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Stationary RNA polymerase fluctuations during transcription elongation
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We study fluctuation effects of nonsteric molecular interactions between RNA polymerase (RNAP) motors
that move simultaneously on the same DNA track during transcription elongation. Based on a stochastic model
that allows for the exact analytical computation of the stationary distribution of RNAPs as a function of their
density, interaction strength, nucleoside triphosphate concentration, and rate of pyrophosphate release we predict
an almost geometric headway distribution of subsequent RNAP transcribing on the same DNA segment. The
localization length which characterizes the decay of the headway distribution depends directly only the average
density of RNAP and the interaction strength, but not on specific single-RNAP properties. Density correlations
are predicted to decay exponentially with the distance (in units of DNA base pairs), with a correlation length that
is significantly shorter than the localization length.
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I. INTRODUCTION

DNA transcription is the ubiquitous process that tran-
scribes the information coded in the base pair sequence of
DNA into an RNA. The molecular “engine” that performs
this task is RNA polymerase (RNAP), which synthesizes an
RNA as determined by the base-pair sequence of the DNA
[1,2]. To this end, the RNAP locally creates the so-called
transcription bubble by unzipping the two DNA strands as it
progresses on one of the two single DNA strands. The RNA
is polymerized by the RNAP by the addition of nucleotides as
the RNAP moves along the DNA, thus forming the so-called
transcription elongation complex (TEC). Each translocation
from one DNA base pair to the next consists of a cycle
of molecular reorganizations of the TEC whose main steps
are nucelotriphosphate (NTP) binding, NTP hydrolysis and
release of pyrophosphate (PPi), RNA chain elongation and
forward translocation along the DNA template. Thus RNAP
plays a central role in gene expression and also as therapeutic
drug target [3].

The intrinsically stochastic translocation of a single RNAP
has been studied in great detail from different perspectives and
using different approaches, both theoretical and experimental
[2,4–7]. We follow the authors of [4,8–10] and describe the
kinetics of single-RNAP elongation by a biased random walk
of RNAP along the DNA with a step length of one base pair
for each translocation. This approach allows for describing the
stochasticity of the step cycle of a single RNAP due to thermal
fluctuations. In the setting studied by Wang [4], the slowest
processes that mostly determine the average speed of an
RNAP and thus the RNA elongation rate are the release of PPi
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and the forward step of the RNAP along the DNA template
by one base pair (bp). This reduced description ignores the
sequence dependence of the translocation kinetics [11,12], but
nevertheless accounts rather well for various experimentally
established features of the kinetics of a single RNAP, and is
adequate as a starting point for the purposes of the present
work in which our main interest is the impact of interactions
between RNAP on the fluctuations which lead to fluctuations
in the overall rate of elongation, which is proportional to the
stationary flux of RNAP along the DNA template.

Interactions between subsequent RNAPs that move along
the same DNA segment have to be taken into consideration
when more than one RNAP molecule initiates from the same
promoter sequence of the DNA template. Pausing RNAP may
block the advancement of trailing RNAP and thus induce
“traffic jams” [13–15] that slow down elongation. On the other
hand, the interaction may also be cooperative: Trailing RNAP
can prevent backtracking, and even “push” the leading RNAP
out of pause sites [16,17]. Thus elongation is enhanced.

This intriguing and seemingly paradoxical outcome of
RNAP interactions has been studied intensely over the last few
years using a variety of different approaches [18–25], mostly
focusing on the role of specific microscopic features of the
step cycle. To understand better the conditions under which
jamming and pushing can arise from RNAP interactions we
introduced a lattice gas model [26] that shows that indeed
both phenomena arise if (in addition to pure steric hindrance
on contact) RNAPs interact via a repulsive short-range in-
teraction, while hard core repulsion alone can only produce
jamming, see, e.g., [14,27–34] for ribosomes, RNAP, and
other molecular motors.

Our model is a generalization of the asymmetric simple
exclusion process (ASEP) [9,35], that incorporates both the
two internal states in which RNAP appears (with or with-
out PPi bound to it) as in the pioneering work [14] and
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short-range interactions due to elastic deformation of the TEC
upon collision [18,21]. Unlike in the works mentioned above,
our starting point is a given probability distribution in para-
metric form from which we compute local transition rates for
elongation and PPi release such that this distribution is station-
ary, without requiring detailed balance since the transcription
elongation takes place far from thermal equilibrium. This
approach enables us to make exact analytical computations
of transition rates in terms of interaction parameters and for
collective stationary quantities.

