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We consider signed networks in which connections or edges can be either positive (friendship, trust, alliance)
or negative (dislike, distrust, conflict). Early literature in graph theory theorized that such networks should
display “structural balance,” meaning that certain configurations of positive and negative edges are favored and
others are disfavored. Here we propose two measures of balance in signed networks based on the established
notions of weak and strong balance, and we compare their performance on a range of tasks with each other and
with previously proposed measures. In particular, we ask whether real-world signed networks are significantly
balanced by these measures compared to an appropriate null model, finding that indeed they are, by all the
measures studied. We also test our ability to predict unknown signs in otherwise known networks by maximizing
balance. In a series of cross-validation tests we find that our measures are able to predict signs substantially better

than chance.
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I. INTRODUCTION

Networks are used as an abstract representation of the
topology of complex systems in many branches of science.
Examples include social networks of friendship or acquain-
tance between individuals, communication networks such as
the internet or telephone networks, infrastructure networks
such as transportation routes, power grids, or pipelines, and
information networks such as the world wide web or citation
networks [1].

In its simplest form, a network consists of a collection of
nodes joined together in pairs by edges, but many networks
have additional features as well. The edges may be directed
or weighted; either the nodes or edges may have types, cat-
egories, or labels of some kind; nodes may have positions in
space; edges may have lengths or capacities, and so forth. In
this paper we consider one case of particular interest, that of
signed networks, meaning networks in which the edges are
either positive or negative [1-3]. The most common example
is a social network that represents patterns of both amity and
enmity among a group of individuals: positive edges represent
friendship, negative ones represent animosity.

Studies of signed networks go back at least to the classic
work of Harary in the 1950s, who argued, largely on formal
rather than empirical grounds, that certain patterns of signs
should be more common than others—the enemy of my
enemy should be my friend, for example [2]. Networks that
display such regularities are said to be structurally balanced,
or just balanced for short. A natural question to ask is whether
real signed networks are in fact balanced. Despite a consid-
erable amount of research on this issue, however, the jury is
still out. Some researchers have claimed that real networks are
balanced, at least partially, while others have claimed that they
are not [5-7].

There are two primary reasons for the disagreement. First,
there is more than one proposed definition of structural
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balance in networks. Cartwright and Harary [8] proposed that
anetwork is balanced if all closed loops in the network contain
an even number of negative edges. This condition, which
we will refer to as strong balance, is a stringent one that is
rarely if ever completely satisfied in real networks. As we
will see, however, one can define measures of partial balance
that quantify how close a network comes to Cartwright and
Harary’s ideal.

Strong balance is an attractive formulation in part because
of a theorem due to Harary [2], which says that any network
displaying perfect strong balance is clusterable, meaning its
nodes can be divided into some number of disjoint sets such
that all edges within sets are positive and all edges between
sets are negative. Thus strong balance provides a possible
theoretical basis for insularity or cliquishness in social net-
works: If networks naturally display strong balance, then they
also naturally divide into communities such that people like
members of their own community and dislike members of
other communities.

While strong balance is a sufficient condition for clus-
terability, however, it turns out that it is not a necessary
one, as shown by Davis [9], who demonstrated that for a
network to be clusterable in the sense above, one requires
only a lesser form of structural balance, namely that there
be no closed loops in the network with exactly one negative
edge. We will refer to this condition as weak balance. Weakly
balanced networks are a superset of strongly balanced ones—
every strongly balanced network is necessarily also weakly
balanced—but weak balance alone is enough to explain insu-
larity in networks and division into antagonistic communities.

Alternatively, causality might run in the opposite direction:
If a population is intrinsically divided into two or more
antagonistic factions—Montagues and Capulets, Roundheads
and Cavaliers, Hatfields and McCoys—then by definition the
resulting network will be balanced. Indeed, if there are exactly
two factions then the network will be strongly balanced, since

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.012320&domain=pdf&date_stamp=2019-01-22
https://doi.org/10.1103/PhysRevE.99.012320

ALEC KIRKLEY, GEORGE T. CANTWELL, AND M. E. J. NEWMAN

PHYSICAL REVIEW E 99, 012320 (2019)

every closed loop must traverse negative edges between the
factions an even number of times. If there are three or more
factions, then the network will, in general, be only weakly
balanced.

Thus, we have two competing notions of what it means for
a network to be balanced. It is in part the lack of consensus
about which of the two to adopt that makes it hard to say
whether real networks are, in fact, balanced or not.

The second reason for the lack of agreement is that in order
to say whether a network is balanced we need to specify the
scale on which balance is to be assessed. Even if we can
agree on a measure of balance, how do we know whether
the observed level is high or low? A natural approach is to
compare the level to what we would expect on the basis of
chance, i.e., to the level in some kind of null model, but it is
by no means universally agreed what form such a null model
should take.

