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Run-and-tumble motion with steplike responses to a stochastic input
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We study a simple run-and-tumble random walk whose switching frequencies between run mode and tumble
mode depend on a stochastic signal. We consider a particularly sharp, steplike dependence, where the run-to-
tumble switching probability jumps from zero to one as the signal crosses a particular value (say y1) from below.
Similarly, tumble-to-run switching probability also shows a jump like this as the signal crosses another value
(y2 < y1) from above. We are interested in characterizing the effect of signaling noise on the long-time behavior
of the random walker. We consider two different time-evolutions of the stochastic signal. In one case, the signal
dynamics is an independent stochastic process and does not depend on the run-and-tumble motion. In this case
we can analytically calculate the mean value and the complete distribution function of the run duration and
tumble duration. In the second case, we assume that the signal dynamics is influenced by the spatial location of
the random walker. For this system, we numerically measure the steady state position distribution of the random
walker. We discuss some similarities and differences between our system and Escherichia coli chemotaxis, which
is another well-known run-and-tumble motion encountered in nature.
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I. INTRODUCTION

Run-and-tumble motility is widely used by a large va-
riety of microorganisms. Prokaryotic cells like Escherichia
coli, Salmonella typhimurium, Bacillus subtilis, Rhodobacter
sphaeroides, and Serratia marcescens navigate in their envi-
ronment by alternatively switching between a run mode and a
tumble mode [1–4]. Even eukaryotic organisms like Chlamy-
domonas rheinhartii or Tritrichomonas foetus are known to
use run-and-tumble strategy to move around [5–7]. Out of all
these cells, the motion of E. coli is the most well-characterized
one [8–10]. During the run mode, when E. coli cell moves in
one direction with a fixed speed, the flagellar motors in the
cell rotate in the counterclockwise (CCW) direction, which
helps the formation of a flagellar bundle and propels the
cell forward. When some of the motors start rotating in the
clockwise (CW) direction, the corresponding flagella come
out of the bundle and the bundle gets dispersed, which results
in tumbling of the cell [11,12]. During a tumble mode, the cell
does not have significant displacement, but this mode helps
the cell to reorient itself and choose a new direction for the
next run.

The rotational bias of the flagellar motors is controlled by
phosphorylated protein CheY-P inside an E. coli cell, which
binds to the motors and increases their CW bias. Importantly,
the dependence of CW bias on CheY-P concentration [13] is
very sensitive and experiments measure an almost sigmoidal
dependence [14], where CW bias changes sharply from 0 to
1 as CheY-P concentration varies within a small range. Since
CW bias is the direct measure of tumbling rate, this means
the probability for a cell to tumble is vanishingly small when
CheY-P level falls below a certain value, and when CheY-P
level goes slightly higher, the tumbling probability becomes
very close to 1 and the cell almost always tumbles.

These observations give rise to a more general and in-
teresting theoretical question: What is the effect of a sharp

or sigmoidal switching response on a simple run-and-tumble
motion? This question cannot be addressed within the widely
used coarse-grained description of run-and-tumble motion
where the system is studied over a timescale which is much
longer than a typical run duration [15]. This approach is useful
in describing the motion in terms of an effective drift velocity
and diffusion constant in the long-time regime when a large
number of tumbling events have already taken place [15–
17]. However, to understand the effect of a sharp switching
response between the run mode and tumble mode, one needs
a more microscopic model of a run-and-tumble dynamics
and in this work we have developed and studied such a
model. We consider a simple run-and-tumble random walker
whose switching probabilities between run and tumble modes
depend on a certain (stochastic) input signal. To study the
system in the simplest possible setting, we consider only two
values of the switching probabilities, 0 and 1. An infinitely
sharp response curve would mean that as the input signal level
crosses a certain threshold value, the switching probability
jumps from 0 to 1. However, such a sharp response means that
within a finite time-interval there can be an infinite number
of switching events which is unphysical. So we introduce a
small range of width � around the threshold value, such that
the probability to switch from run to tumble mode is zero
(one) as the input signal stays below (above) this range. In
other words, run to tumble switch happens, as the input signal
crosses the � range from below and goes above it. Once the
random walker is in the tumble mode, the tumble to run switch
happens with probability one when the input signal decreases
and falls below the � range. Thus, the two switches happen
at two different values of the input signal level, which are
separated by the range �. When the input signal has any
other value, no switching event takes place and the random
walker just continues in its current mode. In Fig. 1 we present
a typical example.
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FIG. 1. A typical time series of the signal y(t ). The purple (con-
tinuous line) segments correspond to tumbles and the green (dashed
line) segments correspond to runs. The values y0 and y0 ± �/2 are
shown by the three horizontal lines. We have used y0 = 0.32 and
� = 0.016 here. Every time y(t ) exits the range through a boundary
different from the one it had used to enter the range, a switch
happens.