It turns out [26] that any short-range repulsion leads to
an enhanced microscopic forward translocation rate of an
RNAP if a trailing RNAP has arrived to its left (i.e., from
the backward direction), thus leading to stochastic pushing.
However, this microscopic stochastic pushing that occurs on
the level of individual jumps leads to an enhancement of the
average velocity of the RNAP along the chain and thus to
a collective pushing effect only if the repulsive interaction
is sufficiently strong and the RNAP density is not too high.
For higher densities, jamming due to microscopic blocking
prevails. Indeed, the density dependence of collective pushing
is quite intricate: Depending on the precise form of the micro-
scopic interaction, it may exist only in a specific window of
RNAP densities. For sufficiently strong repulsion the average
elongation rate can exhibit two maxima at different RNAP
densities. The model also predicts the dependence of the
motor velocity and elongation rate on the concentration of
NTP and the rate of PPi release. We also note that the inverse
average elongation rate is the mean time-headway between the
crossing of the same DNA segment by two successive RNAP’s
[36,37]. Thus one obtains information on the experimentally
relevant time-headway distribution.

The focus of the present paper is on the effect of inter-
actions on the stationary fluctuations of the RNAP positions
along the DNA track due to the inherently noisy dynamics of
the translocation. First we discuss the space-headway distri-
bution, i.e., the distribution of distances between subsequent
RNAP that initiated at the same promoter sequence. The
second result concerns the local density fluctuations that result
not only from the randomness of the translocation, but also
from the fluctuations in the total number density of RNAP
along the DNA track.

In the next section we present the mathematical model of
[26]. In Sec. III the new results on the headway distribution
and the RNAP density fluctuations are derived and discussed.
(Some mathematical details of the derivation are transferred
to the Appendix.) Finally, in Sec. IV a summary of the results
is given and some conclusions are drawn.

II. STOCHASTIC MODEL FOR INTERACTING RNAP

The typical size of a transcription bubble is around 15 bp
[4,38] whereas the TEC covers a DNA segment of up to 35 bp.
To highlight the effect of interactions we do not describe the
various transformations of the TEC during each elongation
step [7]. We simplify the complicated geometry of the TEC
by representing it as a rod covering � lattice sites, where �

is parameter of our model, and not differentiate between the
TEC and the RNAP.
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FIG. 1. Minimal reaction scheme of RNAP translocation. The
RNAP i can move from base pair k to k + 1 provided it is in
state 1k (no pyrophospate bound to it) with a configuration-dependent
rate ωi (η) through a series of processes involving NTP binding to
the active site and NTP hydrolysis which results in a PPi bound state
in the transcription elongation complex (state 2k+1). Only after PPi

release with a configuration-dependent rate κi (η) (transition from
state 2k+1 to state 1k+1) the RNAP can perform the next translocation
step. Reverse reactions (not considered in this work) are indicated
with thin dashed arrows.

A. Stochastic dynamics

We follow [14] and base our model on the reduced descrip-
tion of Wang et al. [4] in which the rate-limiting step of the
mechanochemical cycle is the PPi release from the catalytic
site [39]. Thus an RNAP appears in only two distinct polymer-
ization states, namely without PPi bound to it (state 1) or with
PPi (state 2). It is then convenient to characterize the state of a
TEC mathematically not in terms of the length k of the RNA
transcript attached to it, but to describe it in terms of the cor-
responding base pair so that x = k marks the position of the
RNAP on the template DNA. The RNAP moves forward along
the DNA by one bp (a step length of δ = 0.34 nm), i.e., from
x to x + 1 only after PPi release, i.e., only of the RNAP is in
state 1x . Without loss of generality we define x to be the lattice
position of the left end of the rod in the random walk model.

