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Cell geometry and leaflet bilayer asymmetry regulate domain formation in plasma membranes
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We model how pattern formation in a multicomponent lipid bilayer pinned to an elastic substrate is governed
by the interplay between lipid phase separation and the tendency of domains of high intrinsic curvature lipids
to deform the membrane away from a stiff substrate such as the cell wall. The emergent patterns, which
include compact and striped lipid microdomains, are anticorrelated across the two leaflets and depend on leaflet
asymmetry, the ability of lipids to flip between leaflets, and the global geometry. We characterize analytically
the dependence of stripe width on lipid parameters, and consider the implications of interleaflet patterning for
curvature-dependent lipid localization.
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I. INTRODUCTION

Recent studies have highlighted the role of biological
membranes in subcellular protein organization and protein
function [1–7], both in eukaryotic and prokaryotic cells. A
growing body of experimental findings and theoretical models
has led to the recognition that membrane curvature can guide
the spatial organization of lipids and membrane-associated
proteins [4], providing a mechanism for localization that
emerges directly from cell geometry rather than relying on
targeting to other molecules. Moreover, constituent lipids and
proteins can then cause membrane deformations that alter
the surface landscape. In vitro experiments with supported
lipid bilayers have demonstrated the influence of molecular
shape on membrane curvature and phase separation, linking
the biochemical composition and mechanics of membranes
(see Ref. [2] for a review). In this paper, we develop a minimal
model to study the role of bending-mediated forces in govern-
ing spatial patterning at length scales substantially larger than
individual molecules. Our model and results provide a deeper
understanding of lipid and protein organization in prokaryotic
and eukaryotic membranes [1,4,8–14], as well as for in vitro
supported bilayers [2,15–17]. Moreover, insight into the self-
assembly mechanisms of multicomponent membranes will
facilitate the design of novel materials whose fabrication
transcends traditional constraints.

To study how geometry affects the spatial organization of
a multicomponent membrane, we extend a previous model
[18,19] that was proposed in the context of localization of
the lipid cardiolipin within the cytoplasmic membranes of
rod-shaped bacteria such as Escherichia coli and Bacillus
subtilis. Cardiolipin, which has two head groups and four
tails and thus a high intrinsic negative curvature, has been
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shown to localize to the septal and polar regions [8–10], which
have slightly higher curvature than the midcell region. We
previously argued that due to the large size mismatch between
individual lipids (<1 nm) and the cell radius (∼500 nm),
the energetics of individual cardiolipin molecules are insuf-
ficient to explain the observed preference for the poles, and
hence that polar localization likely requires the formation of
cardiolipin clusters of intermediate size [18,19]. In a recent
study in which E. coli cells were reshaped into ellipsoidal
molds of different curvatures, domain formation and “polar”
localization were observed at a crossover curvature approxi-
mating that of normal, rod-shaped cells [11]. Moreover, we
suggested that domains of cardiolipin could mediate protein
targeting [18,19], which was independently discovered for the
osmosensory transporter ProP in E. coli [20].

Our previous work considered only the energetics of the
inner leaflet of the membrane. However, two factors suggest
that the outer leaflet may impact the organization of the inner
leaflet. Lipids are able to flip between the leaflets through
the activity of flippases, suggesting that energetics may drive
changes in the relative composition of each leaflet. Moreover,
due to the coupling between composition and curvature in
our model, domains in one leaflet can effectively interact
with domains in the other leaflet. This in turn could also
affect curvature dependent localization, since the preference
of a domain of cardiolipin in the inner leaflet for regions of
higher curvature could be counterbalanced by the disfavoring
of a similar domain in the outer leaflet. In the current study,
we consider a two-component bilayer membrane, in which
one of the lipid types has a higher intrinsic curvature (e.g.,
cardiolipin). Coupling of membrane geometry to the shape
of the cell is represented by a potential that captures the
pinning of the membrane to the external cell wall by turgor
pressure in bacteria, and binding to the cortical cytoskeleton
in eukaryotic cells. While for model membranes in vitro
it is typically assumed that the timescale for lipid flipping
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between leaflets is long (several hours) [21,22], the presence
of flippases in biological membranes [23] allows the two
leaflets to more rapidly equilibrate [23]. Thus, we consider
the effect of cardiolipin partitioning into both leaflets of the
membrane for two cases: (i) where the lipid composition is
separately fixed in each leaflet (no flipping), and (ii) where
lipids are allowed to flip between the leaflets. In both cases,
we identify a rich phase space of cluster morphologies,
some of which have direct connections with experimental
observations [24].