We are interested to characterize the motion of the random
walker in the long-time limit, and to understand how the
fluctuations present in the input signal affect the motion. We
consider two types of cases here: one in which the dynamics
of the input signal is an independent process, and another in
which the time-evolution of the signal is also influenced by the
position of the random walker. Since our study is motivated
from the run-and-tumble motion found in several organisms in
nature, including E. coli, we choose the time evolution of the
signal from the well-studied physical system of chemotactic
pathway of an E. coli cell. The CheY-P level inside the cell
fluctuates with time and we consider this to be our input
signal. In the presence of a concentration gradient of the
nutrient, the CheY-P dynamics depends on the local nutrient
concentration, and hence on the cell position. However, when
the cell moves in a homogeneous nutrient environment, CheY-
P dynamics does not involve the cell position. In the latter
case, various quantities can be calculated exactly. Using the
fact that the switching events can have only probabilities 0
and 1, we show that it is possible to describe the switching as
a first passage process. From this, the probability to observe a
certain run (or tumble) duration can be calculated exactly. We
also calculate average run and tumble duration and show that
both decrease as a function of the signaling noise strength.
Our Monte Carlo simulations agree well with our analytical
calculations. In the case when the signal dynamics also de-
pends on the position of the random walker, we find the steady
state distribution of the random walker position, for a given
nutrient concentration profile in the medium, and show that it
is more likely to find the random walker in a region where the
nutrient concentration is higher. This shows that even within
this very simple version of run-and-tumble, where switching
probabilities between the two modes are either 0 or 1, the
basic signature of chemotaxis, which is to find the walker in
regions with more food with more likelihood, is recovered.

This paper is organized as follows. In Sec. II we study
run-and-tumble motion in a homogeneous environment, when
the input signal dynamics is independent of the random walker
motion. We present our exact calculation for the probability
distribution of signal variable, run duration distribution of the
random walker and variation of mean run duration and tumble

duration as a function of signaling noise in this section. In
Sec. III we consider a spatially varying nutrient environment
and present our numerical results for the position distribu-
tion of the random walker. A summary and few concluding
remarks are presented in Sec. IV.

II. RUN-AND-TUMBLE MOTION IN A
HOMOGENEOUS ENVIRONMENT

Consider a one-dimensional random walker with two pos-
sible modes: run and tumble. During a run, the random walker
moves with a fixed velocity along one particular direction, in
this case, left or right. During a tumble, the random walker
simply stays put at its current position. At the beginning of
each new run, the random walker decides at random whether
to run leftward or rightward. The switching between the two
modes is controlled by a signal y(t ) whose stochastic time
evolution can be written down (see below). If y(t ) crosses
y0 + �/2 value from below, and the walker is in the run state,
then it switches to tumble mode with probability 1. If it is
already in the tumble state, then nothing happens. Similarly,
a tumbler changes to a runner with probability 1 when y(t )
crosses y0 − �/2 from above. But at the time of crossing, if
the walker is in the run mode, then nothing happens. Clearly,
for y(t ) < y0 − �/2, the random walker can only have the run
mode and for y(t ) > y0 + �/2, only tumble mode can exist.
In the range y0 − �/2 < y(t ) < y0 + �/2, both modes can
exist. Note, however, that no switching event can take place
in this range. When y(t ) enters the range through one end and
exits the range through a different end, switch happens at the
time of exit. We have illustrated this process in Fig. 1.

It follows from the above description that our run-and-
tumble dynamics is actually different from that of an E. coli
cell. Since we consider only switching events with probability
one, there is no additional source of stochasticity in our run-
and-tumble motion, apart from that present in the stochastic
time-evolution of y(t ). For a given time-series of y(t ), it
is already fixed which modes are present at what times.
We will show below that this makes it possible for us to
calculate many things exactly in our system. For an E. coli
cell, however, switching probabilities are sharply varying, but
continuous function of the CheY-P concentration [14], and it
is possible to have a switching event with small probability,
which introduces another source of noise in the cell trajectory.