In the presence of more than one RNAP, the symbol η

denotes the full configuration of all RNAPs on the same DNA
segment, i.e., the set of positions xi and states αi of the
RNAPs, labeled successively by an integer i = 1, 2, . . . , N .
We denote the rate at which an elongation step of RNAP i

occurs by ωi (η). The rate of PPi release is denoted by κi (η).
The reverse processes occur with smaller rates [4] that we
neglect. This minimal reaction scheme is sketched in Fig. 1
for a single RNAP.

In the rod picture, xi + � − 1 is the lattice position of the
“front” side of the TEC. The hard-core repulsion of RNAP
implies that a forward move of an RNAP on site xi by one site
can occur only if the target site xi+� is not already covered. We
say that two RNAP i and i + 1 are neighbors when the front of
rod i and the left edge of rod i + 1 occupy neighboring lattice
sites, i.e., when xi+1 = xi + �. Thus the rates are in the form

ωi (η) = ω�δsi ,1
(
1 − δxi+1,xi+�

)(
1 + d1�δxi−1+�,xi

+ d�1δxi+1,xi+�+1
)
, (2.1)

κi (η) = κ�δsi ,2
[
1 + f 1�δxi−1+�,xi

+ f �1δxi+�,xi+1

+ f 1�1δxi−1+�,xi
δxi+�,xi+1 + f 10�(1 − δxi−1+�,xi

)

× δxi−1+�+1,xi
+ f �01(1 − δxi+�,xi+1 )δxi+1,xi+�+1

]
,

(2.2)
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where in the setting of Wang et al. [4] the “bare” rates κ�, ω�

when both neighboring sites xi − 1 and xi+� are empty take
the values

κ� = 31.4s−1, ω� = [NTP](μM )−1s−1. (2.3)

Here [NTP] is the NTP concentration which is parame-
ter of our model. Under cellular conditions, RNAP tran-
scription leads to downstream supercoiling that generates
a load force of 6pN [40]. We ignore the effect of this
load force as it only renormalizes the parameter ω�. The
phenomenological dimensionless parameters d1�, d�1 and
f 1�, f �1, f 1�1, f 10�, f �01 describe the interaction between
neighboring RNAP. The overall factor (1 − δxi+1,xi+�) forbids
jumps onto an occupied site.

The master equation for the probability Pt (η) of finding the
rods at time t in a configuration η thus reads

d

dt
Pt (η) =

N∑
i=1

(L∗
i Pt )(η), (2.4)

with the adjoint L∗
i of the single-particle Markov generator Li

given by

(L∗
i Pt )(η) = ωi

(
ηi

t l

)
Pt

(
ηi

t l

) + κi

(
ηi

rel

)
Pt

(
ηi

rel

)
− [ωi (η) + κi (η)]P (η). (2.5)

Here ηi
t l is the configuration that leads to η before a translo-

cation of RNAP i (i.e., with coordinate xtl
i = xi − 1 and state

stl
i = 3 − si) and ηi

rel is the configuration η before PPi release
at RNAP i (i.e., with coordinate xrel

i = xi and state srel
i =

3 − si .
The probability distribution Pt (η) is defined to respect

hardcore repulsion which means that configurations such that
xi+1 = xi + � − 1 are forbidden. Moreover, since TECs can-
not overtake each other, only configurations satisfying the or-
dering condition xi+1 � xi + � have nonzero probability. We
shall refer to such configurations as allowed configurations.
An allowed configuration η is thus specified by a coordinate
vector x = (x1, . . . , xN ) with ordered integer coordinates and
a state vector s = (s1, . . . , sN ) with state variables si ∈ {1, 2}.

Since we are interested only in the elongation stage of tran-
scription we take a lattice of L sites with periodic boundary
conditions. The positions xi of the rods are counted modulo L

and labels i are counted modulo N . Therefore we denote by
δM
x,y the Kronecker symbol with arguments x, y understood

modulo M . We denote by Nα the fluctuating number of
RNAPs in state α ∈ {1, 2} so that N = N1 + N2. We also
define the excess B(s) = N1 − N2.

