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Inferring directed networks using a rank-based connectivity measure
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Inferring the topology of a network using the knowledge of the signals of each of the interacting units is
key to understanding real-world systems. One way to address this problem is using data-driven methods like
cross-correlation or mutual information. However, these measures lack the ability to distinguish the direction of
coupling. Here, we use a rank-based nonlinear interdependence measure originally developed for pairs of signals.
This measure not only allows one to measure the strength but also the direction of the coupling. Our results for
a system of coupled Lorenz dynamics show that we are able to consistently infer the underlying network for
a subrange of the coupling strength and link density. Furthermore, we report that the addition of dynamical
noise can benefit the reconstruction. Finally, we show an application to multichannel electroencephalographic
recordings from an epilepsy patient.

DOI: 10.1103/PhysRevE.99.012319

I. INTRODUCTION

A rich variety of natural and man-made systems are com-
posed of separate components that interact in a complex way.
These systems are modeled by using networks where each
component is represented by a node and their interaction is
conveyed by links between the nodes. This approach helped
to advance our understanding of real-world systems ranging
from social to natural sciences [1]. To understand the col-
lective dynamics of these complex systems, it is essential to
characterize not only the behavior of individual nodes but also
the network structure that makes them interact via links.

For many real-world systems, while the network structure
is not directly accessible, one can measure signals from each
of the nodes. Therefore, it is important to develop methods for
inferring the topology from measured signals. Research that
aims at this inference can be found in the context of biology
[2], neurobiology [3,4], and climate science [5], among others.

In general, we can address the inference problem in two
different ways depending on the type of assumptions we
make. One approach is to use certain models for the nodes
and possibly also for the type of interaction. In combination
with the temporal evolution of the dynamics of each node,
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this information allows one to reconstruct the network. In
some cases, the parameters of the model can also be deter-
mined [6–14]. These type of methods can only work when
the assumptions about the model are correct. The second
approach to address the inference problem is to use ex-
clusively the knowledge of the temporal evolution without
selecting any model. Although data-driven approaches make
implicit assumptions of the measured signals, for example,
whether the dynamics are linear or nonlinear, it remains more
applicable to real-world systems. Using this approach, mea-
sures like cross-correlation, mutual information, and mutual
information rate can perform well [15–17]. However, these
measures are not able to determine the direction of interac-
tion between nodes. Partial mutual information from mixed
embedding is able to infer networks which have almost the
same topological structures like the original ones [18,19]. Fur-
thermore, measures like partial directed coherence and partial
transfer entropy were used for small systems with particular
topologies [20–24].

Despite the progress summarized above, inferring the exact
connectivity matrix for larger directed networks without a
specific choice of the topology remains a difficult task. In
this paper, we address this task using a data-driven approach.
For this purpose, we use the state space measure L defined
in Ref. [25]. This measure belongs to a family of mea-
sures which aim to detect the direction of couplings between
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dynamics from pairs of signals by using the asymmetric state
similarity criterion [26–32]. Applications of L to real-world
data include electroencephalographic (EEG) recordings from
epilepsy patients [33,34] and neurophysiological signals [35].
In Ref. [36] the efficacy of L in the detection of bidirectional
couplings was studied, and in Refs. [31,37] L was used to
detect coupling from spike train dynamics. Here, we apply L

to multivariate signals extracted from networks by analyzing
all pairwise combinations of individual signals, resulting in
estimates of the connectivity matrix.

We study the performance of our method using Lorenz
oscillators as the dynamics for each node arranged in a
random network with diffusive couplings between nodes. The
influence of parameters like the coupling strength, and the
link density is illustrated. In particular, we show that for a
range of these parameters, we are able to infer perfectly the
underlying network of the system. We furthermore show that
the addition of dynamical noise can in some cases improve
the performance of the method. Moreover, we study the
robustness of the method for increased system sizes. Finally,
we report an application of our method to EEG recordings
of seven seizures from an epilepsy patient. We illustrate the
temporal evolution of the connectivity prior, during, and after
the seizure.