In our model, we use the same dynamics of y(t ) as that of
CheY-P protein concentration inside an E. coli cell moving
in a homogeneous nutrient background. Although the run-
and-tumble motion studied by us is not exactly same as that
found in an E. coli cell, it is still interesting to see how our
run-and-tumble system behaves when it receives input from
the same type of a stochastic signal. In the Appendix we
have derived the time-evolution equation for y(t ) from the
biochemical pathway inside an E. coli cell and it has the form,

dy

dt
= q

(
1 + rλ

2

)
y(1 − y − wy)(1 − y − 2wy)

1 − y

+ ry(1 − y − wy)η(t ), (1)

where q, r, w are all constants that depend on several bio-
chemical rate parameters, as defined in the Appendix. η(t ) is
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a Gaussian white noise with strength λ. To monitor the effect
of input signal fluctuations on the run-and-tumble dynamics,
we vary λ in our simulations.

The value y0, then naturally corresponds to that value of
CheY-P concentration for which CW bias has the value 1/2.
This value turns out to be about 3.1 μM [14]. The total
concentration of CheY protein in a cell is ∼ 9.7 μM [18].
Since y(t ) in Eq. (1) stands for the ratio of CheY-P and
CheY concentration (see the Appendix), we have y0 = 0.32.
Moreover, as discussed in Sec. I, to ensure that the switching
process is sufficiently smooth, and two switching events are
separated from each other by a minimum time interval, we
choose a small width � around y0 that separates the two
switching events from run to tumble, and from tumble to run.
Here we present data for � = 0.016 and we have also verified
(data not shown here) that our conclusions do not change for
different choices of �.

In our simulations, we consider a one-dimensional box
of length L, at the two ends of which there are reflecting
boundary walls. In a time-step dt , the random walker in the
run mode moves a distance vdt where v is the run speed. In a
tumble mode, there is no displacement. After each tumble the
random walker will choose its direction randomly. Through-
out the work we have used L = 10 000 μm, v = 10 μm/s,
dt = 0.001 s. One point about the choice of λ range should be
mentioned here. A very large λ increases fluctuations in y(t )
so much that it crosses the � range too frequently, affecting
smoothness of the underlying process. However, a very small
λ makes the y-distribution too narrow and y(t ) hardly leaves
the � range. For our choice of �, we find 0.001 � λ � 0.1 to
be suitable range.

In the remaining part of this section, we present our ex-
act calculations and numerical simulation results on various
quantities.

A. Steady-state probability distribution of y
in run and tumble modes

In this section, we calculate the probability to find the cell
in run and tumble modes for a given value of the stochastic
signal y. Let P (y, t ) be the probability distribution of y(t ).
From Eq. (1) we can construct the Fokker-Planck equation for
P (y, t ) using Ito prescription [19],

∂P (y, t )

∂t
= − ∂

∂y
[B1(y)P (y, t )] + 1

2

∂2

∂y2
[B2(y)P (y, t )],

(2)

where, B1(y) = q(1 + rλ
2 ) y(1−y−wy)(1−y−2wy)

1−y
and B2(y) =

r2kRλy2(1 − y − wy)2. In steady state, the left-hand side
of Eq. (2) vanishes. Also, by definition, y cannot become
negative. We show in the Appendix that y actually remains
bounded between 0 and ym = 1/(1 + w). Therefore, we use
reflecting boundary conditions at y = 0 and y = ym, which
gives the following solution in steady state:

P (y) = wκ (1 − y)−2κ [y(1 − y − wy)]κ−1

B(κ )
, (3)

where B(κ ) = ∫ ∞
0 [x(1 − x)]κ−1dx = �[κ]2

�[2κ] and κ = 2/(rλ).
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FIG. 2. Steady-state probability distribution of the signal vari-
able. (a) For different noise strength λ, probability density of the
signal variable y is plotted against y. Discrete points are from
simulation and continuous lines are from analytical calculation using
Eq. (3). (b) Probability density PR (y ) and PT (y ) to observe a runner
and a tumbler, respectively, with a given y value is plotted in the
range [y0 − �/2, y0 + �/2]. The decreasing curves correspond to
PR (y ) and increasing curves are for PT (y ). The discrete points from
simulations show excellent agreement with continuous lines from an-
alytics. The probabilities are normalized, although for some y values,
the probability densities exceed unity. All simulation parameters are
as specified in Sec. II and the Appendix.