B. Stationary distribution

For determining the stationary solution π (η) of the many-
particle master equation (2.4) one cannot impose detailed
balance as on the timescale of translocation and PPi release
the system is not in thermal equilibrium. However, as shown
in [26], a lattice divergence condition

π−1(η)(L∗
i π )(η) = �i−1(η) − �i (η) ∀η (2.6)

allows for determining local transition rates of the de-
sired form (2.1) and (2.2) with the stationary Boltzmann

weights

π (η) = exp

[
− 1

kBT
(U + λB )

]
. (2.7)

Here U is a short-range interaction energy

U (x) = J

N∑
i=1

δL
xi+1,xi+� (2.8)

analogous to the internal energy in mechanical systems. Posi-
tive J corresponds to repulsion. The chemical potential λ is a
Lagrange multiplier for the fluctuations in the excess

B(s) =
N∑

i=1

(3 − 2si ) (2.9)

due to the stochasticity of NTP hydrolysis and PPi release.
We introduce

x = e
2λ

kB T , y = e
J

kB T , (2.10)

so that x > 1 corresponds to an excess of RNAP in state 1 and
repulsive interaction corresponds to y > 1. The normalized
stationary distribution for allowed configurations is then given
by

π∗(η) = 1

Z
y

− ∑N
i=1 δL

xi+1 ,xi+�x− ∑N
i=1(3/2−si ) (2.11)

with the partition function

Z =
∑

η

π (η). (2.12)

With the form (2.11) of the stationary distribution the
condition (2.6) determines the parameters that enter the
interaction the parameters appearing in (2.1) and (2.2) as
follows [26]:

x = ω�

κ�
, (2.13)

y = 1 + d1�

1 + d�1
, (2.14)

f 1� = d1� x

1 + x
− 1

1 + x
, (2.15)

f �1 = d1� 1

1 + x
− x

1 + x
, (2.16)

f 1�1 = −d1�, (2.17)

f 10� = d�1 1

1 + x
, (2.18)

f �01 = d�1 x

1 + x
. (2.19)

Thus the bare PPi release rate κ�, which sets the timescale of
the process, and the hopping rates (given by ω� and the inter-
action parameters d1�, d�1) are free parameters of the model.

III. RESULTS AND DISCUSSION

Due to the stochastic dynamics all quantities of interest
are fluctuating. We use the exact stationary distribution (2.11)
to study how some characteristic fluctuation properties of the
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interacting RNAP depend on the density of RNAP and on the
interaction strength. We define ρ to be the number density of
RNAPs transcribing on the same DNA template. The model
allows for a number density in the range 0 < ρ < 1/�. In all
plots shown below we have taken � = 5.

A. Headway distribution

The fluctuations in the position of the RNAPs manifest
themselves in fluctuations of their headway, i.e., the number
of empty sites mi between neighboring rods i and i + 1. The
distribution of the headway between the front of a trailing rod
i and the back of a leading rod i + 1 is defined by

Ph(r ) = 1

ρ
〈 δxi+1−xi−�,r 〉. (3.1)

This quantity is most conveniently computed using the head-
way representation of the process which arises from the fact
that one may describe the RNAP model in terms of the
headway distances which are number of vacant sites mi =
xi+1 − (xi + �) mod L between the left edge of rod i + 1 and
the right edge of rod i and the total number of vacant sites
M = L − N . Then the stochastic variables are ζ = (m, s)
with the headway distances m = (m1, . . . , mN ).

With the indicator functions

θ
p

i := δmi,p = δxi+1,xi+�+p, (3.2)

where the index i taken modulo N the transition rates (2.1)
and (2.2) for extended interaction range become

ω̃i (ζ ) = ω�δsi ,1
(
1 − θ0

i

)(
1 + d1�θ0

i−1 + d�1θ1
i

)
, (3.3)

κ̃i (ζ ) = κ�δsi ,2
(
1 + f 1�θ0

i−1 + f �1θ0
i + f 1�1θ0

i−1θ
0
i

+ f 10�θ1
i−1 + f �01θ1

i

)
. (3.4)

In the mapping to the headway process the stationary average
speed of an RNAP is given by the stationary expectation of
the function ω̃i (ζ ).