II. MODEL

In our model of a pinned two-component lipid bilayer, we
consider lipids of type A, with high intrinsic curvature γ , and
type B, with zero intrinsic curvature. We allow lipids to be
asymmetrically distributed between the two leaflets, and each
leaflet can have lipids of both types. The total energy of the
membrane is

E = Eelastic + Ein
int + Eout

int , (1)

where Eelastic represents the elastic energy of the membrane
and Ein/out

int represents short-range lipid-lipid interactions in
the inner and outer leaflet. The elastic energy is a sum of the
bending energy of the two leaflets and a pinning potential that
penalizes deviation from a preferred height:

Eelastic =
∫

M

(
κ

2
{[2H (r)]2 + 2[γout (r) − γin(r)]H (r)}

+ λ

2
[h(r) − h0(r)]2

)
dr, (2)

where the domain of integration M is the two-dimensional
surface representing the lipid bilayer [25]; the subscript M

will be omitted in all integrals that follow. The last term,
proportional to the pinning modulus λ, is the pinning poten-
tial that penalizes mid-plane deformations of the membrane
away from its minimum-energy position with respect to the
substrate (cell wall or cytoskeleton), with h(r) representing
the local height of the membrane and h0(r) the preferred
height. In the case of bacteria, this pinning potential represents
the coupling of the cytoplasmic membrane to the cell wall,
believed to be driven in large part by the turgor pressure, as
removing turgor through hyperosmotic shock causes plasmol-
ysis (separation of the membrane from the cell wall) [26].
In eukaryotic cells, this potential represents the coupling or
pinning of the membrane to the actin cytoskeleton through
diverse interactions [27]. A similar energy term has also been
used previously in the literature in the context of deformations
of red blood cell membranes coupled to the cytoskeleton
[28], although not in the context of bilayer asymmetry, as
we have addressed in this manuscript. In Eq. (2), H is the
local mean curvature of the two-dimensional membrane, and
γin and γin/out are the composition-dependent local intrinsic
curvature of the inner and outer leaflets, respectively, given
by γin/out(r) = γ or 0 if there is a lipid A or B, respectively,
at r in the inner or outer leaflet. Within each leaflet, the
interaction energy represents the energetic contribution from
short-range chemical interaction between the lipids, including
electrostatic, van der Waals, and hydrophobic interactions.

We neglect species-dependence of the inter-leaflet lipid inter-
action. If we represent the membrane as a two-dimensional
lattice, then the interaction energy can be written as a sum of
two contributions, Ein

int and Eout
int , corresponding to the inner

and outer leaflets of the bilayer,

Ein/out
int =

∑
〈i,j〉

∑
α,β

φin/out
i,α φin/out

j,β εαβ, (3)

where φin/out
i,α = 0 or 1 indicates the absence or presence of

the lipid species denoted by α at lattice site i in the inner or
outer leaflet, and α can be either A or B. We consider only
nearest neighbor interactions 〈i, j 〉, with εαβ being the lipid-
lipid interaction energy.

We minimize the energy of this system using a Metropolis
Monte Carlo algorithm. We represent the two leaflets as
two-dimensional triangular lattices fully occupied by lipids
of types A or B (see Appendix C); we previously showed
that triangular and square lattices produce similar results
[19]. Within each leaflet, we consider only nearest neighbor
interactions with strength εαβ , where α, β can be either
A or B. Unless otherwise specified, the simulations were
performed with a 100 × 100 periodic triangular lattice, the
membrane stiffness modulus was κ = 25 kBT and the pinning
modulus was λ = 0.25 kBT nm−4. To simplify the exploration
of parameter space, we set εAA = εBB = 0 and varied only the
repulsive interaction energy εAB between unlike lipids.

III. PATTERN FORMATION ON A FLAT SUBSTRATE

We first focused on the case of a flat substrate (h0 = 0), and
studied pattern formation for relatively low lipid A concentra-
tion (7.5% lipid A and 92.5% lipid B) in each leaflet, consis-
tent with the low levels of cardiolipin in E. coli and B. subtilis.
We assumed no lipid flipping between the two leaflets; for flat
substrates, flipping simply ensures identical lipid fractions,
on average, in both leaflets. For fixed values of κ and λ,
we observed robust and characteristic pattern formation for
different values of intrinsic curvature γ and interaction energy
εAB. For high values of εAB = 1 kBT and low γ = 0.2 nm−1,
bending and pinning were relatively minor contributions to
the total energy and the membrane minimized its energy by
forming single large domains of lipid A in each leaflet [Fig.
1(a)]. These domains were never observed to overlap across
the two leaflets. For larger γ , we observed striped domains of
lipid A that alternated in space between the leaflets [Fig. 1(b)].
The stripe width was determined by the values of γ and εAB,
with larger γ resulting in decreased stripe width [Fig. 1(c)];
we will analyze, in detail, the dependence of stripe width on
model parameters in the next section. For asymmetric lipid
compositions with higher lipid A fraction in the inner leaflet,
we observed the coexistence of striped domains and smaller
lipid A microdomains in the inner leaflet [Fig. 1(d)].

The local concentration of lipid A was much higher within
the region of striped domains (around 50% in each leaflet).
Consequently, to explore the physics of stripe formation, we
studied membranes with higher fractions of lipid A in each
leaflet. To investigate the effects of asymmetric composition
on pattern formation, we maintained a constant total amount
of lipid A and lipid B (50% of each), but allowed for unequal
partitioning between the two leaflets. The fraction of lipid A
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(a)  

(d)(c)  

γ = 0.2 nm-1, εAB = 1 kBT γ = 0.4 nm-1, εAB = 1 kBT

γ = 0.8 nm-1, εAB = 1 kBT

(b)

