cell dynamics. Owing to this
variational representation, a response relation of the stationary
population growth rate has been obtained, in which various
retrospective distributions work as the response coefficients.
Thereby, the response can be evaluated by statistics on the
retrospective history. The derived relations have been verified
by the numerical simulations. Our result can be directly
employed to estimate how bacteria and other cells behave in
response to perturbations just by measuring the retrospective
history without relying on the inference of dynamics and the
eigenvalue problem. Moreover, our pathwise formulation and
variational representation of the MTASP can also be applied
for designing statistical inference algorithms of underlying
parameters and dynamics from the experimentally observed
lineage tree [23]. All these results may contribute to extending
our ability to predict and control evolution.
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APPENDIX A

Here, we derive the McKendric equation, Eq. (4), and its boundary condition Eq. (5). Let P
(a,x)
t+�t (N ) be the probability

distribution of the number of the cells that have age a and type x at time t + �t , which is normalized as �∞
N=0P

(a,x)
t+�t (N ) = 1.

First, we consider the case a �= 0. By employing the death rate γ (a, x) and the division rate r (a, x), we can calculate P
(a,x)
t+�t (N )

as

P
(a,x)
t+�t (N ) = (N + 1){γ (a − �t, x) + r (a − �t, x)}�tP

(a−�t,x)
t (N + 1)

+ [1 − {γ (a − �t, x) + r (a − �t, x)}�t]NP
(a−�t,x)
t (N ). (A1)

Here, the first term represents the probability that the number of cells with (a, x) changes from N + 1 to N due to death or
division of the cells; however, the second term is the probability that the age of the cells shifts from a − �t to a by aging. Using
�t → 0, we can obtain the following two approximations:

P
(a−�t,x)
t (N ) ≈ P

(a,x)
t (N ) − ∂P

(a,x)
t (N )

∂a
�t, (A2)

and

[1 − {γ (a − �t, x) + r (a − �t, x)}�t]N ≈ 1 − N{γ (a, x) + r (a, x)}�t. (A3)

By substituting these approximations Eqs. (A2) and (A3) into Eq. (A1), we obtain the stochastic time evolution equation of the
number of the cells:

∂P
(a,x)
t (N )

∂t
= (N + 1){γ (a, x) + r (a, x)}P (a,x)

t (N + 1) − ∂P
(a,x)
t (N )

∂a
− N{γ (a, x) + r (a, x)}P (a,x)

t (N ). (A4)

By using this equation and considering the time evolution of the expectation: Nt (a, x) := �∞
N=1NP

(a,x)
t (N ), we obtain the

McKendric equation:

∂

∂t
Nt (a, x) =

[
− ∂

∂a
− {γ (a, x) + r (a, x)}

]
Nt (a, x). (A5)
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Next, from the case a = 0, we derive the boundary condition Eq. (5). The probability P
(0,x)
t (N ) is calculated as

P
(0,x)
t (N ) =

∞∑
N ′=1

∑
x ′∈�

∫ ∞

0
dτ ′ r (τ ′, x ′)N ′P (τ ′,x ′ )

t (N ′)

[ ∞∑
z′=N

z′!
N !(z′ − N )!

p(z′|τ ′, x ′)(q(x; τ ′, x ′)T(x|τ ′, x ′))N

×{(1 − T(x|τ ′, x ′)) + (1 − q(x; τ ′, x ′))T(x|τ ′, x ′)}z′−N

]

=
∞∑

N ′=1

N ′ ∑
x ′∈�

∫ ∞

0
dτ ′ r (τ ′, x ′)P (τ ′,x ′ )

t (N ′)

[ ∞∑
z′=N

z′!
N !(z′ − N )!