In Fig. 2(a) we compare this result against numerical
simulation and find good agreement for different values of the
noise strength λ. In the right panel of the same figure we plot
the individual probability of finding the random walker in run
state and in tumble state for a given value of y, after steady
state has been reached. We denote the run-state probability
by PR (y) and the tumble-state probability by PT (y), and
clearly, PR (y) + PT (y) = P (y). Now, as follows from our
dynamical rules, as y falls below the value y0 − �/2, tumble
modes cannot exist and the random walker is always in the
run mode, i.e., PR (y) = P (y) for y � y0 − �/2. Similarly,
for y � y0 + �/2, we have PT (y) = P (y) and PR (y) = 0.
Both PR (y) and PT (y) have nonzero values for y0 − �/2 <

y < y0 + �/2. To solve for PR (y) in this range, we notice
that it follows the same Fokker-Planck equation as Eq. (2) and
in steady state this equation has the general solution

PR (y) = w

(1 − y)2

[1 − ( 2wy

1−y
− 1

)2

4

]κ/2−1

×
[
C1P

κ
κ

(
2wy

1 − y
− 1

)
+ C2Q

κ
κ

(
2wy

1 − y
− 1

)]
,

(4)

where P κ
κ and Qκ

κ are associated Legendre polynomial
of first and second kind, respectively. The constants C1

and C2 can be determined from the boundary conditions
PR (y0 − �/2) = P (y0 − �/2) and PR (y0 + �/2) = 0, dis-
cussed above. PT (y) can simply be obtained from PT (y) =
P (y) − PR (y). In Fig. 2 we verify our analytical calculation
against numerical simulations for few different values of the
noise strength λ and find good agreement.

B. Average run-and-tumble duration decreases
with signaling noise

One possible way to characterize a run-tumble motion
is by measuring the average duration of a run mode and a
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FIG. 3. Average run and tumble duration as a function of sig-
naling noise strength λ. (a) The average run duration τ1 decreases
as a function of λ. The range of variation of τ1 is quite significant.
(b) The average tumble duration τ2 decreases with λ but the range of
variation is much smaller than that for τ1. Discrete points are from
simulations and continuous lines are from analytics. The simulation
parameters are the same as described in the caption of Fig. 2.

tumble mode. In Fig. 3(a) we plot average run duration as
a function of the noise strength λ. We find that as signaling
noise decreases, the average run duration increases. In fact,
for low λ values, average run duration becomes so large that
in our simulations we have to consider large system size L

to avoid finite size effects. Figure 3(b) shows variation of
average tumble duration with noise. Below we discuss how
to calculate these averages exactly.

Note that at the beginning of a run, i.e., just at the instant
when tumble to run switch happens, the input signal y always
has the value y0 − �/2. Starting from this value, when y

crosses y0 + �/2 for the first time, the run ends and a tumble
begins. Therefore, a run can be viewed as a first passage
event in the y space. This makes it possible to calculate the
average run duration and even the run-length distribution
(see next subsection) exactly. If T (yi, yf ) denotes the mean
first passage time for y to reach the value yf for the first time,
starting from an initial value yi , then T (y0 − �/2, y0 + �/2)
represents the mean run duration and T (y0 + �/2, y0 − �/2)
stands for the mean tumble duration.

Let p(y ′, t |y, 0) be the conditional probability that the
input signal has the value y ′ at time t , given that it started
with the value y at time t = 0. This conditional probability
follows the backward Fokker-Planck equation [19,20],

∂p(y ′, t |y, 0)

∂t
= B1(y)

∂p(y ′, t |y, 0)

∂y

+ 1

2
B2(y)

∂2p(y ′, t |y, 0)

∂y2
, (5)

where B1(y) and B2(y) are drift and diffusion terms appearing
in Eq. (2). To calculate the mean first passage time at y0 +
�/2, starting from y0 − �/2, we put an absorbing boundary
condition at the target y = y0 + �/2 and remember the re-
flecting boundary condition at y = 0. The survival probability
G(y, t ; y0 + �/2) is defined as the probability that start-
ing from y < y0 + �/2, the signal variable has not reached
the target value y0 + �/2 till time t . Clearly, G(y, t ; y0 +
�/2) = ∫ y0+�/2

0 dy ′p(y ′, t |y, 0). From Eq. (5) it follows that

G(y, t ; y0 + �/2) satisfies the following equation:

∂G(y, t ; y0 + �/2)

∂t
= B1(y)

∂G(y, t ; y0 + �/2)

∂y

+ 1

2
B2(y)

∂2G(y, t ; y0 + �/2)

∂y2
, (6)

with the initial condition G(y, 0; y0 + �/2) = 1 and the
reflecting and absorbing boundary conditions are imple-
mented as ∂yG(y, t ; y0 + �/2)|y=0 = 0 and G(y, 0; y0 +
�/2)|y=y0+�/2 = 0. The survival probability till time t can
be alternatively stated as the probability that the first passage
time is larger than t . Therefore, the first passage time distri-
bution is simply −∂tG(y, t ; y0 + �/2). The mean first pas-
sage time is then T (y, y0 + �/2) = − ∫ ∞

0 dt t ∂tG(y, t ; y0 +
�/2) = ∫ ∞

0 dtG(y, t ; y0 + �/2), which follows the equation

B1(y)
∂T (y, y0+�/2)

∂y
+ 1

2
B2(y)

∂2T (y, y0+�/2)

∂y2
= −1.