γ = 0.8 nm-1, εAB = 1 kBT

FIG. 1. Lipids in a two-component membrane can form domains
or stripes depending on the intrinsic curvature of the lipids. Shown
are typical membrane configurations from simulations of a flat cell
surface in the absence of lipid flipping between the leaflets. Blue
(dark gray, in print) and red (intermediate gray, in print) represent
lipid A locations solely in the inner and outer leaflet, respectively;
light gray (green) represents locations occupied by lipid B (lipid A)
in both leaflets. (a–c) For equal lipid A fractions φin = φout = 0.075
in the two leaflets, increasing γ leads to a transition from a single
domain to stripes with width inversely proportional to γ . (d) For
asymmetric composition φin = 0.2 and φout = 0.05, a combination
of stripes and microdomains occurs.

in each leaflet had a strong influence on the resulting pattern
(Fig. 2). For a high degree of asymmetry (lipid A fractions
φin = 0.25 and φout = 0.75), simulations produced regularly
spaced, approximately circular microdomains arranged in a
roughly hexagonal pattern [Fig. 2(a)]. For a smaller degree of
asymmetry (φin = 0.4, φout = 0.6), we observed a mixture of
stripes and compact domains [Fig. 2(b)], while for symmetric
leaflets (φin = φout = 0.5), we obtained stripes covering the
entire membrane [Fig. 2(c)]. We can measure the average
stripe width from the Fourier transform of the lipid composi-
tion [Fig. 2(d), inset]. This transition from a hexagonal array
of domains at higher compositional asymmetry to a striped
pattern for symmetric leaflet composition is consistent with
recent studies of multicomponent vesicles [29,30].

IV. PHYSICS OF STRIPE FORMATION

What drives stripe formation in these two-component
membranes? The general notion is that microdomains/stripes
arise due to the competition between interaction-driven phase
separation and the tendency of lipid domains with high intrin-
sic curvature to deform the membrane away from its preferred
height, which results in a higher elastic energy penalty for
larger lipid A domains due to the pinning potential. Based
on this idea, we expect smaller domains or thinner stripes
for higher values of the intrinsic curvature γ or of the pin-
ning modulus λ. We estimated the average stripe width from
the Fourier transform of the lipid composition [Fig. 2(d),
inset], and indeed stripe width varied inversely with γ
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FIG. 2. Transition from microdomains to stripe formation as
leaflet asymmetry is reduced. The total amounts of lipid A and B
are held fixed, while partitioning between the leaflets is varied. (a–c)
Increasing lipid A fraction in the inner leaflet, for fixed intrinsic
curvature γ . For subfigure (a), φin = 0.25 and φout = 0.75, for (b)
φin = 0.4 and φout = 0.6, and for (c) φin = φout = 0.5. As in the
previous figure, blue (dark gray, in print) and red (intermediate gray,
in print) represent lipid A located solely in the inner and outer leaflet,
respectively, while light gray (green) represents regions occupied
by lipid B (lipid A) in both leaflets. (d) Stripe width as a function
of γ , estimated from the Fourier transform of the configuration
of lipid A molecules (circles) and estimated from our analytical
calculation (solid curve). Inset: Fourier transform from a simulation
with parameters of (c). The stripe width is inversely proportional to
the radius of the ring in Fourier space. (e) Variation of scaled stripe
width from simulation (circles) and calculated analytically (curve)
for line tension τ = 1.68 kBTnm−1.

[Fig. 2(d), Fig. 6]. From a complementary perspective, we
previously demonstrated that the elastic membrane energetics
result in an effective long-range repulsive interaction between
two lipid A molecules in the same leaflet [19]. Extending
that notion, we find that two lipid A molecules in different
leaflets experience a similar effective long-range interaction
that is now attractive (Appendix A), except when their lat-
eral positions overlap. For the case where the two lipid A
molecules in different leaflets are present at the same lateral
membrane position there is an elastic energy cost that arises
due to frustration of the preferred curvature for each leaflet.
As a result, lipid A domains in different leaflets attract each
other but have an energy penalty for direct overlap. It is this
effective elastic interaction that gives rise to the formation
of domains or stripes, and also explains the transition from
stripes to compact domains with varying lipid partition be-
tween the two leaflets.

To convert this physical intuition into an analytical cal-
culation of stripe width, we assume for simplicity that the
stripes are rectangles of width ws that alternate between the
two leaflets. We define a line tension τ at the interface of
the stripe domain of the two unlike lipids. This line tension
arises from the curvature mismatch at the interface as well as
the interaction energy between the unlike lipids; while in our
calculation τ will be a fitting parameter, we estimate it to be
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of the order of εAB/a, where a is the lattice spacing. For the
analysis of stripe formation on a flat substrate, we set γ0 = 0,
and introduce the fields φ(r)in/out that represent the locally
averaged fraction of lipid A at position r in the inner/outer
leaflets. Defining φ(r) = φ(r)in − φ(r)out, we have 〈γout (r) −
γin(r)〉local = γφ(r). If we substitute h − h0 in Eq. (2) by h,
and use the Monge representation, so that for small ∇h(r) the
total mean curvature H can be approximated as ∇2h/2, then
we can rewrite Eelastic in Fourier space as (see Appendix A for
details)

Eelastic =
∫

1

(2π )2

{
(κq4 + λ)