A translocation of RNAP i corresponds to the transition
(mi−1,mi ) → (mi−1 + 1,mi − 1). The configurations that

lead to a given configuration ζ are ζ i−1,i for translocation and
ζ i for PPi release, defined by

si−1,i
j = sj + (3 − 2sj )δj,i , mi−1,i

j = mj + δj,i − δj,i−1,

(3.5)

si
j = sj + (3 − 2sj )δj,i , mi

j = mj . (3.6)

This yields the master equation

d

dt
P (ζ , t ) =

N∑
i=1

Qi (ζ , t ), (3.7)

with

Qi (ζ , t ) = ω̃i (ζ
i−1,i )P (ζ i−1,i , t ) − ω̃i (ζ )P (ζ , t ) + κ̃i (ζ

i )

×P (ζ i , t ) − κ̃i (ζ )P (ζ , t ). (3.8)

This is a generalized misanthrope process [41] where sites i

can take two degrees of freedom si .

Since the sum of headways
∑N

i=1 mi = M is conserved,
the stationary distribution of the headway process can be
expressed in grandcanonical form with a fugacity z̃ for the
headways. In terms of the distance variables the stationary
distribution (2.11) reads

π̃ (ζ ) = 1

Z̃

N∏
i=1

(x−3/2+si y−θ0
i z̃−mi ). (3.9)

The factorization indicates the absence of distance correla-
tions. The partition function is given by

Z̃ =
[

(x
1
2 + x− 1

2 )
1 + (y − 1)z̃

1 − z̃

]N

, (3.10)

which follows from the factorization of the distribution (3.9).
The headway fugacity is given in terms of the RNAP density
by

z̃ = 1 − 1 − (� − 1)ρ −
√

[1 − (� − 1)ρ]2 − 4ρ(1 − �ρ)(1 − y−1)

2(1 − �ρ)(1 − y−1)
. (3.11)

Since 0 < ρ < 1/� one has 0 � z̃ < 1 so that the partition
function (3.9) is well defined.

From the factorization property of (3.9) one obtains imme-
diately the headway distribution

Ph(r ) =
{

1−z̃
1+(y−1)z̃ for r = 0,

yPh(0)z̃r for r � 1,
(3.12)

with z̃ given in (3.11) as a function of the RNAP density ρ.
One recognizes an “almost” geometric distribution which dif-
fers from a genuine geometric distribution only by a deviation
at distance 0, i.e., for neighboring rods. For y = 1 one has
z̃ = (1 − �ρ)/(1 − (� − 1)ρ) and the distribution is geomet-
ric. For repulsive interaction nearest-neighbor configurations

are suppressed. This is demonstrated in Fig. 2. The headway
probability Ph(r ) is larger than in the noninteracting for any
r � 1, while for neighboring rods (r = 0) it is smaller. In the
attractive case one observes the opposite property.

The quantity

r∗ = −(ln z̃)−1 (3.13)

defines the localization length which characterizes the
decay of the headway distribution. It depends strongly on
the density, which is not surprising since, for short-range
interactions, one expects the localization length r∗ to be of
similar magnitude as the average headway M/N . Indeed, in
the noninteracting case one gets from (3.12) 〈 r 〉 = z/(1 − z)
and from (3.11) one finds z̃ = 1 − ρ/[1 − (� − 1)ρ] so that
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FIG. 2. RNAP headway distribution Ph(r ) for different interac-
tion strengths y as a function of the integer lattice distance. Full
curve: y = 5.0 (strong repulsion); Dashed curve: y = 1.0001 (only
hard core),; Dotted curve: y = 0.2 (attraction). The curves joining
the data points are guides to the eye.

〈 r 〉 = (1 − �ρ)/ρ = M/N . For fixed ρ, there is a moderate
dependence on the interaction strength in the attractive case.
For repulsion, however, the localization length is not very
sensitive to the interaction strength, see Fig. 3.

B. Density correlations

The headway distribution does not give immediate insight
into the RNAP density correlations, i.e., into the probability
C(r ) of having any two rods at a distance r . To study the
stationary expectation of this fluctuating quantity we focus on
the situation where the length of the rod is comparable to the
interaction range, i.e., we consider � = 1.

Next we introduce the occupation number representation
η = (η1, η2, . . . , ηL) in which site k of the lattice is either
empty (ηk = 0) or covered by a rod in state sk in which case

one has ηk = sk . We also the indicator function

nα
k := δη,α (3.14)

and the variables

nk := n1
k + n2

k, σk := n1
k − n2

k. (3.15)

Turning to a grandcanonical description the invariant measure
(3.9) written in terms of the occupation variables σk, nk be-
comes

π̂ (η) = 1

Ẑ

L∏
k=1

(x− 1
2 σky−nknk+1z−nk ). (3.16)

Here the particle fugacity z = exp (βμ) is a Lagrange multi-
plier with chemical potential μ that accounts for the fluctuat-
ing total number of RNAP along the DNA template.