II. METHODS

In the following we describe the measure L [25] which
is based on the asymmetric state similarity criterion. As-
sume that we have two dynamical systems X and Y from
which we derive scalar signals xi and yi for i = 1, . . . , N∗.
From these signals, we reconstruct the state space of the
dynamics using delay vectors xi = (xi, xi−τ , ..., xi−(m−1)τ ),
yi = (yi, yi−τ , ..., yi−(m−1)τ ), where m is the embedding di-
mension and τ is the time delay. The index i now goes from
i = io = 1, ..., N = N∗ − (m − 1)τ , so the delay vector with
index i has the scalar value with that same index i as a
leading element. For j = 1, ..., k, we denote by vi,j and wi,j

the time indices of the k spatially nearest neighbors of xi and
yi , respectively. Here the Euclidean distance is used as metric,
and temporally nearest neighbors are discarded by applying
a Theiler window of length T [38]. Accordingly, the time
indices must satisfy that |vi,j − i| > T and |wi,j − i| > T .
We sort the distances between xi and xio �=i , and we introduce
gi,io , which stands for the rank of the distance between xi and
xio in an ascending list. To quantify the interdependence from
X → Y we use L(X|Y ) defined in the following way. We take
the X dynamics as reference, and define the Y -conditioned
mean rank as Gk

i (X|Y ) = 1
k

∑k
j=1 gi,wi,j

. We then introduce

L(X|Y ) = 1

N

N∑
i=1

Gi (X) − Gk
i (X|Y )

Gi (X) − Gk
i (X)

, (1)

where Gi (X) = N
2 and Gk

i (X) = k+1
2 correspond to the mean

and minimal mean rank of the distances in the X signal,
respectively. To compute L(Y |X), which quantifies the in-
terdependence from Y → X, we just exchange the roles of
X and Y . For identically synchronized dynamics (X = Y ),
we get L(X|Y ) = 1. In contrast, for independent dynamics
the expected value of L(Y |X) is distributed around zero. The

number of nearest neighbors is set to k = 5, and we use m = 5
and τ = 5 for the embedding dimension and the time delay,
respectively. Finally, for the Theiler window we use T = 15.
These values are taken from Ref. [36] to avoid any in-sample
parameter optimization.

We apply our method to directed networks with a dy-
namical system at each of the M network nodes. We use
random networks, which are defined by the link probability
ρ. The existence of a directed link between two nodes is
given by this probability ρ. By construction, we exclude
self-loops, i.e., nodes are never connected with themselves.
Links between nodes are expressed by the binary adjacency
matrix A. More specifically, the matrix element Apq = 1, if a
directed link from p to q exist. The equality Apq = Aqp = 1
holds, if the link is bidirectional. In contrast, Apq = 0 if there
is no link from p to q. The range of the matrix indices is
p, q ∈ (1, ..,M ). Since we use directed networks, in general
Apq �= Aqp. Our aim in this paper, is to infer the matrix A

using only the information of the scalar signals derived from
each of the M nodes.

We consider directed networks of size M = 16 with
Lorenz dynamics at each node. The nodes are connected via a
diffusive coupling with strength ε through the x components:

ẋp(t ) = 10(yp(t ) − xp(t )) + ε

M∑
q=1

Aqp[xq (t ) − xp(t )]

+ ξx
p (t ),

ẏp(t ) = xp(t )[bp − zp(t )] − yp(t ) + ξy
p (t ),

żp(t ) = xp(t )yp(t ) − 8

3
zp(t ) + ξz

p(t ). (2)

We study two different settings. A heterogeneous system by
taking bp from a uniform distribution in the interval [27,47]
or a homogeneous system by setting bp to a constant value
of 28. In this setting, the model is chaotic at zero coupling
strength. The quantity ξ (t ) stands for independent Gaussian
noise with zero mean and with the following correlation
function < ξl

p(t )ξ l′
q (t ′) >= 2Dδll′δpqδ(t − t ′) with l and l′

being the three components of the Lorenz dynamics. For a
given link probability ρ and coupling strength ε, we draw S =
10 independent random realizations of the adjacency matrix
A. For each of these realizations of the network structure,
we generate R = 200 realizations of the dynamics. For each
realization of the dynamics, we start the system at random
initial conditions and use a fourth-order Runge-Kutta scheme
to integrate the dynamics. We use an integration step of 0.05
time units and downsample by a factor of 6. We discard
initial transients, and extract the x component of the Lorenz
dynamics for each of the network nodes. We use 4096 data
points, which corresponds to approximately 200 oscillation
periods.