∣∣∣∣hq + κγ q2

2(λ + κq4)
φq

∣∣∣∣
2

− κ2γ 2q4

4(λ + κq4)
|φq|2

}
dq, (4)

where hq and φq are the Fourier transforms of h(r) and φ(r),
respectively. We can write down a corresponding thermody-
namic partition function,

Zelastic = Trh,φe−Eelastic/kBT . (5)

First, we carry out the trace over {h} (corresponding to in-
tegrating over hq for each value of q) and obtain an effec-
tive Hamiltonian purely as a functional of φq . Carrying out
the trace over {h} and dropping the constant terms further
simplifies Eq. (4) to

Eelastic = κλγ 2

8

∫
1

(2π )2

1

λ + κq4
|φq |2dq. (6)

For a membrane with perfect stripes parallel to the vertical
axis, φ(r) depends only on the coordinate x and is periodic
with period 2ws , and hence can be written as φ(r) = φ(x) =
1 (for 0 < x < ws , conical lipids in the outer leaflet) or
−1 (for ws < x < 2ws , conical lipids in the inner leaflet).
For our calculation, we assume the membrane has dimen-
sions Lx and Ly , where we will take the thermodynamic
limit Lx,Ly → ∞. The Fourier series expansion of φ(x)
is 4

π

∑
n=odd sin(nπx/ws )/n and the corresponding Fourier

transform is given by

φq =
∫

φ(r)e−iq·rdr

= 8πδ(qy )
∑

n=odd

i

n

[
δ

(
qx − nπ

ws

)
− δ

(
qx + nπ

ws

)]
.

Substituting φq into Eq. (6), and carrying out the integration
leads to an elastic energy per unit area of membrane (see
Appendix B),

Eelastic

A
= λγ 2

π2

∑
n=odd

w4
s

λ
κ
w4

s + (nπ )4

1

n2
, (7)

where A = LxLy is the area of the membrane. The energy per
unit area due to line tension (τ ) for the system is given by

Eint

A
= 4τLy

Ly2ws

= 2τ

ws

. (8)

The total energy per unit area for the system thus can be
written as

E = λγ 2

π2

∑
n=odd

w4
s

λ
κ
w4

s + (nπ )4

1

n2
+ 2τ

ws

. (9)

For a particular set of parameters, the stripe width can be
calculated by minimizing Eq. (7) with respect to ws . We
estimated the value of τ by performing a least-squares fit of
the stripe width obtained from our simulations for different
values of γ [Fig. 2(d)], yielding τ = 1.68 kBT nm−1, which
is of the order of εAB/a = 1 kBT nm−1, consistent with our
expectation. For the same value of line tension, we found
good agreement between stripe widths obtained from our
analytic calculation and from simulations across different
pinning moduli (see Appendices B and D). We note that while
membrane lipid stripes have been observed previously both
experimentally and in simulations [24,29–31], to the best of
our knowledge this study represents the first theoretical analy-
sis of stripe formation for lipid bilayers within an equilibrium
context.

We can further simplify the calculation by substituting α =
(κ/λ)1/4 into Eq. (7), resulting in

Ẽ =
∑

n=odd

w̃4
s

w̃4
s + (nπ )4

1

n2
+ τ̃

w̃s

, (10)

where Ẽ = π2E/κγ 2, w̃s = ws/α, and τ̃ = 2π2τ/ακγ 2 are
dimensionless energy, stripe width, and line tension, respec-
tively. For a given value of τ̃ , the scaled stripe width can
be obtained by minimizing the scaled energy Ẽ. Thus, the
scaled stripe width w̃s depends only on a single parameter,
namely the scaled line tension τ̃ , with simulations in good
agreement [Fig. 2(e)]. Moreover, we found that stripes are
only stable/metastable for τ̃ � τ̃c = 3.38. Thus, we infer that
for our choice of membrane parameters, stripe formation
occurs only for γ > 0.35 nm−1.

V. PATTERN FORMATION ON CURVED GEOMETRIES

We now consider the case where the substrate is not flat and
instead has a uniform curvature γ0. Without flipping, uniform
substrate curvature has no effect on the lipid organization
predicted by our model (see Appendix A). However, in the
presence of flipping, we found that γ0 acts as a chemical
potential governing the compositional asymmetry of the two
leaflets [Fig. 3(a)], which in turn impacts lipid organiza-
tion and domain formation. At higher substrate curvatures,
we observed increased prevalence of compact microdomains
rather than stripes, due to greater asymmetry in the lipid A
concentration [Figs. 3(b)–3(d)].

To mimic the geometry of rod-shaped bacteria, we used
a lattice with higher substrate curvature at the leftmost and
rightmost sixths, corresponding to the cell poles, and lower
substrate curvature in between, representing the cylindrical
midcell region. We carried out simulations of a 100 × 150
triangular lattice in which the polar regions had slightly
increased substrate curvature of γ0 = 0.04 nm−1 relative to
midcell. We first considered a membrane with φout = 0 (lipid
A entirely in the inner leaflet) without flipping, and observed
that for small γ , large domains formed that often localized to
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FIG. 3. Substrate curvature γ0 inhibits stripe formation when
lipids are free to flip between leaflets. (a) The lipid A fraction
in the inner leaflet increases with increasing substrate curvature
γ0. (b–d) Typical equilibrated membrane configurations for various
values of γ0.