(7)

This equation can be solved to get the mean run duration as

T (y0 − �/2, y0 + �/2)=τ1=2
∫ y0+�/2

y0−�/2

dy

ψ (y)

∫ y

0

ψ (z)

B2(z)
,

(8)

where ψ (x) = exp [
∫ x

0 dx ′2B1(x ′)/B2(x ′)]. Similarly, mean
tumble duration can be written as

T (y0 + �/2, y0 − �/2)=τ2 =2
∫ y0+�/2

y0−�/2

dy

ψ (y)

∫ ym

y

ψ (z)

B2(z)
.

(9)

where reflecting boundary condition is used for y = ym and
absorbing boundary condition for y = y0 − �/2. We find
good agreement with the simulation data in Fig. 3.

C. Distribution of the run duration of the random walker

Using the correspondence between the run-and-tumble
durations of the random walker and the first passage events
for the input signal, it is possible to calculate not only the
average run-and-tumble durations, but also the full distribu-
tion function of these durations. We outline this calculation
in this subsection. First we present our numerical data for the
run duration distribution. In Fig. 4(a) we plot the probability
Prun(t ) that the random walker has a residence time t in the run
mode, for different values of the noise strength λ. We find that
the probability vanishes for very small and large t and shows
a peak in between. The peak position depends on λ and as λ

increases, the peak shifts toward smaller values of t . In other
words, the most probable run duration becomes smaller and
smaller as noise increases. This behavior is similar to that of
the mean run duration shown in Fig. 3. As noise increases,
the signal y(t ) takes less and less time to reach the value
y0 + �/2, starting from y0 − �/2 since the diffusivity B2(y)
becomes larger with noise.

To calculate the run-duration distribution analytically,
we focus on its Laplace transform. First we consider the
Laplace transform of the survival probability G̃(y, s) =
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∫ ∞
0 dt e−st G(y, t ; y0 + �/2), where for simplicity of nota-

tion we have dropped y0 + �/2 from the argument of the G̃.
From Eq. (6) it follows that

1
2B2(y)∂2

y G̃(y, s) + B1(y)∂yG̃(y, s) − sG̃(y, s) = −1.

(10)

Defining Ũ (y, s) = G̃(y, s) − 1
s

we get

1
2B2(y)∂2

y Ũ (y, s) + B1(y)∂yŨ (y, s) − sŨ (y, s) = 0, (11)

whose general solution is

Ũ (y, s) =
[
wy(1 − y − wy)

(1 − y)2

]κ/2[
D1P

√
κ2+4μ(s)

κ

(
2wy

1 − y
− 1

)
+ D2Q

√
κ2+4μ(s)

κ

(
2wy

1 − y
− 1

)]
, (12)

where μ(s) = 2s
λqr

. The constants D1 and D2 can be deter-

mined from the boundary conditions: G̃(y0 + �/2, s) = 0
and ∂yG̃(y, s)|y=0 = 0 for all s. The Laplace transform of
first-passage time distribution is given by 1 − sG̃(y, s), which
can be evaluated at y = y0 − �/2 to obtain the Laplace trans-
form of run-length distribution. We compare our calculation
with simulation results in Fig. 4(b) and find good agreement.
In Figs. 4(c) and 4(d) we similarly plot distribution of tumble
duration and its Laplace transform. Note that the main dif-
ference between Prun(t ) and Ptum(t ) can be seen for large t

values, when Ptum(t ) decays more sharply. As a result, mean
run duration τ1 is always larger than mean tumble duration τ2

[see also the data in Figs. 3(a) and 3(b)].
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FIG. 4. Distribution of run duration and tumble duration for
different value of noise strength. (a) Simulation results for the
distribution of the run duration of the bacterium Prun(t ). The distri-
bution has a peak whose position shifts leftward as noise increases.
(b) The Laplace transform of Prun(t ) analytically calculated and plot-
ted in continuous lines. The discrete points show Laplace transform
calculated from the data in panel (a) and we find good agreement.
(c) Simulation results for the distribution of the tumble duration of
the bacterium Ptum(t ). (d) The Laplace transform of Ptum(t ) ana-
lytically calculated and plotted in continuous lines and the discrete
points are the Laplace transform of data in panel (c). The simulation
parameters are the same as described in the caption of Fig. 2.