In this paper we do several things. First, we consider a
number of possible measures of both strong and weak balance.
Some of the measures we discuss have been proposed previ-
ously; some we propose here for the first time. Second, we
consider possible null models against which to compare levels
of balance, choosing one we believe to be appropriate for the
questions we are interested in. Third, we use our measures
and our null model to quantify structural balance in real-world
signed networks, finding that the networks we consider are
indeed significantly more balanced, at least according to our
measures, than we would expect on the basis of chance.

The presence of structural balance in networks is interest-
ing in its own right, for the hints it gives us about the growth
and function of social networks. But we can also use our
knowledge of balance to perform other tasks. As an example,
we demonstrate how it can be used to make predictions of
the signs of unobserved edges. By simply assigning edges the
choice of sign that makes the overall network most balanced,
we show that we can predict the correct value of missing
edge signs in test networks substantially better than chance.
As a corollary, this also gives us some insight about which
are the best measures of balance: all of the measures we
consider perform well in the sign prediction task, but the
measure based the weak notion of balance appears to perform
somewhat better, perhaps indicating that weak balance is a
better description of the behavior of real-world networks than
strong balance.

There has been a significant amount of previous work to
define and study structural balance in signed networks [4], in-
cluding methods and metrics motivated by spin glasses [5,10—
12] and dynamical systems [13,14], spectral methods [15-
17], and Harary’s “line index” of imbalance [18], as well as
walk-based approaches [7,19-22], of which our own proposed
methods can be considered an example. Rather than giving
a comprehensive review of all of these approaches, we focus
here primarily on the walk-based approaches, several of which
share features with our methods [7,20-22], although there are
some crucial differences as well. Perhaps the approach most
similar to ours is that of Singh and Adhikari [22], who propose
a measure of balance motivated by the notion of strong bal-
ance that accounts for the lesser effect of long loops on social
tension. We propose two similar measures, one for strong
balance and one for weak, though with a different choice

of weighting for short and long loops. Another important
difference between our work and that of Singh and Adhikari
lies in the choice of null model, for which they use ensembles
of networks where positive, negative, and nonedges are placed
randomly. By contrast, in our work we randomize only the
signs of the edges and not their positions, which we argue is
essential for proper quantification of statistically significant
balance in networks.

II. QUANTIFYING BALANCE

Real-world signed networks are rarely, if ever, perfectly
balanced, so to study balance in such networks we need a way
to quantify exactly how balanced they are. Following previous
authors, we consider measures that quantify the number of
closed loops in a network that violate either the strong or the
weak notion of balance, meaning, respectively, that they have
either an odd number of negative edges (strong balance) or
exactly one negative edge (weak balance).

This alone, however, is not enough to define a practical
measure because of another feature of networks, that the
number of closed loops of a given length increases rapidly
with length. If one were simply to count closed loops, the
count would be dominated by the longest loops in the network
solely because they are more numerous. It seems unlikely,
however, that long loops play much of a role in real-world
issues of balance. Few people really care if a friend of a
friend of a friend is an enemy or not. Realistically, we expect
that it is the short loops, not the long ones, that dominate
network balance. The second defining feature of the measures
we consider, therefore, is that they weight short loops more
heavily than long ones.

A. Balance measures

Consider an undirected signed graph or network G. A
closed walk in such a network is any path that begins and ends
at the same node, and a simple cycle is a closed walk that
does not visit any node twice, other than the start/end node,
which is visited exactly twice. The strong definition of balance
then says that G is a balanced network if, and only if, every
simple cycle in G has an even number of negative signs. The
weak definition of balance, by contrast, says that a network
is balanced if, and only if, it contains no simple cycles with
exactly one negative edge (meaning that any other number is
fine). We can also say that individual cycles are strongly or
weakly balanced by the same criteria.

We can use these ideas to define a measure B(z) of the level
of imbalance in a network thus:

Ny}
B@)=3 T M
k=1

where I; is the number of imbalanced simple cycles of length
k and z > 1 is a free parameter. This measure takes the form of
a weighted count of imbalanced cycles in which longer cycles
get downweighted by a geometric factor zX. Note that the sum
in Eq. (1) could in principle start at k = 2 without changing
the value of B(z), since there are no cycles of length one, but
it will be convenient for subsequent developments to start at
k=1.
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We can define a measure of this type for either the weak
or strong notion of balance. Let us look first at the weak
version, meaning that [; will be the number of simple cy-
cles of length k that contain exactly one negative edge. An
immediate problem we encounter with applying this measure
is the difficulty of making practical estimates of the number
of simple cycles of a given length in an arbitrary network.
There is no elementary analytic approach for counting cycles,
and numerical methods are hampered by the very rapid in-
crease of I with k, which makes exhaustive enumeration of
cycles possible only for small £ and small networks. Instead,
therefore, we approximate the number of simple cycles by the
number of closed walks, which is relatively straightforward to
compute. To count the number of weakly imbalanced closed
walks of length k, we remove all the negatives edges from the
network and then look at the number of walks of length £ — 1
between the (former) endpoints of those edges. Reinserting
the negative edges again then closes the walks, creating loops
of length exactly k, each with exactly one negative edge.

