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Spinodal decomposition in a mean-field model of the cortex:
Emergence of hexagonally symmetric activation patterns
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Spinodal decomposition is a well-known pattern-forming mechanism in metallurgic alloys, semiconductor
crystals, and colloidal gels. In metallurgy, if a heated sample of a homogeneous Zn-Al alloy is suddenly quenched
below a critical temperature, then the sample can spontaneously precipitate into inhomogenous textures of
Zn- and Al-rich regions with significantly altered material properties such as ductility and hardness. Here we
report on our recent discovery that a two-dimensional model of the human cortex with inhibitory diffusion can,
under particular homogeneous initial conditions, exhibit a form of nonconserved spinodal decomposition in
which regions of the cortex self-organize into hexagonally distributed binary patches of activity and inactivity.
Fine-scale patterns precipitate rapidly, and then the dynamics slows to render coarser-scale shapes which can
ripen into a range of slowly evolving patterns including mazelike labyrinths, hexagonal islands and continents,
nucleating “mitotic cells” which grow to a critical size then subdivide, and inverse nucleations in which quiescent
islands are surrounded by a sea of activity. One interesting class of activity coalesces into a soliton-like narrow
ribbon of depolarization that traverses the cortex at ∼4 cm/s. We speculate that this may correspond to the thus
far unexplained interictal waves of cortical activation that precede grand-mal seizure in an epileptic event. We
note that spinodal decomposition is quite distinct from the Turing mechanism for symmetry breaking in cortex
investigated in earlier work by the authors [Steyn-Ross et al., Phys. Rev. E 76, 011916 (2007)].
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I. INTRODUCTION

In his ground-breaking morphogenesis paper, Turing
showed that a chemical system comprised of a homogenous
mixture of interacting “activator” and “inhibitor” species
could spontaneously organize into heterogenous spatial pat-
terns [1]. Now referred to as the Turing instability, this mecha-
nism for pattern formation has been studied in many chemical
reaction-diffusion systems (e.g., Refs. [2–4]), and it is now
well established that these spatial structures can only emerge
when the level of inhibitory diffusion is sufficiently strong.

Competitive diffusions have been proposed as a mecha-
nism for pattern formation in the brain. Wilson and Cowan’s
1973 paper [5] showed that stationary neural activity patterns
can form in a cortical network of excitatory and inhibitory
neurons provided that the inhibitory axons have a longer
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spatial range than the excitatory axons: Short-range recurrent
excitation stabilizes local neural activity while longer range
inhibition prevents local activity from spreading. This domi-
nance of distal inhibition is referred to as lateral inhibition and
is frequently implemented as a “Mexican hat” connectivity
kernel featuring long-range inhibitory and short-range excita-
tory axonal connections. There is an extensive and very active
literature exploring spatial bifurcations in Wilson-Cowan–like
mean-field neural models [6–12].

An alternative mechanism for Turing instability in the
cortex was proposed by Steyn-Ross et al. [13,14]. Rather than
imposing lateral inhibition via a shaped connectivity kernel
for chemical synapses, the authors suggested that long-range
inhibition arises naturally from the relative distribution of
E-E and I -I gap-junction synapses that form direct ohmic
connections between adjoining pairs of excitatory (E) or
inhibitory (I ) neurons. In contrast to the very sparse E-E gap
junctions, I -I junctions between neighboring interneurons are
ubiquitous throughout the cortex and are supposed to form an
inhibitory diffusive syncytium that scaffolds the brain [15,16].
Using a noise-driven two-dimensional (2D) continuum model
of the cortex, the authors showed how gap-junction connec-
tivities could be mapped to excitatory and inhibitory diffusion
strengths D1 and D2, respectively, and found that, provided
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D2 � D1 with D2 sufficiently strong, a previously stable
equilibrium state could become unstable, leading to the emer-
gence of nonequilibrium Turing-structured states [13].