III. RUN-AND-TUMBLE MOTION IN AN ENVIRONMENT
WITH SPATIAL VARIATION

In the previous section, we studied the situation, when the
coupling between the stochastic signal y(t ) and the random
walk motion is one way. While the random walk switches
between the run and tumble modes depending on the value of
the signal, the signal itself fluctuates independently according
to Eq. (1). In this section, we consider a two-way coupling
between the signal dynamics and the random walker motion.
More specifically, we consider a time-evolution equation for
y(t ) which involves the position x of the random walker as
well. Thus, the random walker runs and tumbles following
the y(t ) value as before, but the random walker position now
influences the time-evolution of y(t ). We write the equation
for y(t ) dynamics as

dy

dt
= q

(
1 + rλ

2

)
y(1 − y − wy)(1 − y − 2wy)

1 − y

− s
y(1 − y − wy)

[KA + c(x)][KI + c(x)]
+ ry(1 − y − wy)η(t ).

(13)

As explained in the Appendix, this dynamics is borrowed from
a physical system that describes the fluctuation in the CheY-P
protein level inside an E. coli cell in the presence of a nutrient
concentration gradient in the extracellular environment. For
Eq. (13) we have chosen a nutrient concentration profile that
is linear and has the form c(x) = c0(1 + x/x0). The run-and-
tumble motion of an actual E. coli cell in such a nutrient
environment gives rise to chemotaxis and in the long-time
limit there is larger probability to find the cell at regions with
higher c(x) [16,21–23].

The two-way coupling between y(t ) and x(t ) makes it
difficult to obtain analytical solution in this case and we study
the system using numerical simulations. We consider the weak
gradient limit here when c(x) varies very slowly with x. As a
result, the quantities like Prun(t ) or Ptum(t ) look almost similar
to our data in Fig. 4. We do not present these data here.
However, it is interesting to see whether in the long-time limit
the random walker manages to localize itself in the region with
large c(x). In Fig. 5 we show the data for the position distribu-
tion of the random walker in the long-time limit. We find that
Pλ(x) increases with x, roughly linearly. This result shows
that although the run-and-tumble dynamics is significantly
different from and simpler than that of an E. coli cell, the
walker still manages to locate itself in the region with higher
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FIG. 5. The distribution Pλ(x ) of the random walker position x

for different noise strengths. The x axis has been scaled with the
size of the cell which is a0 = 2 μm. We have used c(x ) = c0(1 +
x/x0 ) here and for all λ values, Pλ(x ) shows a positive slope. For
large λ, the slope is less. We have chosen c0 = 200 μM and x0 =
200 000 μm here and all other parameters are as described in the
caption of Fig. 2.

nutrient concentration with larger probability. Our data show
that Pλ(x) varies as c(x) for small and intermediate λ values.
However, when λ becomes large, Pλ(x) gradually becomes
flat, as expected in the limit of large signaling noise, when the
time-evolution of y(t ) is mainly governed by the stochastic
fluctuations, and its x-dependence can be almost ignored.

IV. CONCLUSION

In this paper, we have investigated the effect of a sharp
steplike response function on a run-and-tumble random walk.
In nature run-and-tumble motion is ubiquitous in a wide
variety of organisms. While an intracellular biochemical re-
action network controls the motion in all these cases, some
organisms, for example, E. coli bacteria, show a particularly
sensitive dependence on these reactions. The transition rate
of an E. coli cell from run mode to tumble mode depends
strongly and sensitively on the fluctuating concentration of
the protein CheY-P, which is an important component of its
reaction network. This motivates a general theoretical ques-
tion that we consider in this paper: What happens when a
run-and-tumble motion is coupled to a stochastic input signal
via a sensitive response? We are interested in two different
cases: one in which the stochastic dynamics of the input signal
is an independent process and another in which the signal
variable dynamics also depends on the spatial location of
the random walker. In the first case, we specifically choose
the signal variable dynamics from that of CheY-P protein
concentration for an E. coli cell in a homogeneous nutrient
environment. The simple switching dynamics that we use
for our run-and-tumble walker makes it possible to calculate
many things exactly in this case. In the second case, we con-
sider a signal variable whose time-evolution mimics CheY-P
dynamics for an E. coli cell in a spatially varying nutrient
environment. Interestingly, our numerical simulations show
that even with its simple run-and-tumble strategy, the random
walker manages to localize in a region where nutrient density
is higher.