p(z′|τ ′, x ′)(q(x; τ ′, x ′)T(x|τ ′, x ′))N

× (1 − q(x; τ ′, x ′)T(x|τ ′, x ′))z
′−N

]
, (A6)

where the inside of the bracket [·] consists of the product of two probabilities: The first one represents the probability
that N cells in z′ daughters succeed in the type transition from type x ′ to x, that is (q(x; τ ′, x ′)T(x|τ ′, x ′))N . In contrast,
the second one is the probability that z′ − N cells in z′ daughters switch to a different type from x ′ or fail the type
transition: {(1 − T(x|τ ′, x ′)) + (1 − q(x; τ ′, x ′))T(x|τ ′, x ′)}z′−N . Also, the prefactor z′!/N!(z′ − N )! stands for the number
of combinations. Equation (A6) gives the boundary condition for the stochastic time evolution Eq. (A4). Considering the
expectation as in the derivation of Eq. (A5), we have

Nt (0, x) :=
∞∑

N=1

NP
(0,x)
t (N ) =

∑
x ′∈�

∫ ∞

0
dτ ′ r (τ ′, x ′)Nt (τ

′, x ′)

×
[ ∞∑

N=1

∞∑
z′=N

Nz′!
N !(z′ − N )!

p(z′|τ ′, x ′)(q(x; τ ′, x ′)T(x|τ ′, x ′))N (1 − q(x; τ ′, x ′)T(x|τ ′, x ′))z
′−N

]
. (A7)

By changing the order of the summations �∞
N=1 and �∞

z′=N , we get

Nt (0, x) =
∑
x ′∈�

∫ ∞

0
dτ ′ r (τ ′, x ′)Nt (τ

′, x ′)
∞∑

z′=1

p(z′|τ ′, x ′)

×
[

z′∑
N=1

z′!
(N − 1)!(z′ − N )!

(q(x; τ ′, x ′)T(x|τ ′, x ′))N (1 − q(x; τ ′, x ′)T(x|τ ′, x ′))z
′−N

]

=
∑
x ′∈�

∫ ∞

0
dτ ′ r (τ ′, x ′)Nt (τ

′, x ′)
∞∑

z′=1

z′p(z′|τ ′, x ′)q(x; τ ′, x ′)T(x|τ ′, x ′)

×
[

z′−1∑
N=0

(z′ − 1)!

N !((z′ − 1) − N )!
(q(x; τ ′, x ′)T(x|τ ′, x ′))N (1 − q(x; τ ′, x ′)T(x|τ ′, x ′))(z

′−1)−N

]
. (A8)

Finally, by using the binomial theorem,

1 =
z∑

N=0

z!

N !(z − N )!
xN (1 − x)z−N, (A9)

we obtain the boundary condition for Eq. (A5) as

Nt (0, x) =
∑
x ′∈�

∫ ∞

0
dτ ′ r (τ ′, x ′)Nt (τ

′, x ′)
∞∑

z′=1

z′p(z′|τ ′, x ′)q(x; τ ′, x ′)T(x|τ ′, x ′)

=
∑
x ′∈�

∫ ∞

0
dτ ′ q(x; τ ′, x ′)T(x|τ ′, x ′)b(τ ′, x ′)r (τ ′, x ′)Nt (τ

′, x ′), (A10)

where we define the expected number of the newborn cells by b(τ ′, x ′) := �∞
z′=1z

′p(z′|τ ′, x ′).
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APPENDIX B

In this Appendix, we solve the McKendric equation,
Eq. (4), by employing the eigenfunction method. The formal
solution of Eq. (4) is given by

Nt (a, x) = eĤ tN0(a, x), (B1)

where Ĥ is the time evolution operator, Eq. (7). Therefore,
by employing the eigenfunctions of Ĥ , we can represent the
solution as

Nt (a, x) =
∞∑
i=0

eλi tCivi (a, x), (B2)

where λi and vi (a, x) denote the (i + 1)th eigenvalue and
the corresponding eigenfunction, respectively; especially, we
determine the index i so that λ0 represents the largest eigen-
value, which means that Re[λ0] � Re[λi] for any i. Also, {Ci}
represent the expansion coefficients of the initial population
N0(a, x): N0(a, x) = �∞

i=0Civi (a, x). In this study, we as-
sume that λ0 is unique and real positive value, λ0 > Re[λi]
(i �= 0); that is, we deal with cases that the total size of the
population is expanding in time evolution. Since the left-hand
side of Eq. (B2) is dominated by v0(a, x) as t → ∞, the
fraction of the population converges to the unique stationary
one v0(a, x) up to a normalizing constant. Furthermore, taking
into account that N tot

t /N tot
0 ≈ eλ0t for t → ∞, we find that

the stationary population growth rate Eq. (6) is given by the
largest eigenvalue, that is λ = λ0. Accordingly, the calcula-
tion of the stationary population growth rate reduces to the
eigenvalue problem of the time evolution operator Ĥ under
the boundary condition Eq. (5). To calculate the eigenvalues
of Ĥ , we consider the following characteristic equation:

λivi (a, x) =
[
− ∂

∂a
− {γ (a, x) + r (a, x)}

]
vi (a, x).