For a given adjacency matrix A and each of the R = 200
realizations of the dynamics, we compute the matrix elements
Wpq = L(Xp|Xq ). This matrix contains the L values for
all the possible pairs of signals in the network. In general,
the values L(Xp|Xq ) and L(Xq |Xp ) are not equal, and we
therefore get an asymmetric matrix. We skip the diagonal
elements which correspond to L(Xp|Xp ) = 1. We average W
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across the R = 200 dynamical realizations to obtain W̄ . Our
objective is to reconstruct the true underlying topology A by
separating the continuous valued entries of the matrix W̄ into
two sets. To achieve this separation, we apply a threshold η to
obtain a reconstructed binary adjacency matrix Rη:

Rη
pq =

{
0 if W̄pq � η

1 if W̄pq > η
, (3)

with p, q ∈ (1, ..,M ) without considering diagonal elements
p = q.

To quantify the accuracy with which Rη estimates the true
connectivity A, we compute the true positive rate λη which is
defined by the number of correctly detected links divided by
the total number of links:

λη =
∑M

p,q;p �=q R
η
pqApq∑M

p,q;p �=q Apq

. (4)

The false-positive rate κη is defined by the number of incor-
rectly detected links divided by the total number of absent
links:

κη =
∑M

p,q;p �=q R
η
pqBpq∑M

p,q;p �=q Bpq

, with Bpq =
{

0 if Apq = 1
1 if Apq = 0 . (5)

We then compute the reconstructed matrices Rη in depen-
dence on the threshold η and determine the resulting values
of λη and κη. By plotting λη versus κη for all values of η

we get the so-called receiver operating characteristic (ROC)
curve. We use the area under the ROC curve to quantify the
accuracy of the reconstruction. This area, which we denote by
�, attains its maximal value of one for a perfect classification.
In this case, a threshold η exists for which we get Rη = A. In
contrast, the expected value for a random classification of this
area is � = 0.5.

III. RESULTS

We start by analyzing the elements of the matrix W̄ for four
exemplary cases [Figs. 1(a)–1(d)]. All examples are computed
from the heterogeneous noise-free system of Lorenz oscilla-
tors. In Figs. 1(a)–1(c), we use the coupling strengths ε = 0,
0.665, and 4.92, respectively, while the link density is set to
ρ = 0.1. In Fig. 1(d), we use ε = 4.92 but with higher link
density ρ = 0.4. To evaluate W̄ , we plot its elements W̄pq in
an ascending order [15], in green if there is a link (Apq = 1)
and black otherwise (Apq = 0). For zero coupling [Fig. 1(a)],
all W̄pq values are around zero and there is no difference
between the values where Apq = 1 and Apq = 0. In contrast,
for intermediate coupling [Fig. 1(b)], there is a clear gap
between results obtained from pairs of signals from connected
nodes on the one hand, and results obtained from unconnected
nodes on the other hand. Any threshold η taken from within
this gap will lead to a perfect reconstruction of the adjacency
matrix: Rη = A. For high coupling [Fig. 1(c)], the W̄pq gen-
erally increase. Due to this increase, values obtained from
pairs of signals from connected nodes and values obtained
from unconnected nodes mix. Therefore, the gap we had in
Fig. 1(b) closes. Nonetheless, results for connected nodes still
tend to be higher than results for unconnected nodes. Finally,
in Fig. 1(d), the increased link density paired with the high
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FIG. 1. Different coupling strengths and link densities lead to
different qualities of the network reconstruction. Sorted W̄ values for
four different exemplary cases (a–d) computed for the heterogeneous
noise-free case. For cases (a–c), we fix ρ = 0.1 with ε = 0, 0.665,
and 4.92, respectively. For case (d), we use ρ = 0.4 and ε = 4.92.
Values corresponding to links (no links) are marked in green (black).

coupling leads to an almost synchronous temporal evolution
for all nodes. As a result, the elements of W̄pq are close to the
upper bound of the underlying measure L which is 1. From
this display of the results in Fig. 1(d), we still see a tendency of
connected nodes to be at higher values, but a clear distinction
between the values from connected and unconnected nodes
is no longer possible. For cases where A is not known, an
analysis of the ordered set of W̄ could also be performed to
help with the threshold decision.