one of the poles [Fig. 4(a)]. Higher values of γ resulted in
microdomains, that were distributed approximately equally at
both poles [Fig. 4(b)]. Small increases in the lipid A fraction in
the outer leaflet disturbed this localization, and above a thresh-
old concentration bipolar localization was abolished [Fig.
4(c)]. The phase diagram in (γ, φout) space has microdomains
with approximate equipartition between the poles for large
values of γ and small φout, with a transition from bipolar
to nonbipolar as γ is decreased or φout is increased. In the
presence of lipid flipping, depending on our choice of param-
eter values, we typically found either striped domains without
polar localization, or polar microdomains with average φout

close to zero.
These results have important implications for the ex-

perimentally observed localization of cardiolipin to regions
of higher curvature [8–10]. If there is little flipping be-
tween the leaflets, then our results imply that cardiolipin
microdomains should distribute equally to the poles only for
sufficiently asymmetric partitioning of cardiolipin between
the two leaflets. However, if free flipping occurs, for appro-
priate choice of parameter values we can find most of the
cardiolipin in the inner leaflet due to substrate curvature,
leading to localization profiles that resemble the results from
our previous modeling work [18,19], with polar localization
except at very high or very low cardiolipin concentrations. We
also note that the inner-leaflet localization of cardiolipin in
the presence of flipping is tied to domain formation: namely,
in the absence of domain formation the distribution of car-
diolipin in the two leaflets would be similar due to the large
difference between the size of individual cardiolpin molecules
and the radius of the cell.

(a) 

(b)    
γ0

(c)   

γ = 0.4 nm-1, φout = 0

γ = 0.8 nm-1, φout = 0

γ = 0.8 nm-1, φout = 0.03

γ0

γ0 γ0

γ0 γ0

FIG. 4. Polar localization of domains of lipids with large intrin-
sic curvature requires low outer leaflet fraction. (a–c) Rectangles
on the left and right represent bacterial cell poles with cell-wall
curvature γ0 = 0.04 nm−1. φin = 0.075 is fixed in all simulations.
Shown are typical equilibrated membrane configurations for various
values of γ and φout.

VI. CONCLUSIONS

In this study, we have demonstrated the rich capacity for
pattern formation in pinned multicomponent lipid bilayers,
which can exhibit both compact and striped domains depend-
ing on membrane biophysical properties and the composition
of the two leaflets. These results may also be relevant to un-
derstanding the organization of membrane-associated proteins
that are known to induce membrane curvature (see Ref. [16]
for a review), such as coat-protein complexes, BAR domains,
and cytoskeletal nucleation (formins, WASP, Arp2/3). Cou-
pling of proteins to membrane curvature is relevant for many
cellular processes, such as intracellular trafficking and cell
motility. The basic ingredients of our model, particularly the
interplay of composition-curvature coupling and phase sepa-
ration (or, alternatively, membrane protein aggregation), are
ubiquitous in geometric-sensing proteins. Thus, our proposed
mechanism for spatial organization involving the interplay
between short-range chemical interactions and longer-range
elastic stresses is likely to be of widespread relevance for
proteolipid organization in both prokaryotic and eukaryotic
cells, as well as for in vitro supported bilayers.
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APPENDIX A: ENERGETICS OF THE MEMBRANE

The total energy of the membrane in our model is
written as

E = Eelastic + Ein
int + Eout

int , (A1)

where Eelastic represents the elastic energy of the membrane
and Ein/out

int represents the short range lipid-lipid interactions
in the inner and outer leaflet. The interaction energies were
discussed in Sec. II. The elastic energy is a sum of the
bending energy of each leaflet and a pinning potential that
penalizes deviation of the midplane of the membrane from
a preferred height. The elastic energy of the membrane is
given by

Eelastic =
∫ {

κ

4
[2H (r) + γout (r)]2 + κ

4
[2H (r) − γin(r)]2

+ λ

2
[h(r) − h0(r)]2

}
dr, (A2)

where H is the local mean curvature of the two-dimensional
membrane, and γin/γout is the composition-dependent local in-
trinsic curvature of the inner/outer leaflet, given by γin/out(r) =
γ if there is a lipid A at r in the inner/outer leaflet, and
γin/out = 0 if there is a lipid B at r. The first two terms,
proportional to bending stiffness κ , penalize the mismatch
between the local mean curvature (H ) of the membrane and
the intrinsic curvature of the lipids (γin/out). In our model, we
have assumed that the bending stiffness of both the inner and
outer leaflet is equal and is half of the total bending modulus.
The third term, proportional to the pinning modulus (λ), is the
pinning potential that penalizes deformation of the membrane
away from its preferred height (with h(r) representing the
local height of the membrane and h0(r) the preferred height).
In the Monge representation, for small ∇h(r) the total mean
curvature H can be approximated as ∇2h/2, and the total
elastic energy becomes

Eelastic =
∫ {

κ

4
[∇2h(r) + γout (r)]2 + κ

4
[∇2h(r) − γin(r)]2

+ λ

2
[h(r) − h0(r)]2

}
dr. (A3)

Defining h̃ = h − h0, we find that

Eelastic =
∫ {

κ

4
[∇2h̃(r) + γ0(r) + γout (r)]2 + κ

4
[∇2h̃(r)