Substituting closed walks for simple cycles is a good
approximation when the cycles are short. Indeed, for cycles
of length three it is exact: Closed walks and simple cycles are
the same thing for length three. As the length increases the
approximation gets worse [23], but in practice this may not
matter very much. The imbalance metric of Eq. (1) discounts
long loops, so the fact that our count is only approximate may
not make much difference.

To put the developments in mathematical terms, let us
denote the structure of our network by two adjacency matrices
P and N, for the positive and negative edges, respectively.
Thus, matrix P has elements P;; =1 if nodes i and j are
connected by a positive edge and 0 otherwise, and similarly
N;jj=1ifi and j are connected by a negative edge and 0
otherwise. Then our imbalance measure, which we will denote
Byw (z) with subscript W to indicate weak balance, is given by

1 1 k—1 1 -1
Bw(@) = 5 2,: Nij ; [P = S TNGE-P) ),
2
the factor of % compensating for the fact that the sum counts
each loop twice, once in each direction.

In fact, it will be convenient to introduce a rescaled pa-
rameter « = z/Ap, where Ap is the leading (most positive)
eigenvalue of P. For o > 1 this ensures that the sum in Eq. (2)
will converge, and we can write

By(a) = L Tr[N(arpI —P)']. (3)

Another way to interpret the parameter « is to write @ ¥ =

e /%0 where kg = 1/Ina is a “decay length” that determines
the length scale on which the contributions from longer walks
are discounted. Thus, for example, if we choose o = 2, we
have kp = 1/In2 >~ 1.44 ..., and three such decay lengths
give us a 95% decay at distance a little greater than 4.

An analogous measure Bg(o) can be defined for the strong
notion of balance. Again, we approximate the number of
imbalanced simple cycles by the number of closed walks,
which we can calculate as follows. Consider the matrix P — N,
which has elements 41 for positive edges, —1 for negative
edges, and O otherwise. The kth power of this matrix counts

walks of length k, times +1 if they contain an even number
of minus signs and —1 if odd. Thus, the diagonal term [(P —
N)¥,; is equal to the number of balanced closed walks starting
and ending at node i minus the number of imbalanced ones.
Summing over all i, we then have [23]

1
B — Iy = 5 Tr{(P — N, 4)

where By and I, are the total number of balanced and imbal-
anced closed walks. The initial factor of % again compensates
for the fact that we count each loop in both directions, and
the factor of 1/k compensates for the fact that each loop is
counted repeatedly starting from each of the k points along its
length.

Conversely, consider the matrix P 4+ N, which is simply the
adjacency matrix of the complete network, ignoring signs—
every edge, positive or negative, is represent by a 41 in this
matrix. The total number of closed walks of length &, both
balanced and imbalanced, is given by

1
B+ Iy = ﬂTr[(P+N)k]. 5

Subtracting Eq. (4) from Eq. (5) and dividing by 2, we get an
expression for the number of imbalanced loops:

_ L b L e N
Iy = TA®+ N = 2 TP —NfL. (©)

Substituting this into Eq. (1) then gives us our measure of
strong imbalance:

oo o0

1 1 1 1
Bs(z)=-Y — Tr[(P+NY'1— =) — Tr[(P — N)"].
5(2) 4kZ:]jkzk r[(P + N)] 4kZ:]jkzk r[(P — N)]
(7N
Making use of the matrix identity
=, TrM*
= logdet(I — M), ()
k=1
this can also be written as
1 det[zZI — (P — N)]
Bs(z) = —log )

4 det[zI — P+ N)]’

which is valid whenever the sums in Eq. (7) converge. As
with By (z) it is convenient to reparametrize this expression
in terms of o = z/A*, where A* is the larger of the leading
eigenvalues of P 4+ N and P — N, so that

Bt = 1o dellaX = (B —N)]
s@) = glog T - P E N

(10)

which ensures convergence of the sums when o > 1.

B. Previous measures of network balance

A number of previous researchers have also proposed
measures of structural balance in networks. Estrada and Benzi
[7] (henceforth EB) define a measure

1-K

Bgg = ——, 11
B =TTk (1)
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where

>, Tr[(P — N)¥1/k!
K = .
>, Tr[(P + N)K]/k!

The quantity K is in some ways analogous to our measure of
strong imbalance, Eq. (9), but it downweights longer loops by
a larger factor 1/k!, compared to the geometric factor 1/z*
that we employ. This results in some elegant mathematical
expressions but has the disadvantage that there is no way to
set the length scale on which loops are discounted. EB also
define their measure not by K itself but by Eq. (11), which
can be interpreted as a ratio of weighted counts of unbalanced
and balanced loops.

Singh and Adhikari [22] (henceforth SA), in considering
the measure of EB, object to the weight factor 1/k! and
propose instead to use a geometric factor as we do, defining a
measure

(12)

> TP = N)4 /2
2ok Tr[(P + Ny /2%

This is again somewhat analogous to Eq. (9), though it is not
directly based on the actual number of imbalanced loops, and
moreover appears to neglect the factor of 1/k that accounts
for the k possible starting points around a loop of length k.