(B3)

Then, the general solution of Eq. (B3) can be represented by

vi (a, x) = vi (0, x)e−λiae− ∫ a

0 {γ (t,x)+r (t,x)}dt . (B4)

By using the boundary condition Eq. (5), we obtain the
constraint condition of vi (0, x) as

vi (0, x) =
∑
x ′∈�

∫ ∞

0
dτ ′ q(x; τ ′, x ′)T(x|τ ′, x ′)

× b(τ ′, x ′)r (τ ′, x ′)e−λiτ
′

× e− ∫ τ ′
0 {γ (t,x ′ )+r (t,x ′ )}dtvi (0, x ′)

=
∑
x ′∈�

∫ ∞

0
dτ ′ ek(x;τ ′,x ′)−λiτ

′
Q(x; τ ′|x ′)vi (0, x ′),

(B5)

where k(x; τ ′, x ′) and Q(x; τ ′|x ′) are the growth kernel
Eq. (11) and the semi-Markov kernel Eq. (2). Thus, from
Eq. (B5), the eigenvalues and eigenfunctions are determined
so that the self-consistent equation, Eq. (B5), is satisfied. This
statement can be rephrased as follows. If we define a matrix

Mα (x|x ′) :=
∫ ∞

0
dτ ′ ek(x;τ ′,x ′)−ατ ′

Q(x; τ ′|x ′), (B6)

FIG. 7. A schematic illustration of the lineage tree TT . The root
cell is one of the daughters generated from the mother cell with
(τ0, x0 ). The paths highlighted by the dark gray color represent
surviving genealogical paths with history {xi}n+1

i=1 . The lineage tree
TT highlighted by the light gray color has N surviving genealogical

paths. P
{xi }n+1

i=1
T (N |τ0, x0 ) represents the conditional probability that

such a lineage tree TT appears.

then the stationary population growth rate λ is given by
the largest α such that the eigenvalue of Mα (x|x ′) is unit.
In addition, the stationary population with age 0, v0(0, x),
is calculated by the right eigenvector of Mα (x|x ′)|α=λ, the
corresponding eigenvalue of which is unit.

APPENDIX C

In this Appendix, we derive Eq. (8), which is known as
the many-to-one formula in the field of population genetics.
The original proof of this formula is rigorously given in
Refs. [24,25]; however, we here demonstrate an alternative
derivation that is familiar to physicists and mathematical
biologists.

Denote a tree of cell lineages during time interval [0, T ] by
TT , which is a stochastic tree and its probability laws are given
by the setup introduced in Secs. II and III. First, for simplicity,
we consider cases that the lineage tree TT is generated from
a single root cell with age 0, the mother cell of which has
an interdivision interval τ0 and a type x0; furthermore, for a
mathematical implementation, we assume that the root cell
has not yet undergone a type transition process, which means
that calculation to obtain the lineage tree TT starts with the
type transition T(·|τ0, x0) (see Fig. 7).

Under the above assumptions, we consider the condi-
tional probability that the root cell generates a lineage
tree TT including N surviving genealogical paths speci-
fied by {xi}n+1

i=1 := {n; x1, x2, ..., xn, xn+1}. The vector xi =
(xi, τi, zi ) represents a type xi , an age τi , and the number
of the daughter cells zi at the ith division event. xn+1 is
specially defined as xn+1 = (xn+1, τn+1). Also, the surviving
genealogical path means the path penetrating the lineage tree
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TT from the initial to the final time, i.e., cells have never undergone the death event on this path (see Fig. 7). We denote this

conditional probability by P
{xi }n+1

i=1
T (N |τ0, x0), which is calculated by the following recurrence equation:

P
{xi }n+1

i=1
T (N |τ0, x0) = G(x1|τ0, x0)

∑
{αl}:�z1

l=1αl=N

{
z1∏

l=1

P
{xi }n+1

i=2
T −τ1

(αl|τ1, x1)

}
+ δN,0[1 − G(x1|τ0, x0)]. (C1)

Here, G(x|τ ′, x ′) denotes the conditional probability that the mother cell with type x ′ has divided at age τ ′ and its daughter cell
with x survives for time τ and divides into z cells; that is

G(x|τ ′, x ′) := p(z|τ, x)r (τ, x)e− ∫ τ

0 {γ (t,x)+r (t,x)}dtq(x|τ ′, x ′)T(x|τ ′, x ′). (C2)

Also, P
{xi }n+1

i=2
T −τ1

(αl|τ1, x1) represents the conditional probability that a root cell, the mother cell of which has (τ1, x1), generates
a lineage tree TT −τ1 including αl surviving genealogical paths specified by {xi}n+1

i=2 := {n − 1; x2, ..., xn, xn+1}; furthermore,

P
{xi }n+1

i=2
T −τ1

(αl|τ1, x1) can be calculated by the same recurrence equation as Eq. (C1):

P
{xi }n+1

i=2
T −τ1

(N |τ1, x1) = G(x2|τ1, x1)
∑

{αl}:�z2
l=1αl=N

{
z2∏

l=1

P
{xi }n+1

i=3

T −�2
j=1τj

(αl|τ2, x2)

}
+ δN,0[1 − G(x2|τ1, x1)]. (C3)

Accordingly, by iteratively employing the recurrence Eq. (C1), we obtain P
{xi }n+1

i=1
T (N |τ0, x0). The final recurrence is specially

given by

P
{xn+1}
T −�n

j=1τj
(N |τn, xn) = δN,1F (τn+1, xn+1|τn, xn) + δN,0{1 − F (τn+1, xn+1|τn, xn)}, (C4)

where F (τ, x|τ ′, x ′) represents the conditional probability that the daughter cell, the mother cell of which has (τ ′, x ′), switches
its type to x and survives for τ ; that is

F (τ, x|τ ′, x ′) := e− ∫ τ

0 {γ (t,x)+r (t,x)}dtq(x; τ ′, x ′)T(x|τ ′, x ′). (C5)

For convenience, we rewrite the recurrence Eqs. (C1) and (C4) by using the moment generating function as

m
{xi }n+1

i=1
T (k|τ0, x0) :=

∞∑
N=0

ekNP
{xi }n+1

i=1
T (N |τ0, x0) = G(x1|τ0, x0)

[
m

{xi }n+1
i=2

T −τ1
(k|τ0, x0)

]z1 + [1 − G(x1|τ0, x0)], (C6)

and

m
{xn+1}
T −�n

j=1τj
(k|τn, xn) = ekF (τn+1, xn+1|τn, xn) + {1 − F (τn+1, xn+1|τn, xn)}. (C7)

Since we are now interested only in the expected number of the genealogical paths, we iteratively use the differentiation of the
moment recurrence Eq. (C6) with respect to k and obtain

NT

[{xi}n+1
i=1 |τ0, x0

]
:=

∞∑
N=1

NP
{xi }n+1

i=1
T (N |τ0, x0) = F (τn+1, xn+1|τn, xn)znG(xn|τn−1, xn−1) · · ·

z3G(x3|τ2, x2)z2G(x2|τ1, x1)z1G(x1|τ0, x0). (C8)

Next, we evaluate the expected number of genealogical paths χ̃T := {n; x1, τ1, x2, τ2, ..., xn, τn, xn+1, τn+1}. Note that the
number of the daughter cells {zi}ni=1 is not assigned in the path χ̃T . Therefore, from the summation of Eq. (C8) with respect to
{zi}ni=1, we obtain

NT [χ̃T |τ0, x0] =
∑

{zi }ni=1

NT

[{xi}n+1
i=1 |τ0, x0

] = F (τn+1, xn+1|τn, xn)