+ γ0(r) − γin(r)]2 + λ

2
[h̃(r)]2

}
dr, (A4)

where γ0 = ∇2h0(r) is the curvature of the substrate and for a
flat substrate γ0 = 0. The integral of κγ 2

in/out/4 is independent
of the membrane and substrate curvature and can be absorbed
into the interaction energies (Ein/out

int ). Moreover, we can dis-

card the constant term κγ 2
0 /2, and rewrite the equation as

Eelastic =
∫ {

κ

2
[[∇2h̃(r)]2 + [γout (r) − γin(r)]∇2h̃(r)

+ [γout (r) − γin(r)]γ0 + 2γ0(r)∇2h̃(r)]

+ λ

2
[h̃(r)]2

}
dr. (A5)

For a membrane with uniform substrate curvature and fixed
composition in each leaflet (no-flip case), the integral of the
third term,

∫
dr[γout (r) − γin(r)]γ0, gives a constant and can

be ignored. However, if lipids are allowed to flip between the
leaflets (free-flip case), γ0 acts as a chemical potential, and
the third term then controls the asymmetry of composition of
the two leaflets. For uniform substrate curvature, the fourth
term, ∼γ0

∫
dr∇2h̃(r), represents a boundary term and can

be ignored. Thus in the no-flip case, since there are no
remaining terms coupling γ0 to the local composition, we find
no dependence of pattern formation on substrate curvature (as
mentioned in the main text).

For subsequent analysis of pattern formation, we set γ0 = 0
(flat substrate), and introduce the fields φ(r)in/out that repre-
sents the locally averaged fraction of lipid A at position r
in the inner/outer leaflet. Defining φ(r) = φ(r)in − φ(r)out,
we have 〈γout (r) − γin(r)〉local = γφ(r). We rewrite Eelastic in
Fourier space as

Eelastic =1

2

∫
1

(2π )2

{
(κq4 + λ)|hq|2

+ κγ q2

2
(φqh

∗
q + φ∗

qhq)

}
dq, (A6)

where hq and φq are 2D Fourier transforms of h(r) and φ(r),
respectively, specified, for example, as

hq =
∫

h(r)e−iq·rdr.

Here q2 = q2
x + q2

y , and dq refers to dqxdqy , where the range
of integration for both qx and qy is −∞ to ∞. We note that for
a membrane with periodic boundary conditions of dimensions
Lx × Ly , we would have a double sum (instead of an integral)
over all allowed values of qx (of the form 2πnx/Lx , where
nx is an integer) and qy (of the form 2πny/Ly , where ny is
an integer). In the thermodynamic limit where Lx,Ly → ∞,
the double sum can be replaced by the double integral used in
Eq. (A6). Using the relation

c1|h|2 + c2(φ∗h + φh∗) = c1

∣∣∣∣h + c2

c1
φ

∣∣∣∣
2

− c2
2

c1
|φ|2,

we can then write

Eelastic =1

2

∫
1

(2π )2

{
(κq4 + λ)

∣∣∣∣hq + κγ q2

2(λ + κq4)
φq

∣∣∣∣
2

− κ2γ 2q4

4(λ + κq4)
|φq|2

}
dq. (A7)
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FIG. 5. (a) Schematic showing stripes of conical lipid in the inner
(blue) and outer (red) leaflet of a bilayer. (b) Energy of the bilayer
calculated using Eq. (B6) versus stripe width (ws) for estimated line
tension τ = 1.68 kBTnm−1 and different intrinsic curvatures γ .

Carrying out the trace over {h}, we are left only with the last
term in Eq. (A7), which can be written as

Eelastic = −κγ 2

8

∫
1

(2π )2

(
|φq|2 − λ

λ + κq4
|φq|2

)
dq.

(A8)

For a membrane with fixed composition in both inner and
outer leaflets and having alternating stripes of lipids with
intrinsic curvature, the first term gives a constant and can be
ignored. Then Eq. (A8) reduces to

Eelastic = κλγ 2

8

∫
1

(2π )2

1

λ + κq4
|φq|2dq. (A9)

In real space, this can be written in the convolution form

Eelastic = 1

2

∫
V (r − r′)φ(r)φ(r′)drdr′, (A10)

where V (r − r′) is an effective repulsive potential, identi-
cal to the elastic potential discussed in Ref. [19]. If we
consider interactions between lipid A molecules present in
the same leaflet, say the inner leaflet, then we can replace
φ(r) by φ(r)in and obtain an effective repulsion between
lipid A molecules. However, for interactions between lipid
A molecules on opposite leaflets, the elastic energy takes the
form − ∫

drdr′V (r − r′)φ(r)outφ(r′)in, which corresponds to
an effective attractive interaction. This result assumed lipid A
molecules in opposite leaflets do not overlap in their lateral
position; overlapping of lipid A molecules would correspond
to an energy cost due to curvature frustration.