Figure 1(b) shows that at intermediate coupling and low
link density, a gap between the sorted W̄ values from con-
nected and unconnected nodes appears. Any threshold η

placed within this gap, allows us to reconstruct the underlying
network perfectly. In contrast, in Figs. 1(a), 1(c) and 1(d), no
threshold leads to a perfect reconstruction, and there is no sin-
gle optimal threshold. To further differentiate these cases, we
show in Fig. 2 the ROC statistics to quantify the classification
performance for these different cases [Figs. 1(a)–1(d)]. The
resulting ROC curves (A–D) and corresponding areas under
ROC curves �, complement the information shown in Fig. 1.
At zero coupling (curve A), the ROC curve has a similar shape
and area (� = 0.525) as expected for a random classification
(� = 0.5). This correctly reflects that for zero coupling there
is no difference between connected and unconnected nodes.
For the curve B, we have a perfect ROC curve with � = 1.
This means that upon increasing the threshold we first find
all the links λη = 1. Only when increasing the threshold
further we would find false positives, i.e., classify pairs of
unconnected nodes as links. At high coupling strength and
link density ρ = 0.1 (curve C), we find some false posi-
tives before finding all the links. This reflects the results
displayed in Fig. 1(c) where the values of connected and
unconnected nodes mix. Still, the classification is very high as
shown by � = 0.941. Finally, for the curve D, the area drops
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FIG. 2. ROC curves allow us to quantify the accuracy of the
reconstruction for a variable threshold. ROC curves for a hetero-
geneous noise-free system using different values of ρ and ε. The
curves A–D correspond to the cases (a–d) in Fig. 1. The blue line
corresponds to the ROC curve of a random classification. In the
legend we show the area under the ROC curve �.

substantially to � = 0.685 but remains higher than the ran-
dom case. The fact that the classification performance remains
better than random indicates that for the curve D, although all
the points had very similar values in Fig. 1(d), the results for
connected nodes have a tendency to be higher than the ones
for unconnected nodes.

Above we showed detailed results for individual realiza-
tions of the heterogeneous noise-free system at exemplary
values of the link density ρ and the coupling strength ε.
We now study the performance of our method for ranges of
these parameters, and averaged over independent realizations
of the adjacency matrix A (Fig. 3). For zero and small
coupling strengths, the reconstruction is similar to a random
classification (� ≈ 0.5), for all ρ. At intermediate couplings
(ε ≈ 0.07), the performance quickly improves, and for low ρ

we even have a region with perfect reconstructions � = 1 for
all S realizations (green area in Fig. 3). This region is sur-
rounded by an area of high performance � ≈ 0.9 (dark blue
area in Fig. 3). For small ρ this region of high performance
reaches high coupling values. However, as ρ gets bigger,
the broadness of this area reduces. For higher link densities
and higher couplings the dynamics of the nodes becomes
almost synchronous. It is known that a reliable extraction of
directional couplings from almost synchronous dynamics is
not possible [25,39,40]. For this reason the performance is
approaching the chance level when both the link density and
coupling strengths are high.

The system that we have analyzed so far is heterogeneous
in the sense that the Lorenz oscillators across network nodes
are nonidentical in their parameter bq . We continue to study
a noise-free but now homogeneous network by setting bq =
28 for all nodes. The area under the ROC curve � aver-
aged across all the S resets of this homogeneous system is
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FIG. 3. Performance of the network reconstruction for the noise-
free heterogeneous dynamics is highest for sparse networks with
intermediate coupling between nodes. Area under the ROC curve �

averaged across S = 10 independent realizations of the adjacency
matrix A in dependence on the link probability ρ and the coupling
strength ε. Values of ε are placed equidistantly on a logarithmic
scale. Only when � = 1 across all the S realizations we plot the
corresponding field in green. Labels from A to D mark the set of
parameters (ρ, ε) used in both Figs. 1 and 2.

displayed in Fig. 4. The green region with perfect reconstruc-
tion is smaller than the corresponding region in Fig. 3. More-
over, the dark blue area of high performance (� ≈ 0.9) is also
narrower than the one in the heterogeneous system. For high ε

and ρ we find an area with exactly � = 0.5. In this region, the
nodes are identically synchronized and therefore we find that
L(Xp|Xq ) = 1 for all the p, q. While for thresholds η > 1, we
obtain λη, κη = 0, we obtain λη, κη = 1 for η � 1. Hence, the
ROC curve for this configuration coincides with the diagonal,
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FIG. 4. Compared to the results for the heterogeneous noise-free
system, the performance of the network reconstruction is degraded
for the homogeneous noise-free system. Same as Fig. 3 but here for
the homogeneous noise-free case.
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FIG. 5. For intermediate and high coupling strengths, hetero-
geneity helps the reconstruction. Difference in performance between
the heterogeneous and the homogeneous systems �� shown in
Figs. 3 and 4. Blue and red correspond to higher performance ob-
tained for the heterogeneous and homogeneous system, respectively.

resulting in � = 0.5, which reflects that it is impossible to
reconstruct a network when all nodes behave the same.