[
n∏

i=1

∑
zi

ziG(xi |τi−1, xi−1)

]
. (C9)

By substituting Eqs. (C2) and (C5) into Eq. (C9), we get

NT [χ̃T |τ0, x0] = e− ∫ τn+1
0 {γ (a,xn+1 )+r (a,xn+1 )}da

[
n∏

i=1

q(xi+1; τi, xi )T(xi+1|τi, xi )b(τi, xi )e
− ∫ τi

0 γ (a,xi )daπ (τi |xi )

]

× q(x1|τ0, x0)T(x1|τ0, x0), (C10)

where b(τi, xi ) := �∞
zi=1zip(zi |τi, xi ), and π (τi |xi ) represents the distribution of the interdivision interval defined by Eq. (1).

Finally, we change the root condition of the lineage tree TT . Although we have assumed that the lineage tree TT is generated
by the root cell, the mother of which has (τ0, x0), we here replace this dependence on the mother with age a0 and type x1 of the
root cell; that is, we consider the case that the root cell of a lineage tree has age a0 and type x1. By using the survival probability
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F (a0, x1|τ0, x0) and Eq. (C10), we obtain the expected number of genealogical paths for the lineage tree with the root (a0, x1)
as

NT [χ̃T |a0, x1] = δ

(
T −

{
n+1∑
i=1

τi − a0

})
NT [χ̃T |τ0, x0]

F (a0, x1|τ0, x0)
= δ

(
T −

{
n+1∑
i=1

τi − a0

})
e− ∫ τn+1

0 {γ (a,xn+1 )+r (a,xn+1 )}da

×
[

n∏
i=1

q(xi+1; τi, xi )T(xi+1|τi, xi )b(τi, xi )e
− ∫ τi

0 γ (a,xi )daπ (τi |xi )

]
e
∫ a0

0 {γ (a,x1 )+r (a,x1 )}da, (C11)

where δ(T − {∑n+1
i=1 τi − a0}) stands for the constraint for the

surviving path. By considering the case with multiple roots,
the population of which is distributed as N0(a0, x1), we obtain
Eq. (8).

APPENDIX D

Here, we derive the explicit form of the typical triplet over
a retrospective history, j ∗

B (x; τ ′, x ′), and demonstrate how
the stationary growth rate λ is calculated by the variational
principle, Eq. (22), under given growth kernel k(x; τ ′, x ′) and
semi-Markov kernel Q(x; τ ′|x ′). The typical triplet for the
retrospective history, j ∗

B (x; τ ′, x ′), is given by

j ∗
B (x; τ ′, x ′) = arg max

j

{ ∑
x,x ′∈�

∫ ∞

0
dτ ′ k(x; τ ′, x ′)

× j (x; τ ′, x ′) − IF [j ]

}
, (D1)

where the maximization is taken under the constraints:

∑
x∈�

∫ ∞

0
dτ ′ j (x; τ ′, x ′) =

∑
x∈�

∫ ∞

0
dτ ′ j (x ′; τ ′, x), (D2)

∑
x,x ′∈�

∫ ∞

0
dτ ′ τ ′j (x; τ ′, x ′) = 1, (D3)

where the former represents the shift-invariant property and
the latter is the normalization condition. By using the La-
grange multiplier method, we find that j ∗

B (x; τ ′, x ′) satisfies

0 = k(x; τ ′, x ′) − log
j ∗
B (x; τ ′, x ′)

Q(x; τ ′|x ′)g∗
B (x ′)

+ log
φ(x)

φ(x ′)
− ατ ′,

(D4)

where log φ(x) (φ(x) > 0) and α are the Lagrange multipliers
corresponding to the constraints Eqs. (D2) and (D3), respec-
tively. By taking average of the both sides in Eq. (D4) with
respect to j ∗

B (x; τ ′, x ′), we get

0 = λ +
∑

x,x ′∈�

∫ ∞

0
dτ ′ j ∗

B (x; τ ′, x ′) log
φ(x)

φ(x ′)