The run-and-tumble motion that we consider here, is sig-
nificantly different from that executed by an E. coli cell. While
for an E. coli cell, the tumbling bias varies sensitively, but

continuously as a function of the CheY-P level, in our model
the switching probability between the run and tumble modes
show a sharp jump from 0 to 1. This allows us to address
the theoretical question of the effect of sharp response in
the simplest possible setting. Although our results in Fig. 5
show that the basic signature of chemotaxis is still retained
in our model, we also find some important differences from
well-known E. coli behavior. One such crucial difference is
observed in run duration distribution. For low signaling noise,
the run and tumble duration follow Poisson process, so that
E. coli shows exponential distribution of run and tumble du-
ration. As the signaling noise gets larger, longer runs become
more probable and the distribution of run changes to a power
law but tumble duration still shows exponential distribution
[24–29]. In contrast, in our model, runs and tumbles can be
described as first passage events and both the distribution of
run and tumble [see Figs. 4(a) and 4(c)] have a peak and show
a power law tail for all values of λ, indicating that this process
is not Poissonian. Moreover, we also find that with increasing
noise, longer runs become less probable in our case. As noise
level becomes lower, the mean run duration in our model
increases rather strongly. For E. coli motion also mean run
duration becomes larger for lower signaling noise, but the
variation is much weaker in that case [29].

As we mentioned in Sec. II, the run-and-tumble trajectory
of E. coli has an additional level of stochasticity coming from
the fact that switching probability can be less than one, which
means for a given time-series of the input signal, it is possible
to generate different run-tumble trajectories. However, in our
model, switching probability is either 0 or 1 and can be
nothing in between. This deterministic nature means that only
one run-and-tumble trajectory is possible for a given signal
time series. Although the direction of a new run is still chosen
randomly at the time of every tumble to run switch in our
model, but in a homogeneous nutrient background it makes no
difference whether the random walker is running towards left
or right. The differences mentioned in the previous paragraph
may be alternatively viewed as the result of this deterministic
versus stochastic aspect. It also shows that although CW bias
of E. coli increases really sharply as CheY-P level changes,
when that response is actually replaced by a jump in the
switching probability, system shows qualitatively different
behavior in many aspects. It may be interesting to gradually
vary the steepness of a sigmoidal response curve and see if
there is a crossover between the two behaviors.

Our model of run-and-tumble motion complements the
widely used coarse-grained model where instead of looking at
the switching events between the run and tumble modes, the
system is described over a timescale in which a large number
of switching events have already taken place. This coarse-
graining allows one to describe the motion in terms of stan-
dard drift-diffusion process [15,16,30]. Using this formalism,
the motion of E. coli in a homogeneous nutrient environment,
can be described as an unbiased diffusion. Interestingly, the
diffusion co-efficient in this case is order of magnitude larger
than that expected for an ordinary Brownian motion of a
particle whose size is comparable to that of a bacterial cell
[15]. Contrary to this coarse-grained approach, our model
probes a run-and-tumble dynamics at a more microscopic
level, where each switching event is taken into account and

012402-6



RUN-AND-TUMBLE MOTION WITH STEPLIKE RESPONSES … PHYSICAL REVIEW E 99, 012402 (2019)

the interval between two successive switching events is de-
scribed using time-evolution of a stochastic signal. Of course,
in the very-long-time limit, even our model yields diffusive
behavior (data not shown here) for the case of homogeneous
environment discussed in Sec. II. For the spatially varying
environment discussed in Sec. III, the random walker picks up
a drift velocity which is proportional to the spatial gradient of
c(x), and this is consistent with earlier known results [16,21].

Finally, at a more general level, many different organisms,
other than E. coli, show run-and-tumble motility. Some of
these organisms have very similar motility mechanism as E.
coli, e.g., S. typhimurium [1], B. subtilis [2] or S. marcescens
[4], but prokaryotes like R. sphaeroides have a somewhat
different mechanism. In a R. sphaeroides cell, a single flag-
ellum is present and CCW rotation of the motor causes a run,
while abrupt ceasing of rotation allows the cell to tumble or
reorient [3]. Among eukaryotic cells, C. rheinhartii contains
two flagella and when these two flagella beat synchronously,
the cell swims smoothly, while an asynchronous beating
results in tumbles [5]; T. foetus has four flagella and they
follow two distinctly different beating patterns to cause run
mode and tumble mode of the cell motion [6]. Many of
these organisms are experimentally not as well-characterized
as E. coli. But in all cases the switching between the run
mode and tumble mode, are controlled by flagellar motion,
which in turn depends on intra-cellular signaling. Therefore,
a general understanding of how a sensitive dependence on the
stochastic signal affects a run-and-tumble motion may prove
useful for these systems as well and our study takes a step in
this relatively less-explored direction.