To further compare the results of our approach obtained
for heterogeneous and homogeneous systems we inspect the
differences between their reconstruction performances ��

(Fig. 5). For low couplings ε � 0.07, the method performs
better for the homogeneous system. This shows that small
couplings have stronger effects between identical dynamics as
compared to nonidentical dynamics. As a result, our method
can detect them better. In contrast, when the coupling strength
is increased, heterogeneity facilitates the reconstruction. This
results in an area of positive �� (dark blue) in the center of
the parameter space of ε and ρ depicted in Fig. 5. Here, the
coupling strength is high enough for the homogeneous system
to substantially increase the overall interdependence between
signals, making it more difficult to distinguish real links from
indirect connections. In contrast, for the heterogeneous case,
we need higher coupling to find this effect. This results in
a dark blue area, indicating that the method performs much
better for heterogeneous system than for the homogeneous
one. For parameters located right from the central dark blue
area, some substantial changes of our dynamics have to be
mentioned for the interpretation of our results. For some real-
izations of the adjacency matrix and some initial conditions,
the dynamics of a subset of the nodes degenerates from the
original complex two-wing Lorenz attractor to much simpler
structures and even fixed point solutions. The presence of such
degenerated solutions has a negative impact on the average
performance. This effect takes place at different regions of
the parameter space for the homogeneous versus the heteroge-
neous system. This disparity is the main reason why right from
the central dark blue region we find a red region for which the
homogeneous system results in a better performance. Finally,
for high couplings and high link density, no degeneration takes
place. The performance is again better in the heterogeneous
system leading to a triangular shaped blue area in the lower-
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FIG. 6. Depending of the choice of ε and ρ, there exist an
ideal level of noise which improves the reconstruction as compared
to the homogeneous noise-free case. Average performance of the
reconstruction for S = 10 adjacency matrix realizations as a function
of the noise level for some characteristic values of ε keeping ρ =
0.5. The error bars represent the standard deviation across the ten
different realizations.

right of Fig. 5. This again is because homogeneous systems
are easier to synchronize than heterogeneous ones, and in
consequence, it is more difficult to infer connectivity in the
former type of systems.

So far we analyzed the system in Eq. (2) keeping the
noise level at zero. We now study the homogeneous system
with a variable degree of dynamical noise. The averaged
performance � as a function of the noise for three different
characteristic ε keeping ρ = 0.5 is plotted in Fig. 6. At low
coupling strength (ε = 0.017), the addition of noise does not
change the performance, and we have a random classification
for all values of the noise. For ε = 0.107 the performance
is high for the noise-free case and decreases with increas-
ing noise level. If we further increase the coupling strength
(ε = 0.266), the increased coupling makes the dynamics of
each node more alike and the overall interdependence in the
dynamics is increased. Here, moderate noise reduces this
dynamical interdependence of the signals and therefore, it is
easier to infer the connectivity of the system. This effect is
strongest for an optimal value of the noise

√
2D ≈ 0.38 for

which the performance � achieves its maximum value. When
the noise is increased further, the performance approaches the
one of a random classification.

As shown in Fig. 6, the noise level leading to the highest
performance depends on the parameter ε. In Fig. 7, we show
the averaged performance of a fixed noise level of

√
2D = 0.5

in dependence on ε and ρ. For small coupling strengths, we
still perform like a random classification. As the coupling
strength increases (ε ≈ 0.07), the noise hinders our approach
to detect the connectivity and we continue to perform al-
most at random while in the noise-free case we have good
performance at these parameter values. In contrast, once the
coupling is high enough (ε ≈ 0.15), dynamical noise results
in increased � values and we find larger regions with perfect

012319-5



MARC G. LEGUIA et al. PHYSICAL REVIEW E 99, 012319 (2019)

0   0.02 0.04 0.07 0.15 0.32 0.66 1.37 2.85

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 7. Dynamical noise increases the performance for a wide
range of parameters. Same as Fig. 3 but here for the homogeneous
case with noise level of

√
2D = 0.5.

reconstruction (green) and high performance (dark blue) than
for the noise-free case. Moreover, at very high coupling we
perform better than chance level in a parameter region where
the classification for the noise-free case is completely random.