In this paper we compare the performance of the four mea-
sures discussed here, our own measures By and Bg and the
measures of EB and SA, on a number of problems concerning
balance in networks.

Bsa(z) = 13)

C. Null models

As discussed in the Introduction, measures of imbalance
are difficult to employ on their own because we lack a scale
on which to calibrate their values. If we calculate a value of,
say, By = 0.5 for a particular network how do we know if that
value is large or small? One way to answer this question is to
compare our numbers with values calculated in an appropriate
null model.

The broader question we are addressing in calculating
measures of balance is whether the arrangement of positive
and negative edges within a network is somehow special,
different from what we would expect on the basis of chance.
Since our focus is on the arrangement of signs within the
larger network, and not on the arrangement of edges per se,
the natural null model to consider is one in which the signs
in a network are randomized while keeping the locations of
the edges fixed. In the particular null model we consider here,
we also keep the overall number of positive and negative
signs fixed, to make the randomized networks more directly
comparable with the original.

This null model or ones similar to it have been used
in a number of previous works [24-26], but it is not the
only possible choice [22,27]. Singh and Adhikari [22], for
example, employ a null model in which both the signs and
the positions of the edges are randomized. This results in
networks whose structure, in terms of edge placement, is very
different from that of the original network, which makes it
difficult to know how much of any observed difference in
balance is due to the pattern of signs and how much to the edge
positions. One could also consider a model in which the edge

positions are randomized but the signs on the edges are fixed,
although this suffers from the same problems as the model of
Singh and Adhikari. The null model we employ avoids these
difficulties by randomizing the signs only.

Arguably, in many real-world situations—coworkers in an
office, for instance, or children in a school class—one indeed
has no choice about who one interacts with, so that the
positions of the network edges are fixed. The only degree of
freedom is the nature of the interactions, whether they will be
friendly or antagonistic. A model that fixes the edge positions
but varies their signs is thus a natural choice in such cases.

III. EXAMPLE APPLICATIONS

As examples of the techniques introduced here, we con-
sider their application to two data sets, one from the field
of international relations, representing positive and negative
ties between countries [28,29], and the other from sociology,
representing ties between a group of university freshmen [30].
For both data sets we use our measures to quantify structural
balance, and for the international relations data we also test
our ability to make predictions of the signs of unobserved
edges.

The international relations data set contains many details of
intercountry interactions over a period of several decades, but
here we focus on two aspects in particular: alliances and wars.
We construct a set of signed networks, one for each year in the
70-year period from 1938 to 2008, in which nodes represent
countries and two countries are connected by a positive tie if
they have a formal alliance in that year and a negative tie if
there is a militarized dispute between them. In the rare cases
in which countries have both an alliance and a war in the
same year we take the corresponding edge to be negative. (The
same methodology was used previously in Ref. [31].) Only
countries for which we have data are included in our networks.
The number of nodes ranges from 25 to 155 with a median of
105, and the number of edges ranges from 46 to 1230 with
a median of 615. The signs of the edges are predominantly
positive—most countries have good relations. The fraction of
negative edges ranges from 1.8% to 45.1% with a median of
5.5%. (The outliers with the largest number of negative edges
all fall during the Second World War. The median fraction of
negative edges between 1940 and 1945 was 44%.)

The university freshman data set describes relationships
between a group of first-year students, all at the same uni-
versity, and consists of networks collected at seven different
time points. At each time point the students were asked to
rate their relationships with all other students in the group
on a five-point scale of (1) “best friend,” (2) “friendship,” (3)
“friendly relationship,” (4) “neutral relationship,” or (5) “trou-
bled relationship.” Students could also say they did not know
the person in question. Further discussion of the scale can be
found in Ref. [30]. We construct a set of signed networks,
one for each time point, in which two students are connected
by a positive tie if each rates the other as a 3 or lower, and
a negative tie if one or both rates the other as a 5. Neutral
relationships are not represented in the network, which means
that there is no difference in our representation between
having a neutral relationship and having no relationship at all.
While this is not ideal, it seems like the best strategy given
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that there is no principled way to decide whether a neutral
edge should be considered positive or negative. Of the seven
networks constructed in this way, we discard three because of
sparse or missing data, leaving four that we analyze here. The
number of nodes in the networks is 34 at all time points and
the number of edges ranges from 174 to 227 with a median
of 225.5. The fraction of negative edges ranges from 12% to
14% with a median of 13%.