One recognizes in (3.16) a generalized Ising measure that
can be treated with textbook transfer matrix techniques, see
the Appendix where we express the invariant measure (3.16)
in terms of a three-dimensional transfer matrix T̂ . The parti-
tion function Ẑ and the density correlation functions

Cαβ (r ) := 〈
nα

k n
β

k+r

〉 − 〈
nα

k

〉〈
n

β

k+r

〉
(3.17)

are the conveniently computed by diagonalizing T̂ .
With the matrices

n̂1 =

⎛
⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎠, n̂2 =

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠, (3.18)

and n̂ = n̂1 + n̂2 one then obtains from the transfer matrix
representation (A6) of the invariant measure

ρ = 〈 nk 〉 = 1

Ẑ
Tr(T̂ k−1n̂T̂ Ls−k+1) (3.19)

as a function of the chemical potential μ. Because of trans-
lation invariance the pseudodensity does not depend on k.
Diagonalizing the transfer matrix one gets for general joint
expectations the expression

〈
n

η1
k1

n
η2
k2

. . . n
ηp

kp

〉
Ls

=
p∏

i=1

|Aηi

+|2
p−1∏
i=1

[
1 + A

ηi

−A
ηi+1
−

A
ηi

+A
ηi+1
+

(
χ+
χ−

)−(ki+1−ki )]1 + A
ηp
− A

η1−
A

ηp
+ A

η1+

(
χ+
χ−

)−(Ls+k1−kp )

1 + (
χ+
χ−

)−Ls
(3.20)

with the eigenvalues χ± (A9) and eigenvector components A
η
± (A10) of the transfer matrix T̂ (A5).

In the thermodynamic limit one has

lim
L→∞

(
χ−
χ+

)L

= 0 (3.21)

since χ− < χ+ for any finite μ. For kp = o(L) this yields

〈
n

η1
k1

n
η2
k2

. . . n
ηp

kp

〉 =
[

p−1∏
i=1

(Aηi

+A
ηi+1
+ χ

ki+1−ki

+ + A
ηi

−A
ηi+1
− χ

ki+1−ki

− )

]
A

ηp

+ A
η1
+ χ

k1−kp

+ (3.22)

=
p∏

i=1

|Aηi

+|2
p−1∏
i=1

[
1 + A

ηi

−A
ηi+1
−

A
ηi

+A
ηi+1
+

(
χ+
χ−

)−(ki+1−ki )]
(3.23)

〈
n

η1
1 n

η2
2 . . . n

ηp

p

〉 =
(

p−1∏
i=1

T̂ηiηi+1

)
A

ηp

+ A
η1
+ χ

1−p
+ . (3.24)
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(a) (b)

r∗ r∗

ρ y

FIG. 3. RNAP localization length r∗(ρ, y ) as function of RNAP density for different interaction strengths y = 5.0, 1.0, 0.2 [(a), curves
from bottom to top] and as function of the interaction strength y for different densities ρ = 0.02., 0.1., 0.18 [(b), curves from bottom to top].

More specifically, from the eigenvectors (A10) and eigenvalues (A9) one finds

ρ1 = 〈
n1

k

〉 = 1

1 + x
ρ, (3.25)

ρ2 = 〈
n1

k

〉 = x

1 + x
ρ, (3.26)

and

ρ = 1

2

[
1 + y−1q − 1√

(y−1q − 1)2 + 4q

]
, (3.27)

which expresses ρ in terms of the chemical potential μ and the model parameters x, y. Conversely one has

q = y

[
1 + y(2ρ − 1)2

2ρ(1 − ρ)
+ y(2ρ − 1)

2ρ(1 − ρ)

√
4ρ(1 − ρ)y−1 + (2ρ − 1)2

]
. (3.28)

For the correlation function the general expression (3.22) yields

Cαβ (r ) = ρα

ρ

ρβ

ρ
ρ(1 − ρ)