Finally, we study the performance of our method for
increased values of the network size M keeping the length
of the signal and the number of dynamical realizations R

fixed. We study the noise-free heterogeneous case keeping
ρ = 0.1 and for four different values of the coupling strength
ε. The averaged performance for different network sizes M ,
is shown in Fig. 8. Due to the computational cost at increased
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FIG. 8. Performance of the network reconstruction is decreased
for increasing size M when the link density ρ is not adjusted. Area
under the ROC curve � averaged across S = 5 independent realiza-
tions of the adjacency matrix A in dependence on the network size M

and the coupling strength ε. Values of ε are placed equidistantly on
a logarithmic scale. We use a density ρ = 0.1 for all the cases. Only
when � = 1 across all the S realizations we plot the corresponding
field in green.
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FIG. 9. Performance of the network reconstruction for the noise-
free heterogeneous dynamics does not change if the system size
grows. Same as described in the caption of Fig. 8 but using ρM .

network sizes, we limit the adjacency matrix realizations to
S = 5. For sizes M � 32, the performance barely changes
with the increased size. We notice that at M = 32 we do not
perform perfectly for all the realizations but we still have a
high � across the different coupling strengths. At M = 64, we
still have very good performance for almost all the coupling
strengths considered. However, the performance decreases
and approaches chance level upon further increasement of
M . This is specially true for the higher coupling strengths.
To interpret this deterioration of the performance, one has
to keep in mind that the number of possible links grows
quadratically with the size M . This way, although we keep
ρ = 0.1, the average number of links at any given node is
much larger at M = 256 than at M = 16, which in turn makes
the system more synchronizable. However, most real-world
networks tend to be sparse [1]. So as the system size grows,
the quantity that is conserved should be the link per node and
not the density. To further illustrate this point, we take as a
reference quantities (M0 = 16, ρ0 = 0.1) and define

ρM = ρ0
M0 − 1

M − 1
, (6)

where ρM is link density at size M . The measure ρM preserves
the average links per node that we had at the one of the refer-
ence point (M0 = 16, ρ0 = 0.1). Similar to Fig. 8, in Fig. 9 we
show the average performance for increased system sizes for
some characteristic ε’s but using ρM for the link density. For
all the ε, we observe that the performance does not change
substantially with increased system size. At ε = 0.27, 0.55,
the only difference as the system size increases is that we do
not perform perfectly for all the realizations computed. Still,
the average performance in these areas is almost perfect (� >

0.99). These results confirm that the decrease in performance
we observe in Fig. 8 is due to this increase of links which also
make the system easier to synchronize.
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IV. APPLICATION TO EEG DATA

We now show an application of our method to EEG record-
ings from an epilepsy patient (patient 1 in Refs. [41,42]).
These recordings were performed prior to and independently
from our study in the context of this patient’s presurgical
diagnostics in Hospital del Mar, Barcelona, Spain. Five elec-
trodes with a total of 56 recording channels were implanted
intracranially in the following brain regions: frontal (FR),
amygdala (AM), anterior hippocampus (AH), posterior hip-
pocampus (PH), and temporobasal cortex (TB). The patient
was diagnosed with a right-sided nonlesional mesial temporal
lobe epilepsy and underwent epilepsy surgery resulting in
complete seizure freedom with a followup of more than 5
years.