A. Balance relative to the null model

To quantify the level of balance in a network, we compute
the ratio between the value B of each metric and the average
value (B) of the same metric on a selection of randomized
networks drawn from the null model described in Sec. II C:

n=-——. (14)

Figure 1 shows the values of this ratio as a function of time
for the international relations networks for the four balance
metrics considered in this paper, along with the mean for
the null model and an indication of the fluctuation of the
results about that mean (the bands shown are two standard
deviations). As the figure shows, in each case actual imbalance
values, for all measures, are far below what would be expected
for the null model. (An alternative way to represent the same
results would be to compute a z score, but we prefer the
representation of Fig. 1 since it shows explicitly the size of
the fluctuations in the null-model values.) Figure 2 shows
results from the same experiment performed on the university
freshman networks.

For this calculation the metrics By and Bg are both
computed with a parameter value o = 2, as discussed in Sec.
IT A, and we use the corresponding value for the parameter
in the metric of Singh and Adhikari (SA) [22] as well. (The
metric of Estrada and Benzi (EB) [7] has no free parameters.)
We have also experimented with a range of alternative
parameter values, but find that the results do not depend
strongly on our choice.

Our goals here are twofold. First, we wish to see if real
networks are indeed unusually balanced relative to an ap-
propriate null model. Second, if they are balanced in this
sense, then we wish to see which of our notions of balance
most clearly distinguishes real networks from their null model
counterparts. As Fig. 1 shows, all four metrics give extremely
low n values relative to the null model, all of which would
be statistically significant at the p < 0.05 level in all years
if we assume a normal distribution within the null model.
The most significant values occur during the World War 11
period, specifically between 1940 and 1945, and this effect
is especially pronounced for the three metrics based on the
strong notion of balance. As mentioned in the Introduction,
strong balance is expected in cases where a network is divided
into just two main factions, which was the case during World
War II. Note that, during this period, 7 is actually greater than
in other periods, but that the values for the null model have
a much lower standard deviation than in other years, making
the results for the real networks more statistically significant
relative to the null model.

1.5

1.0 fmmmmmm e m o -

0.5 BW —

0.0 e AN AN

1.0 pmmmmm o e e -

0.5 — BS —
00 J\\f‘/\/\/\/\/\/\’\/\/\/\/\'\—\/\/\/\/‘/\/\

15 ‘ T ‘ T ‘ T ‘

0.5 EB —

1.0 |-

0.5 — SA —

0.0 = -
\ \ \ \

1940 1960 1980 2000
Year

FIG. 1. Level of imbalance in the international relations net-
works for 1938-2008, as measured by the ratio 1 defined in Eq. (14),
for each of the four balance measures studied here. The dotted lines
indicate the null model mean, which falls at = 1 by definition, and
the surrounding bands denote two standard deviations of the fluctu-
ations around this mean. The solid lines represent the values for the
observed networks. All networks are significantly less imbalanced
than the null model by all four measures.

Figure 2 for the university networks shows similar behav-
ior, although the n values are less extreme than those for the
international relations networks. This might be due to a lower
level of factionalism for the students than for international
relations, or to measurement error, or a combination of both.

The university data set also lends itself to being represented
as a weighted, directed network, and one could consider
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FIG. 2. Levels of imbalance in the university freshman networks.
The dotted lines indicate the null model mean and the surrounding
bands denote two standard deviations of the fluctuations around this
mean. The solid lines represent the values for the observed networks.

generalizations of the methods presented here to such net-
works, although this is outside the scope of the present paper.

B. Sign prediction

Consider a situation in which we know the positions of the
edges in a signed network, but we know the signs of only some
of the edges. The signs of the remaining edges are missing
from our data, perhaps because they were not measured or
recorded, or because our measurements are unreliable. Guha
et al. [24], in studies of trust in online communities, suggested

that it should be possible, using the patterns of known signs,
to make predictions about the unknown ones, and in recent
years a number of authors have developed algorithms to
do this [17,20-22,32,33]. (Looking for correlations between
signs is not the only way to perform prediction—there are a
whole range of network reconstruction algorithms that could
be adapted for signed networks [34]—but our focus here is
specifically on the use of known signs to predict unknown
ones.)

A natural approach is to start from the assumption that the
network is balanced [22,32]. Consider the simple case where a
sign is missing from just a single edge in the network and our
goal is to guess the value of that sign given all the others. We
assume that the best guess for the missing sign is the one that
will make the network most balanced. This leaves open the
question of which metric we should use to quantify balance,
which we address by performing a cross-validation study in
which we artificially remove one sign from an otherwise
complete network, then attempt to predict its value using
each of our metrics in turn. Repeating this process for every
edge in the network, we measure the average success of our
predictions for each metric.

This “single sign” prediction test is arguably unrealistic—
in most real-world scenarios there will be more than one
sign missing from any incomplete data set, a point that we
discuss further in Sec. III C. It is, nonetheless, a good starting
point by virtue of being relatively computationally tractable
for networks of the size considered here, which typically have
a few hundred edges. We can just calculate directly the value
of each of our balance metrics for the two possible choices of
each sign and take the choice that gives the higher balance.