χ+
χ−

−r

(3.29)

in terms of the eigenvalues (A9) of the transfer matrix. To express the correlation length in terms of the RNAP density we use
(3.27) to obtain

y−1q − 1 = y(2ρ − 1)

2ρ(1 − ρ)
[2ρ − 1 +

√
1 + 4ρ(1 − ρ)(y−1 − 1)]. (3.30)

On the other hand, (3.28) gives√
(y−1q − 1)2 + 4q = y

2ρ(1 − ρ)
[2ρ − 1 +

√
1 + 4ρ(1 − ρ)(y−1 − 1)]. (3.31)

Thus

χ± = 1 + y

4ρ(1 − ρ)
(2ρ − 1 ± 1)[2ρ − 1 +

√
1 + 4ρ(1 − ρ)(y−1 − 1)] (3.32)

and we arrive at

e1/ξ = 1 +
√

1 + 4ρ(1 − ρ)(y−1 − 1) + 1

2ρ(1 − ρ)(y−1 − 1)
. (3.33)

Notice that the eigenvalue χ− changes sign at y = 1 for all ρ (Fig. 4).
For repulsive interaction (y > 1) one has χ− < 0 and we can define a correlation length ξ by

e1/ξ =
∣∣∣∣χ+
χ−

∣∣∣∣ (3.34)
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(a)
(b)

FIG. 4. Eigenvalues χ± and χ0 = 0 as function of the interaction strength y for two RNAP densities (a) ρ = 0.1 and (b) ρ = 0.8. The solid
line shows χ+. The eigenvalue χ− changes sign at y = 1.

so that

Cαβ (r ) = ρα

ρ

ρβ

ρ
ρ(1 − ρ)(−1)re−r/ξ . (3.35)

One sees that the RNAP density correlations are staggered and
decay exponentially fast, but with a correlation length that is
much smaller than the localization length r∗ (3.13) appearing
on the headway distribution, see Fig. 5. One notices a sig-
nificant dependence of the correlation length ξ on the density
(except in the noninteracting case where the correlation length
vanishes for all densities) and also a strong dependence on
on the interaction parameter for not too strong repulsion. As
the repulsion gets stronger, the dependence of the correlation
length flattens out. For attractive interaction (y < 1) one has
χ− > 0 and therefore

Cαβ (r ) = ρα

ρ

ρβ

ρ
ρ(1 − ρ)e−r/ξ (3.36)

with the same decay of the amplitude as in the repulsive case
but no staggering. The correlation length depends strongly on
the interaction parameter for any y < 1.

IV. CONCLUSION

During transcription elongation multiple RNAPs may
move one after another along the same DNA segment. In this
work we study the stationary distribution of RNAP locations
in terms of the headway distribution and the RNAP density
correlation function, using the model developed in [26]. This
model incorporates and explains the interplay of RNAP push-
ing and jamming as a function of the interaction strength and
RNAP density. The model is based on a reduced picture of the
mechanochemical cycle and incorporates a nearest-neighbor
interaction. However, the approach is mathematically robust
in the sense that it can be extended with the techniques
of [26,41] to allow for a more detailed biological descrip-
tion of the mechanochemical cycle of the RNAP during

(a) (b)

FIG. 5. RNAP density correlation length ξ (ρ, y ) as function of RNAP density (a) for different interaction strengths y = 5.0 (upper dashed
curve), y = 1.0 (lower dashed curve), y = 0.2 (solid curve), and as function of the interaction strength y (b) for different densities ρ = 0.02
(solid curve at the bottom), ρ = 0.1 (upper dashed curve), ρ = 0.18 (lower dashed curve).
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elongation and also for incorporating more general short-
range interactions.