In this paper we propose a new mechanism for pattern
formation in the cortex: spinodal decomposition. This is a
spontaneous phase separation process that is well known in
the metallurgy and colloidal literature. In this diffusion-driven
process, a stable homogeneous mixture of species A and B is
rendered thermodynamically unstable by suddenly cooling the
mixture below its critical temperature. This abrupt tempera-
ture reduction, known as a quench, causes the originally well-
mixed state to spontaneously unmix into separated regions of
A-rich and B-rich phases. The initial decomposition proceeds
exponentially fast and then slows as the patterns mature. The
first theoretical explanation for temperature-induced phase
separation in alloys was given by Cahn [17,18], who coined
the phrase “spinodal decomposition.” Since its discovery in
metallurgy, spinodal decomposition has since been implicated
as a mechanism for spatial self-organization in polymers
[19,20], surface waves [21], Abrikosov vortex lattices in su-
perconductors [22], dendrite growth [23], quantum dots [24],
and colloidal crystals [25].

In the cortex, assemblies of neurons can be either ac-
tively firing or quiescent, so we interpret these two distinct
states as representing the two alternate phases of cortical
activity. For our model, we find that the level of cortical
responsiveness is determined by a delicate dynamic balance
between external excitatory and inhibitory influences: Too
little excitation (or too strong an inhibition) leads to coma,
while unconstrained excitation leads to seizure. We take the
net excitatory-inhibitory (E, I ) balance in the cortex to be
analogous to the physical temperature of, say, a metallic alloy
or an oil-water mixture.

From previous work, we have found that the model cortex
is most responsive to input stimulus when it is positioned close
to or within the region of state space in which the cortex has
access to multiple steady states as indicated in Fig. 1 (left
panel). The three-state region is shown as a narrowing copper-
colored wedge running northwest to southeast, terminating at
the critical point (CP: red circle) marking the codimension-2
cusp at which the three roots coalesce to a single solution.
The (E, I ) balance is determined by the selected (�V rest

e , λi)
coordinate: �V rest

e is the perturbation to the resting voltage of
the excitatory neural population, and λi is the synaptic gain of
the inhibitory population (see Sec. II A for model details).

To organize a “thermodynamic quench,” we might select
a one-root coordinate lying just beyond the critical point
to represent the homogeneous (“well-mixed”) initial state,
then quench by abruptly translating to a coordinate inside
the multiroot region. Provided that the quench terminates
at the unstable midbranch solution, and that the upper and
lower branches are stable, then spontaneous decomposition
into high- and low-firing patches of cortex can occur. We
note that both Turing and spinodal mechanisms require that
the cortex be located within the multiple-root coexistence
region that supports high-, mid-, and low-firing equilibrium
states. But unlike the Turing mechanism which evolves from
a spatially destabilized upper or lower branch, spinodal de-
composition proceeds from the always unstable midbranch.
The homogeneous phase promptly destabilizes, precipitating
simultaneously onto the upper (high-firing, active) and lower
(low-firing, quiescent) equilibrium branches, forming patterns
that develop rapidly and then more slowly as the patterns
mature.

The paper is structured as follows. In Sec. II, we define
the cortical model, locate its equilibrium states, and plot

FIG. 1. Manifold of cortical equilibrium states. (A) Bird’s-eye view showing the three-state regions in copper (light gray) and single-state
surroundings (black) as a function of inhibitory gain λi and excitatory offset �V rest

e . The coexistence region is bounded by the “binodal
coastlines” in (A) and by the solid-yellow (light gray) and dot-dashed black curves in (B). The red (medium-gray) circle marks critical point
CP. The three (⊕) markers labeled (a), (b), and (c) locate the (�V rest

e , λi ) coordinate resulting in the spinodal decompositions illustrated in
the meander, honeycomb, soliton, and nucleation panels. (B) Three-dimensional view of distribution of excitatory firing rates Qe across the
λi–�V rest