ACKNOWLEDGMENTS

S.C. acknowledges financial support from the Sci-
ence and Engineering Research Board, India (Grant No.
EMR/2016/001663). The computational facility used in this
work was provided through the Thematic Unit of Excellence
on Computational Materials Science, funded by Nanomission,
Department of Science and Technology (India).

APPENDIX: THE SIGNALING PATHWAY INSIDE
AN ESCHERICHIA COLI CELL

The signaling pathway inside an Escherichia coli cell can
be described in terms of three coupled dynamical variables:
the activity a(t ) and methylation level m(t ) of the chemo-
receptor complex, CheY-P concentration y(t ). We use the
standard model introduced in Refs. [22,31] and subsequently
modified in Ref. [32].

The activity is defined as the probability to find the
chemoreceptor in the active state and has the expression

a = 1

1 + eN (fm+fc )
, (A1)

with fm = α(m0 − m) and fc = − log [ 1+c(x)/KA

1+c(x)/KI
] [33,34].

Here, c(x) is the concentration of the nutrient at the cell
position x. Clearly, as the cell position x or methylation level
m change with time, activity a also changes. However, by
definition, a(t ) always stays bounded between 0 and 1. The

parameter values are N = 6, KA = 3 mM, KI = 18.2 μM,
α = 1.7, m0 = 1 [22,32].

The (de)methylation reaction is the slowest reaction step
in the biochemical pathway. Hence any stochastic fluctuation
that happens at this step, is propagated downstream as a
slow noise and cannot be integrated out. Because of this, the
signaling noise is often incorporated as an additive Gaussian
white noise in the methylation reaction [32]

dm

dt
= kR (1 − a) − kBa + η(t ). (A2)

Here, η(t ) denotes stochastic noise with properties 〈η〉 =
0 and 〈η(t )η(t ′)〉 = λ(kR (1 − ā) + kBā)δ(t − t ′), where ā =
1/2 is the average activity level in absence of any noise.
kR and kB are the rate parameters of the reactions in the
biochemical pathway. They have small values, which makes
the above reaction a slow one. In our simulation, we have
used kR = kB = 0.015s−1 [32,35], which gives 〈η(t )η(t ′)〉 =
λkRδ(t − t ′).

Fluctuations in methylation level will also cause fluctua-
tions in activity which in turn affects the phosphorylation of
CheY proteins. In the phosphorylated state, CheY-P proteins
bind to the flagellar motors and cause the cell to tumble.
Denoting the fraction of phosphorylated CheY proteins as y,
we can write [32]

dy

dt
= kY a(1 − y) − kZy, (A3)

where the rates kY = 1.7 s−1 and kZ = 2 s−1 are much larger
than the (de)methylation rates [31,32].

In the case when the cell moves in a homogeneous nutrient
background, c(x) = c0, the activity a(t ) becomes a function
of m(t ) alone, and from Eqs. (A1) and (A2) and one can write

da

dt
= kRNαa(1 − a)(1 − 2a)

(
1 + Nαλ

2

)

+Nαa(1 − a) η(t ). (A4)

A quasi-steady-state approximation can be made at this stage,
using the fact that the y-dynamics is sufficiently fast, and
hence at the timescale over which a(t ) is changing, an av-
erage y concentration is felt, which gives y(t ) = a(t )/[a(t ) +
kZ/kY ]. Then Eq. (A4) becomes

dy

dt
= kRNα

(
1 + Nαλ

2

)
y
(
1 − y − kZy

kY

)(
1 − y − 2kZy

kY

)
1 − y

+Nαy

(
1 − y − kZy

kY

)
η(t ). (A5)

Writing q = kRNα, r = Nα, and w = kZ/kY , we get Eq. (1).
In the case when the nutrient concentration is not uniform,
but varies linearly in space, c(x) = c0(1 + x/x0), activity a(t )
changes when the methylation level changes, or when the cell
moves in the medium. In that case, Eq. (A5) becomes

dy

dt
= q

(
1 + rλ

2

)
y(1 − y − wy)(1 − y − 2wy)

1 − y

− vNc0

x0

KA − KI

[KA + c(x)][KI + c(x)]
y(1 − y − wy)

+ ry(1 − y − wy)η(t ). (A6)

Writing s = vNc0
x0

(KA − KI ) gives us Eq. (13).
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Note that the quasi-steady-state approximation used above
means that since a(t ) always stays within the range [0,1],
the variable y(t ) should also stay in [0, ym], where ym =

1/(1 + kZ/kY ). In the main paper, we provide exact solution
of Eq. (A5) where we use reflecting boundary conditions at
y = 0 and y = ym.
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