Our dataset contained EEG recordings from seven seizures.
The EEG recording for each seizure started 60 s before the
seizure onset and stopped 60 s after the seizure end. The me-
dian duration of the recordings was 295 s (range 238–465 s).
We refer to the period before, during, and after the seizure
as preictal, ictal and postictal, respectively. The recording
channels from which the first signs of ictal activity and early
propagation were recorded, the so-called seizure onset zone
(SOZ), as well as the exact time of the beginning and end
of the seizure were determined by a board-certified neu-
rophysiologist (Rodrigo Rocamora). The data was recorded
at 500 Hz, and we applied a high-pass filter with a cutoff
frequency of 0.5 Hz and a low-pass filter at 40 Hz using
fourth-order Butterworth filters. We discarded a total of 16
channels because they were located in the white matter of
the brain. Using all 40 remaining channels we made a bipolar
reference between contacts that were neighboring at the same
electrodes, resulting in M = 35 signals. We down-sampled
the signals by a factor of two to a frequency of 250 Hz. The
signals were analyzed using a moving windows technique
with a window length of 16 s and an increment of one second
between subsequent windows (93.75 % overlap). The total
number of windows Z depended on the length of the EEG
recording, which in turn depended on the duration of the
corresponding seizure.

For each seizure, we computed L for all the pairs of
signals and all windows with index z = 1, . . . , Z leading to
a connectivity matrix Wz for each window. As stated above,
the windows belong either to the preictal, ictal or postictal
period. As the first step of evaluation, we averaged separately
for each period resulting in 〈W 〉period. In these averages, we
discarded all the windows that included either the beginning
or the end of the seizure and therefore contained activity from
two distinct periods.

Recall that in the analysis of the model systems presented
above we used a threshold η to convert our continuous-valued
result matrix W to a binary adjacency matrix Rη. In this
analysis of real-world data, we aim not only at detecting the
existence, but also to estimate the strength of the directed
connection between nodes. Accordingly, in Fig. 10 we display
continuous-valued matrices 〈W 〉period of the temporal means
obtained separately for each period of one exemplary seizure.
Values below the mean plus one standard deviation taken
separately across the elements of the matrix for the three peri-
ods are thresholded and set to zero. The reconstructed matrix
〈W 〉preictal [Fig. 10(a)] shows connections mainly for contacts

that are spatially close. We also infer connections between
signals recorded from TB, PH, and other regions. Moreover,
we also observe connections within the SOZ sampled by
contacts in AH and PH. In the ictal period [Fig. 10(b)], the
reconstructed matrix 〈W 〉ictal shows an overall stronger inter-
connectivity between brain regions as compared to 〈W 〉preictal.
Furthermore, some of the strongest connections are found for
contacts placed in the SOZ. In contrast, the frontal region
remains less connected as assessed by our inference results.
This is in agreement with the clinical information that the
seizure did not spread to this brain area. Finally, for 〈W 〉postictal

[Fig. 10(c)], as in the preictal period, most of the connections
are found for spatially close contacts. However, in the pos-
tictal period, we infer stronger overall connectivity and more
connections between brain regions. These results are not a
special case for the particular seizure used as an example,
and we found similar patterns regarding the structure of the
reconstruction for all the other seizures. This consistency of
the connectivity patterns across seizures is in agreement with
the consistency of relative activation patterns that it was found
for the same patient in Ref. [41].

In Fig. 10 we looked at the spatial structure of the con-
nections by making a temporal average across the windows
of the same period. In Fig. 11(a), instead, we look at the
temporal evolution of the connectivity by making an av-
erage across all contacts within the same window W̄ z =

1
N (N−1)

∑M
p,q;p �=q Wz

p,q . For all the seizures, we see that during
the preictal period, the overall interdependence of the system
is low. When the seizure starts, the quantity W̄ z quickly grows.
In particular, for seizures two through six, we see two phases
during the ictal period. One with higher interdependence at
the beginning of the seizure, and one with smaller interdepen-
dence afterwards. In the postictal period, the quantity W̄ z goes
down but remains higher than in the preictal period.

We continue by looking at the temporal evolution of the
connectivity but now using the directional information pro-
vided by the measure L. We separately average across the
matrix elements corresponding to the SOZ driving the rest
of the contacts (W̄S→R), on the one hand, and the matrix
elements corresponding to the opposite direction, on the other
hand (W̄R→S). Contacts placed in the resected area but not
in the SOZ are not included in any of the averages. The
temporal profile of W̄S→R − W̄R→S is shown in Fig. 11(b).
For all seizures, during both the pre- and postictal periods
the connectivity is almost symmetric, and therefore the differ-
ences W̄S→R − W̄R→S remain small. For the ictal period, apart
from some variability across seizures, one common pattern is
consistent across all seizures. Shortly after the seizure onset,
we find a prominent asymmetry in connectivity in the sense
that the SOZ is driving the remaining areas.