APPENDIX B: ANALYTICAL CALCULATION OF
STRIPE WIDTH

To estimate the stripe width analytically, consider a flat
membrane of width Lx and height Ly , where we will assume
the thermodynamic limit Lx,Ly → ∞. We also assume for
simplicity that the stripes are perfect rectangles of width ws

as shown in Fig. 5(a), and alternate in the two leaflets: red
(lighter gray in print version) and blue (darker gray in print
version). The elastic energy of the membrane is given by
[Eq. (A9)]

Eelastic = κλγ 2

8

∫
1

(2π )2

1

λ + κq4
|φq|2dq. (B1)

For a membrane with perfect stripes parallel to the vertical
axis, φ(r) depends only on the coordinate x and is periodic
with a period of 2ws . φ(r) can be written as

φ(r) = φ(x) = 1, 0 < x < ws (conical lipids in outer layer),

− 1, ws <x <2ws (conical lipids in inner layer),

(B2)

and hence can be written as a Fourier series

φ(x) = 4

π

∑
n=odd

sin(nπx/ws )

n
, (B3)

where the sum is over positive odd integer values of n. The
Fourier transform of φ(r) is given by

φq =
∫

φ(r)e−iq·rdr

=
∫

φ(x)e−i(qxx+qyy)dxdy

= 2πδ(qy )
∑

n=odd

∫
4

nπ
sin

(
nπx

ws

)
e−iqxxdx

= 2πδ(qy )
∑

n=odd

4

nπ

π

i

[
δ

(
qx + nπ

ws

)
− δ

(
qx − nπ

ws

)]

= 8πδ(qy )
∑

n=odd

i

n

[
δ

(
qx − nπ

ws

)
− δ

(
qx + nπ

ws

)]
.

Note that in the above expression, we treat the Dirac δ function
δ(qy ) as equivalent to (Ly/2π )δqy,0 in the limit Ly → ∞,
where δqy,0 is the Kronecker δ function. Substituting for φq
in Eq. (B1) we obtain

Eelastic = 2κλγ 2
∑

n,n′=odd

∫
1

λ + κq4

[δ(qy )]2

nn′

[
δ

(
qx − nπ

ws

)
− δ

(
qx + nπ

ws

)][
δ

(
qx − n′π

ws

)
− δ

(
qx + n′π

ws

)]
dq. (B4)

These results can also be obtained by using well known properties of the Dirac δ function combined with the finite equivalence
given above.

Integration over dqy gives

∫ ∞

−∞

[δ(qy )]2

λ + κ
(
q2

x + q2
y

)2 dqy = 1

λ + κq4
x

δ(qy = 0) = Ly

2π
(
λ + κq4

x

) ,

012401-7
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where we have replaced δ(qy ) by (Ly/2π )δqy,0 for the last equality. Equation (B4) then reduces to

Eelastic = κλγ 2

π

∑
n,n′=odd

∫ ∞

−∞

Ly

λ + κq4
x

1

nn′

[
δ

(
qx − nπ

ws

)
− δ

(
qx + nπ

ws

)]
×

[
δ

(
qx − n′π

ws

)
− δ

(
qx + n′π

ws

)]
dqx

= κλγ 2

π

∑
n,n′=odd

∫ ∞

−∞

Ly

λ + κq4
x

1

nn′

[
δ

(
qx − nπ

ws

)
δ

(
qx − n′π

ws

)
− δ

(
qx − nπ

ws

)
δ

(
qx + n′π

ws

)

− δ

(
qx + nπ

ws

)
δ

(
qx − n′π

ws

)
+ δ

(
qx + nπ

ws

)
δ

(
qx + n′π

ws

)]
dqx

= κλγ 2

π

∑
n,n′=odd

Ly

λ + κ
(

nπ
ws

)4

1

nn′
Lx

2π
[δn,n′ − δn,−n′ − δ−n,n′ + δn,n′ ],

where we have once again utilized the equivalence between
the Dirac δ function and Lx/(2π ) times the Kronecker δ

function, valid in limit Lx → ∞, for the last equality. The
second and third terms vanish since n, n′ are positive odd
numbers, while the first and last terms only contribute when
n = n′. Thus,

Eelastic = λγ 2

π2

∑
n=odd

LyLxd
4

λ
κ
w4

s + (nπ )4

1

n2
,

Eelastic

A
= λγ 2

π2

∑
n=odd

w4
s

λ
κ
w4

s + (nπ )4

1

n2
,

where A = LxLy is the area of the membrane. The energy per
unit area due to line tension (τ ) for the system is given by

Eint

A
= 4τLy

Ly2ws

= 2τ

ws

. (B5)

The total energy per unit area for the system is

Etotal = λγ 2

π2

∑
n=odd

w4
s

λ
κ
w4

s + (nπ )4

1

n2
+ 2τ

ws

. (B6)

The optimum stripe width is found by minimizing Etotal for
given values of membrane parameters (γ, κ, λ). In Eq. (B6),
τ is a fitting parameter that was estimated by performing a
least-squares fit of the stripe width obtained by simulations
for various values of intrinsic curvature (γ ). In Fig. 5(b),
we have plotted Etotal versus d for τ = 1.68 kBT nm−1 and
different values of intrinsic curvature γ . For γ = 2 nm−1, we
obtain a well defined minimum in the curve, confirming the
presence of stripes of width 3.85 nm. For the very small value
of γ = 0.2 nm−1 we do not find any minimum in the curve.
This implies that below a critical value of γ , the membrane
minimizes its energy by forming macrodomains, rather than
alternating stripes in the two leaflets.