For larger network sizes this brute-force approach becomes
more computationally demanding, but with a little ingenuity
the calculation can still be done. The calculation of our metrics
By and Bg relies on the computation of either a matrix inverse
(for By) or a matrix determinant (for Bg), and there exist
formulas that allow one to quickly recalculate inverses and
determinants when only a few elements of a matrix are altered,
as in this case. Consider, for instance, the weak balance mea-
sure By defined in Eq. (2). The primary computational task
in evaluating this measure is the calculation of the resolvent
matrix R = (zI — P)~'. We can speed up this calculation as
follows. First, we directly compute R for the original network
and use it to evaluate By . This is a relatively slow operation:
computing the inverse of an n x n matrix takes O(n*®) time in
a naive implementation, and modestly better in more complex
schemes. Then we consider in turn each edge in the network
and compute the value of By when the sign of that edge is
reversed. Reversing the sign of an edge between nodes i and
Jj alters the values of P;; and Pj; by £1, a change that we can
write in the low-rank form

P =P+UV, 15)

where U is an n x 2 matrix with all elements zero except
Uit =Uj, =1,and Vis a2 x n matrix with all elements zero
except Vi; = Va; = 1. Then the Woodbury matrix identity [35]
tells us that the new value of the resolvent R’ = (zI — P')~! is
given by

R = R+ RU(I F VRU) VR, (16)
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FIG. 3. Fraction of signs predicted correctly for each of the
international relations networks in the single sign prediction task of
Sec. III B, using each of the four balance measures studied here.

which requires only the trivial inversion of the 2 x 2 matrix
inside the brackets. Evaluation of the matrix products RU and
VR and evaluation of the n? elements of R’ all take O(n?)
time, so the running time to calculate the new value of By
is also O(n?), a substantial improvement on the O(n’) time
needed to calculate it from scratch.

Similarly for the strong balance measure By it is possible to
evaluate the measure rapidly upon the change of single sign.
This measure, defined in Eq. (9), involves the calculation of
the determinant of the matrix A = zI — (P — N), whose value
changes upon the flip of a sign to

A=A £2UV, 17

where U and V are as previously defined. [The determinant
in the denominator of Eq. (9) does not change when a sign
is flipped, so there is no need to recalculate it.] Then the
matrix determinant lemma [36] states that the new value of
the determinant is related to the old one by

det(A £ 2UV) = det(A) det(I+ 2VA~'U). (18)

Once one has the inverse A~! this computation can be per-
formed quickly. The 2 x 2 matrix I + 2VA~'U can be calcu-
lated in time O(n?) and its determinant in constant time, so
again the overall calculation takes O(n?) time. By contrast,
calculating the determinant directly from scratch takes O(n?)
time (or slightly better using the fastest algorithms), so again
we have a substantial improvement in speed over the direct
calculation. For the other balance metrics considered here
(EB and SA) there are similar shortcuts that can speed up
calculations for larger networks, although we will not use
them here.

Figure 3 shows the results of single sign prediction calcu-
lations for our international relations networks as a function
of time, for each of our four measures of balance. The vertical
axis in the figure measures the fraction of all signs predicted
correctly, also known as the accuracy. By contrast with the
results shown in Figs. 1 and 2, performance on this task clearly
varies between the different balance metrics, and in particular

1 — By,
L — B |
— EB
0.8 SA -
Baseline

Normalized mutual information

| |
1990 2000

| | |
1940 1950 1960 1970 1980

Year

FIG. 4. Success in the single sign prediction task, as measured
using normalized mutual information, for each of the four balance
measures studied here.

the measure By based on the weak notion of balance performs
significantly better than any of the strong balance measures.

One must be a little careful about these results, however,
because, as mentioned previously, positive edges outnumber
negative ones by a wide margin in most cases. This means
that one can achieve quite high prediction accuracy simply
by guessing that every edge is positive. The magenta curve
in Fig. 3 represents this baseline level of accuracy and it is
against this curve that the others should be judged. Thus,
for example, the measure of EB, which gave generally good
performance in Fig. 1, performs least well in terms of sign
prediction accuracy and in some cases is actually below the
baseline estimate, particularly in the latter half of the data
set. Meanwhile, the weak balance measure By substantially
outperforms the other measures and the baseline, and appears
to give the best sign prediction performance of the measures
considered.

Figure 4 shows an alternative measure of prediction perfor-
mance, the normalized mutual information [37]. Often used
to quantify the success of community detection algorithms
on networks, normalized mutual information (NMI) is an
information theoretic measure that reflects the amount of
information about the true signs of edges that is contained in
the predicted signs. If the predicted signs match the true signs
exactly, the NMI is 1; if there is no correlation between true
and predicted signs it is zero.

The (unnormalized) mutual information between true signs
s, and predicted signs s, is defined as

5,) = Pl sp)
I(si;s,) = ‘21 P(s;,s,)log PPl (19)
sp ==1

The joint probabilities P(s; = %1, s, = £1) can be calcu-
lated straightforwardly by simply counting the fraction of
times in our tests that each of the four possible configurations
of the true and predicted signs occurs, and similarly for
the marginal probabilities P(s; = £1) and P(s, = &1). The
normalized mutual information is then calculated by dividing
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the unnormalized value by the average of the entropy H(s) =
— ZS P(s)log P(s) of the two variables s; and s, [37]:

I(ss55p)
T[H(s) + H(sp)]

This ensures that the normalized value falls between zero and
one.