V. DISCUSSION

The aim of this study was to infer directed networks using
solely the information of the signals of the nodes. To do
so, we have presented a reconstruction method based on the
state space measure L. We showed that for a subrange of the
coupling strength and the link density, we were able to per-
fectly infer directed networks. This finding provided us with
evidence that L can be an effective measure to evaluate
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FIG. 10. High variability of connectivity structure is found across the different periods included in the EEG recording from an exemplary
seizure. Temporal averages 〈W 〉period for the third seizure for the periods preictal (a), ictal (b), and postictal (c). Values below the mean plus one
standard deviation taken separately across the elements of the matrix for three periods are displayed in white. Black lines delimit the different
regions of the brain where the electrodes were placed. Contact names placed in the SOZ are marked with an asterisk.

directed connections from multivariate signals and could po-
tentially be used in a wide variety of problems [2,4,5,32].
Other studies that addressed the same problem, typically
dealt with small systems and particular topologies [20–24]
or analyzed the resulting structural network properties [19].
Here, instead, we were able to infer directed networks without
choosing specific topology configurations. We also showed
that dynamical noise can be beneficial for the reconstruc-
tion. This was true in particular for strongly coupled sys-
tems where noise prevents the system to enter into a syn-
chronous state. We furthermore studied the performance of
the method for increased system sizes. We showed that the
performance remains constant if we properly adjust the link
density.

Although pairwise approaches are prone to mistakenly de-
tect indirect spurious connections, L is performing well for a
wide range of parameters. This good performance is specially
noteworthy for high link density and high couplings at which
the overall network dynamics become highly interdependent.
This is because for such highly interdependent dynamics, the
distinction between real links and indirect spurious links is
difficult for any data-driven approach. To further improve the

performance for highly interdependent dynamics, future work
should aim at the development of multivariate extensions
of the measure L, which are conditioned on subsets of the
multivariate signals.

Applying our method to analyze EEG recordings from an
epilepsy patient, we estimated the connectivity network for
the three seizure periods. This resulted in three distinct struc-
tures corresponding to the three periods. We also observed
that the strongest connections were the ones between contacts
placed in the SOZ. We furthermore computed the temporal
mean connectivity and noticed that it reflects the start and
the end of the seizures. We also observed an asymmetrical
pattern where the contacts situated in the SOZ were driv-
ing the rest of the contacts at the beginning of the seizure.
This result is in agreement with other studies that reported
driving of the SOZ [43–48]. In interpreting these results, we
have to keep in mind that the available amount of data was
limited, and a study of more patients, seizures, and different
anatomical locations of the SOZ should be carried out to
make any strong claims. Nevertheless, these results show
the potential of the method for this type of real-world data
applications [33,34].

FIG. 11. A high overall connectivity is found during the seizure with a predominant direction from the SOZ to the remaining brain areas
at the beginning of the seizure. (a) Spatially averaged connectivity matrix W̄ z in dependence on time for the seven seizures. (b) Spatially mean
connectivity of SOZ driving the rest of the contacts (W̄S→R) minus SOZ being driven (W̄R→S) by the rest of the contacts for the same seven
seizures. The gray frames depict windows that lay between two distinct periods. Left from the left frame is the preictal period, between the
frames is the ictal period, and right from the right frame is the postictal period.
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In the first part of our study, we have used the area under
the ROC curve to asses the performance of our reconstruction.
This is a good way for testing the performance of our method
in different settings when we know the ground truth. However,
this procedure cannot be used when the exact topology is not
known, and a decision on how to threshold has to be made.
Setting the threshold at a low (high) value, we will likely find
false positives (negatives). A possible way to determine an
optimal threshold is by plotting the ordered set as in Fig. 1. In
this case, without the ground truth knowledge of the matrix A,
we can of course not add color labels. Nonetheless, in case a
clear gap exists in this ordered set [see Fig. 1(b)], a threshold
can be readily drawn from within this gap. The setting of the
threshold will have impact on the resulting network topology
[49], and the choice of an optimal threshold without previous
information of the system is still an open question. This is
what we faced in the EEG example. However, despite not
knowing the exact functional connectivity to validate our
results, our findings are coherent with the medical infor-
mation indicating that our method is extracting meaningful

information about the system, and therefore it is a promising
approach for medical applications.

To conclude, the MATLAB source codes used in this
manuscript, including the calculation of L, will be available
here [50].
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