Substituting α = (κ/λ)1/4 in Eq. (B6), we obtain

Ẽ =
∑

n=odd

d̃4

w̃4
s + (nπ )4

1

n2
+ τ̃

w̃s

, (B7)

where Ẽ = π2Etotal/κγ 2, w̃s = ws/α and τ̃ = 2π2τ/ακγ 2

are dimensionless energy, stripe width, and line tension, re-
spectively. For a given value of τ̃ , the scaled stripe width is
obtained by minimizing the scaled energy Ẽ. Thus the scaled

stripe width, w̃s , depends only on a single parameter, namely
the scaled line tension τ̃ .

APPENDIX C: SIMULATION METHODOLOGY

We represent the membrane as a two-dimensional triangu-
lar lattice with lattice spacing a = 1 nm, fully occupied by
lipids of type A or B. To account for the two leaflets, we
assume each lattice site is occupied by two distinct lipids, one
in the inner and the other in the outer leaflet. In a lattice model,
the membrane energy can be written as E = Eelastic + Eint,
where the elastic energy given by Eq. (A5) in the main text
(the last term, which is independent of h, is absorbed in the
interaction energies) can be written as

Eelastic = A
∑

i

(
κ

2a4

[
4hi − ζ

∑
nn.:j

hj

]2

+ κγ

2a2
σi

[
4hi − ζ

∑
nn:j

hj

]
+ λ

2
h2

i

)
, (C1)

where hi is the height of the membrane at lattice site i, and
σi = 2γ0/γ + 1 if there is a lipid A in the outer leaflet and B
in the inner, 2γ0/γ if there is lipid A or lipid B in both the
leaflets, and 2γ0/γ − 1 if there is lipid A in the inner leaflet
and B in outer, with γ0 = 0 for the case of a flat substrate. The
innermost sum is over the nearest neighbors j of the lattice
site i, and the prefactor ζ is 2/3 for a triangular lattice [19].
For a triangular lattice, the area per lipid, A, is

√
3/2 nm2.

The membrane elastic energy can be written in matrix
form as

Eelastic = 1

2

∑
ij

hiSij hj +
∑

i

hiTi, (C2)

where S is a real, symmetric matrix that does not depend on
the lipid variable σi and

Ti = κγ

2a2

(
4σi −

∑
nn:j

σj

)
. (C3)

In Dirac notation, we can rewrite Eq. (C2) as

Eelastic = 1
2 〈h|S|h〉 + 〈h|T 〉. (C4)

In our simulation, we first minimize the membrane energy
with respect to the height field hi , which gives

∑
i Sij hj =
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−Ti or S|h〉 = −|T 〉, and hence |h〉 = −S−1|T 〉, thus

min(Eelastic ) = −1

2
〈T |S−1|T 〉 = −1

2

∑
ij

TiS
−1
ij Tj . (C5)

Since the matrix S does not depend on the lipid type variable
σi, S−1 has to be calculated only once, whereas T must be
updated every time σi changes.

We performed Metropolis Monte Carlo simulations to
minimize the total membrane energy for both flat substrates
and substrates with spatially varying background curvature
(γ0). In our simulations we considered both the cases where
the lipid composition in each leaflet is fixed (no-flip) as well
as systems in which lipids from one leaflet can flip to the
other (free-flip). Randomly selected pairs of unlike lipids
are exchanged with probability min{1, exp[(Ei − Ef )/kBT ]},
where Ei and Ef are the total membrane energy before
and after the move, respectively, until the distribution of
lipid domain sizes reaches steady state. In the first case
of fixed composition of each leaflet, the lipid pairs have
to be selected from the same leaflet, while in the sec-
ond case pairs are chosen at random either from the same
or different leaflets. For the simulations we have assumed
a fixed value for the membrane stiffness modulus κ =
25 kBT and, unless otherwise specified, a pinning modulus
λ = 0.25 kBT nm−4.

APPENDIX D: EFFECT OF PINNING POTENTIAL ON
STRIPE WIDTH

Based on the dependence of the scaled stripe width on the
scaled line tension, we can deduce how stripe width depends
on the cardiolipin intrinsic curvature (γ ), line tension, and
pinning potential. Here we focus on the effect of pinning
potential on stripe width. For this purpose, we simulated
the membrane with lipid parameters (κ = 25 kBT , εAB =
1 kBT , γ = 0.4 and 0.8 nm−1) and varying pinning poten-
tials (in the case of a bacterial membrane the pinning potential
can in principle be varied by changing the osmotic pressure
difference across the membrane). The stripe width is obtained
from the Fourier transform of the images. We found that
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FIG. 6. Effect of pinning potential λ on stripe width. (a–d)
Membrane configurations for γ = 0.4 nm−1 (left) and 0.8 nm−1

(right) for λ = 0.001 kBT nm−4 (top) and 0.1 kBT nm−4 (bottom).
(e) Variation of stripe width calculated analytically (solid and
dashed curves) for line tension τ = 1.68 kBT nm−1 and obtained by
simulation (filled and open circles).

for both γ = 0.4 and 0.8 nm−1 the stripe width decrease
with increasing pinning potential as expected (Fig. 6). We
compared the results of our simulations with our analytical
calculations, as described in the previous section, with line
tension set to τ = 1.68 kBT nm−1 and found good agreement
[Fig. 6(e)].
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