As shown in Fig. 4, the normalized mutual information for
sign prediction using all four of our balance measures is better
than the baseline estimate made by simply guessing that all
edges have the majority positive sign—the latter automatically
gets an NMI of zero, since it is completely uncorrelated with
the true signs of the edges. Again the weak balance measure
By does best in most years, in some cases by a wide margin.

Comparing our results from this section with those on
overall balance from Sec. IIl A, we see something of a mixed
picture. Overall balance appears to be similar for all metrics,
except during the Second World War era, when there were two
primary factions and the strong notion of balance seems to be
favored. Our sign prediction results, on the other hand, seem
to give a clear edge to the weak notion of balance, even during
the war years. What we can say with some clarity, however, is
that these networks are more balanced than one would expect
on the basis of chance, and one can use this fact to predict the
signs of edges with good accuracy.

NMI =

(20)

C. Prediction of multiple edge signs

In the calculations of the previous section, we tested our
ability to predict a single unknown sign in an otherwise known
network. This single sign prediction challenge has the advan-
tage of being relatively computationally tractable, but, as we
have argued, it is not entirely realistic. In real-world data sets
it is likely that many signs will be missing from our network
simultaneously, not just one, and hence we need a way to
predict multiple signs simultaneously. We can approach the
latter problem in a similar manner to single sign prediction,
by selecting the combination of signs that gives the lowest
imbalance, but the calculation rapidly becomes intractable as
the number & of signs to be predicted becomes large, since
there are 2¥ different combinations of signs to test.

To get around this issue, we employ simulated annealing
to optimize balance over sign configurations. We perform a
Markov chain Monte Carlo simulation in which we initially
give random values to all of the unknown signs, then we
repeatedly select one of them at random and consider flipping
its value, from positive to negative or vice versa. We use any
one of our imbalance metrics as an energy function and accept
or reject sign flips using a standard Metropolis—Hastings
acceptance probability with temperature 7. We then lower
the temperature from a high initial value 7y according to the
exponential cooling schedule T = Tye~"/%, where ¢ is the
number of Monte Carlo steps performed so far and 7 is the
annealing timescale. The calculation ends when the state of
the system stops changing and we take the final state to be our
prediction of the unknown signs.

For the calculations presented here we use parameter val-
ues Tp = 0.1 and 7 = 10* and run our calculations for 10°
Monte Carlo steps. For each network studied, we remove
varying fractions of the signs and then attempt to predict

1.0
M--:;::';: -------------------------
P L O R
g 08
5 |
o
I
2 0.6 —
B [ mmmmm e oo e
= F | ===- 1944 Basecline
ED 04— |77 1950 Baseline M
r.; -=--- 1980 Baseline
E i 1944 By,
3 02— 1950 By
2 | 1980 By
0.0 \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 5. Fraction of signs predicted correctly in the multiple sign
prediction task using the weak balance measure By, as a function of
the fraction of unknown signs for the international relations networks
in the years 1944, 1950, and 1980, along with baseline levels derived
by simply assuming all signs to be positive. Bands indicate lo
errors calculated from the distribution of values over 100 randomized
repetitions of the calculation.

those removed, repeating the entire calculation 100 times
for each fraction. For the imbalance measures used in this
paper the calculation can be sped up significantly by rapidly
computing the new energy value upon the flip of a sign using
the Woodbury or matrix determinant formulas again. Here
we focus specifically on the measures By and Bg. Since
these measures are constructed in an identical manner apart
from the criteria they use for balanced loops, they give us
an opportunity to perform an apples-to-apples comparison
of strong and weak notions of balance, to see which gives
better sign predictions. Similar calculations would, however,
certainly be possible for the EB and SA metrics considered in
previous sections.

Figures 5-8 show accuracy and NMI results from cal-
culations for three of our international relations networks,
corresponding to the years 1944 (during the Second World
War, where 43% of signs are negative), 1950 (a few years
afterward, where 13% of signs are negative), and 1980 (rel-
ative peace, where 5% of signs are negative). Each plot shows
three separate curves for the three networks, as a function
of the fraction of signs removed from the network. For the
accuracy plots we also show the baselines set by assuming
that all unknown signs are positive. (For the NMI plots the
equivalent baselines are by definition at zero.)