−α
∑

x,x ′∈�

∫ ∞

0
dτ ′ τ ′j ∗

B (x; τ ′, x ′), (D5)

where we use Eq. (23). In addition, by employing the con-
straints Eqs. (D2) and (D3), we obtain λ = α. This result
represents that the calculation of the population growth rate λ

can be reduced to that of the Lagrange multiplier α. By using
the constraints Eqs. (D2) and (D3), we evaluate the Lagrange
multipliers φ(x) and α. First, we rewrite Eq. (D4) as

j ∗
B (x; τ ′, x ′) = φ(x)ek(x;τ ′,x ′ )−ατ ′

Q(x; τ ′|x ′)
g∗

B (x ′)
φ(x ′)

. (D6)

The integrations of Eq. (D6) with respect to (x; τ ′) and (τ ′, x ′)
lead, respectively, to

1 =
∑
x∈�

φ(x)Mα (x|x ′)
1

φ(x ′)
, (D7)

g∗
B (x) =

∑
x ′∈�

φ(x)Mα (x|x ′)
g∗

B

(
x ′)

φ(x ′)
, (D8)

where Mα (x|x ′) is defined in Eq. (B6). From Eq. (D7), we find
that α is determined so that Mα (x|x ′) has the unit eigenvalue,
and φ(x) represents the left eigenvector corresponding to it.
(In the following discussion, we write φ(x) by φα (x) to clarify
the dependence of α.) Moreover, since Mα (x|x ′) is primitive,
the eigenvector corresponding to the largest eigenvalue of
Mα (x|x ′) consists of real and positive components and all the
other eigenvectors must have at least one nonreal or negative
component, owing to the Perron-Frobenius theorem. Taking
φα (x) > 0 into account, we find that the unit eigenvalue of
Mα (x|x ′) must be the largest one. Thus, α is determined such
that the largest eigenvalue of Mα (x|x ′) is unit. However, from
Eq. (D8), we obtain

g∗
B (x) = φα (x)ψα (x), (D9)

where ψα (x) denotes the right eigenvector corresponding to
the unit eigenvalue (i.e., the largest eigenvalue) of Mα (x|x ′).
By substituting Eq. (D9) into Eq. (D6), we obtain the explicit
form of j ∗

B (x; τ ′, x ′) as

j ∗
B (x; τ ′, x ′) = φα (x)ek(x;τ ′,x ′ )−ατ ′

Q(x; τ ′|x ′)ψα (x ′).

(D10)

Here, we note that the normalization condition of j ∗
B (x; τ ′, x ′)

has not yet been determined in Eq. (D10) and the uniqueness
of the Lagrange multiplier α has not yet been elucidated. The
normalization condition can be given by constraint Eq. (D3),
that is

1 = −
∑

x,x ′∈�

φα (x)

{
d

dα
Mα (x|x ′)

}
ψα (x ′), (D11)

where we substitute Eq. (D10) into Eq. (D3). Furthermore, by
using Eq. (D11), we can clarify uniqueness of α as follows.
Denote ξα by the largest eigenvalue of Mα (x|x ′). Since the
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differentiation of ξα satisfies [26]

dξα

dα
=

∑
x,x ′∈� φα (x)

{
d
dα

Mα (x|x ′)
}
ψα (x ′)∑

x∈� φα (x)ψα (x)
< 0, (D12)

the largest eigenvalue ξα is monotonically decreasing with
respect to α. Since Eq. (D7) leads to ξα = 1, we find that the
Lagrange multiplier α is uniquely determined.

Finally, we summarize the discussion of this Ap-
pendix. The stationary population growth rate λ is uniquely

determined such that the largest eigenvalue of Mλ(x|x ′) is
unit. Also, by using the left and right eigenvectors correspond-
ing to the largest (=unit) eigenvalue of Mλ(x|x ′), the explicit
form of the typical triplet for the retrospective history can be
represented as

j ∗
B (x; τ ′, x ′) = φλ(x)ek(x;τ ′,x ′ )−λτ ′

Q(x; τ ′|x ′)ψλ(x ′). (D13)

Since the above statement is corresponding to the result
in the partial-differential-equation approach introduced in
Appendix B, we find that ψλ(x) and φλ(x) correspond to
v0(0, x) and u0(0, x), respectively.
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