The model predicts (i) headways are uncorrelated and
(ii) that the headway between successive RNAP is distributed
geometrically beyond the interaction range which here was
chosen, for simplicity, to extend only over one base pair.
Intriguingly, this means that beyond the interaction range the
distance to the next RNAP exhibits the same randomness as
if no interactions were present. Conversely, the distribution at
short distances may be a tool to probe interactions’ strengths.
This is important since one would expect an interaction range
R of the order of the size of the TEC. The modeling approach
chosen here can be extended to cover this scenario. For an
invariant measure of the form (2.11), but with an extended
interaction range R, one finds a geometric distribution for
headways of size r > R, but not for headways r � R. The
corrections for r � R as a function of the generalized fugacity
z̃ follow directly from the interaction constants. The density ρ

as a function of z̃ is a polynomial equation of degree R + 1.
Thus the interaction constants can be inferred by measuring
the headway distribution for any density ρ. We note that,
unlike in some related lattice gas models for vehicular traffic
[42], the headway distribution exhibits (at most) a single
peak, thus there is no phase coexistence between a congested
region and a free-flow region in the present model for RNAP
traffic.

A second quantity of interest turns out to be the density
correlation function between RNAP. Interestingly, repulsive
interaction leads to staggered density correlations, while an
attractive interaction does not exhibit this phenomenon. The
correlation length is very sensitive to the interaction strength,
unless the interaction is strongly repulsive. Thus also the
correlation length is a means to probe the nature of the
interactions. For an interaction range R > 1 one expects a
decay of correlations by a sum of exponentials with different
correlation lengths.

Experimentally, one can regulate the number of RNAP ini-
tiating from the same promoter and hence the RNAP density
by using an excess of DNA [19]. The interaction strength
and range may be probed by applying an external torque
to the RNAP [43]. It would also be interesting to derive
the full experimentally important time-headway distribution
between RNAP by generalizing the approach of [36,37] to
the present case of additional short-range interactions in the
particle hopping rate.
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APPENDIX: TRANSFER MATRIX FOR OCCUPATION
NUMBER REPRESENTATION

The invariant measure (3.16) can be written as

π̂ (η) = 1

Ẑ

∏
k

Tk,k+1 (A1)

with

Tk,k+1(η) = y−nknk+1x− 1
4 (σk+σk+1 )z− 1

2 (nk+nk+1 ). (A2)

Introducing the three-dimensional canonical basis vectors of
C3

| 0 〉 =

⎛
⎜⎝

1

0

0

⎞
⎟⎠, | 1 〉 =

⎛
⎜⎝

0

1

0

⎞
⎟⎠, | 2 〉 =

⎛
⎜⎝

0

0

1

⎞
⎟⎠, (A3)

with the scalar product 〈α | β 〉 = δα,β one finds

Tk,k+1(η) = 〈 ηk |T̂ | ηk+1 〉 (A4)

with the 3 × 3 transfer matrix

T̂ =

⎛
⎜⎜⎝

1 x− 1
4 z− 1

2 x
1
4 z− 1

2

x− 1
4 z− 1

2 x− 1
2 y−1z−1 y−1z−1

x
1
4 z− 1

2 y−1z−1 x
1
2 y−1z−1

⎞
⎟⎟⎠. (A5)

It follows that

π̂ (η) = 1

Ẑ
〈 η1 |T̂ | η2 〉〈 η2 |T̂ | η3 〉 . . . 〈 ηL′−1 |T̂ | ηL′ 〉

× 〈 ηL′ |T̂ | η1 〉 (A6)

and

Ẑ = Tr T̂ L′
. (A7)

We introduce the parameter

q = z−1(x
1
2 + x− 1

2 ). (A8)

The eigenvalues of T̂ are χ0 = 0 and

χ± = 1
2 (1 + qy−1) ± 1

2

√
(1 − qy−1)2 + 4q. (A9)

All eigenvalues are real in the physical parameter range and
one has χ+ > 1 (with equality only if μ = ∞). For K 
=
0 there is no degeneracy. For K = 0 one has χ+ = 1 +
2e−μ cosh λ and χ− = χ0 = 0.

The eigenvectors | 0,± 〉 with components A
η

0,± for η ∈
{0, 1, 2} are

| 0 〉 = z− 1
2

√
κ0

⎛
⎜⎝

0

x
1
4

−x− 1
4

⎞
⎟⎠, | ± 〉 = 1√

κ±

⎛
⎜⎝

q

x− 1
4 z− 1

2 (χ± − 1)

x
1
4 z− 1

2 (χ± − 1)

⎞
⎟⎠

(A10)

with the normalization factors

κ0 = q, κ± = q[q + (χ± − 1)2]. (A11)
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