As the fraction of signs removed gets larger (and hence the
amount of information remaining to learn from gets smaller)
we naturally expect the performance of the algorithm to fall
off. Figures 5 and 6 show results for the weak balance measure
By and reveal that predictions are reasonably accurate for all
three years studied for fractions of predicted signs up to about
50%, although the baseline accuracy for 1980 is so high that
it is comparable with the predictions. (This is simply because
a very large fraction of signs are positive in this network.)
Normalized mutual information is also well above the baseline
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Normalized mutual information
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FIG. 6. Normalized mutual information for the multiple sign
prediction task using the weak balance measure By, as a function of
the fraction of unknown signs for the international relations networks
in the years 1944, 1950, and 1980. The baseline level of normalized
mutual information if we guess all signs to be positive is zero by
definition. Bands indicate 1o errors calculated from the distribution
of NMI values over 100 randomized repetitions of the calculation.

level of zero for fractions of predicted signs up to about 50%.
Beyond the 50% mark, however, prediction accuracy rapidly
falls to close to zero.

Figures 7 and 8 show the corresponding results for the
strong balance measure Bg, and comparing the results for
the two measures reveals an interesting overall picture. The
weak measure does better when predicting smaller numbers of
signs, but suddenly fails around the 50% mark, beyond which
it does no better (in fact worse) than chance. The strong mea-
sure, by contrast, does less well when fewer than 50% of signs
are removed, but manages at least modestly good performance
well beyond the 50% point, thereby outperforming the weak
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FIG. 7. Fraction of signs predicted correctly in the multiple sign
prediction task using the strong balance measure By, as a function of
the fraction of unknown signs for the international relations networks
in the years 1944, 1950, and 1980.
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FIG. 8. Normalized mutual information for the multiple sign
prediction task using the strong balance measure Bg, as a function of
the fraction of unknown signs for the international relations networks
in the years 1944, 1950, and 1980.

measure in this regime (although it is still not very good).
These trends are especially clear in the 1944 network, for
which arguably the strong measure makes more sense since,
as discussed earlier, international relations were dominated by
two main factions during that era.

The failure of the weak balance metric to predict unknown
signs beyond about the 50% mark is particularly interest-
ing. It arises through a competition between two different
minima of the metric. One minimum approximately corre-
sponds to the true assignment of signs, and if the algorithm
finds this minimum it will succeed, at least partially, in the
sign prediction task. The other minimum is a trivial one in
which all, or almost all, unknown signs are negative. If the
fraction of unknown signs is large enough, the latter state
will contribute at least two negative signs to most closed
loops in the network, meaning that most loops are balanced
(according to the weak definition) and hence our imbalance
score will approach its lowest possible value of zero. As the
fraction of unknown signs grows, there comes a point at which
this trivial minimum outcompetes the nontrivial one and the
algorithm no longer predicts signs with success any better than
chance. This point—the discontinuity we see in Fig. 6—is in
effect a zero-temperature first-order phase transition between
competing ground states. No similar argument applies to the
strong balance measure, and hence we see no sharp phase
transition in that case.

Overall, we conclude that successful prediction of multi-
ple edge signs is possible using our balance measures, with
the weak notion of balance again giving better performance
than the strong notion, at least up to the phase transition
mentioned above, beyond which the strong balance measure
is a better choice. In the particular networks examined here,
performance is stronger for the years 1944 and 1950 than for
1980, perhaps because of the starker conflicts and alliances
during and immediately after the war, compared with the
relative peace of the early 1980s.
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IV. CONCLUSIONS

We have studied the phenomenon of structural balance
in signed networks, whereby some configurations of signed
edges are more common than others. We have proposed two
measures of structural balance based on previously hypoth-
esized notions of “weak” and “strong” balance and com-
pared their performance against each other and previously
proposed measures in a number of tasks. Specifically, we
have examined the behavior of the various measures on two
distinct sets of networks representing alliances and conflicts
between countries during the 20th and 21st centuries, as
well as university freshman cohort relationships, testing in
the first instance to see simply by which measures these
networks are most balanced. We find that all measures show
a significant level of balance in all of the networks we
study.

We further test our measures on the international relations
data by comparing their ability to predict unknown edge
signs in a set of cross-validation experiments, in which we
remove either a single sign or multiple signs from the network
and attempt to predict the missing sign(s) by choosing those
values that maximize balance by each of our metrics. We find
that prediction of unknown signs is possible, with accuracy
substantially better than a random guess, and in particular that
our measure based on the weak notion of balance performs
well in practice.

Many extensions and generalizations of the work presented
here would be possible. Good data on signed networks are
currently relatively scarce, but it would be interesting to
see how our results generalize when similar calculations are
performed on other networks. As discussed in Sec. III A, many
data sets are more naturally represented as weighted and/or
directed signed networks, and so extending the measures
proposed here to these classes of networks would provide a
more flexible framework for analysis of a wide variety of data.
One could also employ balance metrics to perform anomaly
detection in networks, looking for edges that participate in a
large number of imbalanced loops. A further interesting ques-
tion is how to determine the optimal value of the parameter we
called «, which controls the amount by which longer loops
are discounted in our calculations. In this paper we simply
choose a value that seems reasonable, noting that our results
are not strongly dependent on the choice, but it would be an
improvement if one were able to find a first-principles method
of fixing the value of «. These possibilities, however, we leave
for future work.
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