e domain. The (a), (b), and (c) simulations all lie within the binodal multiroot region characterized by a stable dark-red (midgray)
upper “active phase” and deep-blue (dark-gray) lower “quiescent” branch, separated by an unstable midbranch. All simulations are initialized
to commence at the unstable midbranch equilibrium point.
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the wave-number-dependent linear stability predictions for
four representative spinodal decomposition simulations. In
Sec. III, we report the outcomes of a range of stochastic
numerical simulations on a 240×240 cortical grid. We demon-
strate that the morphology of the emerging spinodal patterns
is sensitive to the choice of (�V rest

e , λi) coordinate by showing
formation of hexagonal, labyrinthine, and nucleating cellular
arrays of cortical activity. Despite their disparate shapes, we
find that the 2D spatial spectra for the matured stationary
patterns reveal a common hexagonal basis. Analysis of the
time-dependent decomposition allows us to distinguish three
stages of pattern formation: rapid precipitation and differen-
tiation within ∼1 s and then slow maturation over tens of
seconds. By reducing the inhibitory rate constant, we show
that the stationary hexagonal pattern can be destabilized by the
presence of a marginally damped Hopf bifurcation, leading
to the unexpected formation of a slow-moving soliton shock-
front. We argue that this might correspond to the interictal
waves of excitation commonly seen prior to the onset of
seizure activity in cortex. In Sec. IV, we offer provide a
commentary about how spinodal decomposition might relate
to hexagonally organized activity patterns that have been
observed or postulated in the brain.

II. METHODS

A. Model equations

We model the cortex as a 2D mean-field continuum of ex-
citatory and inhibitory neurons that are interconnected locally
via resistive gap junctions and neurotransmitter-mediated

chemical synapses and over distance via long-range myeli-
nated axons. Since scalp EEG (electroencephalogram) elec-
trodes can only sense population-average voltages, cortical
parameters have been coarse grained over a spatial extent of
order 1 mm2, corresponding to the area of a cortical macro-
column [26].

The spatially averaged excitatory and inhibitory soma
potentials Ve and Vi at grid location �r = (x, y) obey the
following equations of motion:

τb

∂Vb(�r, t )

∂t
= V rest

b +�V rest
b −Vb(�r, t )+[ρeψeb(�r, t )�eb(�r, t )

+ ρi ψib(�r, t )�ib(�r, t )] + Dbb∇2Vb(�r, t )

with b = e, i, (1)

where we follow a left-to-right convention for labeling
pre-to-postsynaptic connectivity. The terms [. . .] in square
brackets are chemical-synaptic voltage inputs. The ∇2 symbol
denotes the 2D Laplacian operator ∇2 ≡ (∂2/∂x2 + ∂2/∂y2)
for the resistive gap-junction (GJ) diffusion inputs with
excitatory strength Dee ≡ D1 for E-E connections and
inhibitory strength Dii ≡ D2 for I -I . Because inhibitory
GJs are substantially more abundant than excitatory GJs in
cortical tissue [13,27], we set D1 to be a small fraction of
D2 (D1 = D2/100).

The τb in Eq. (1) are soma time constants for the neuron
populations and V rest

b their respective resting voltages; see
Table I for values. The ρb are the chemical synaptic gains
given by the area under the unitary postsynaptic potential,
with ρe > 0 and ρi < 0. These synaptic gains are scaled by

TABLE I. Symbol definitions and standard values for cortical model.

Symbol Description Value Unit

�V rest
e Offset to excitatory resting potential −2.5 to +2.5 mV

λi Inhibitory scale factor 0.78–1.10 —
D2 I ↔I gap-junction diffusive coupling 0.30–0.45 cm2

γi Inhibitory rate constant, γi = γ 0
i /λi γ 0

i = 22–80 s−1

�eb Inverse length scale for E→b axonal connections 4–28 cm−1

V rest
e,i Neuron resting potential −64, −64 mV

D1 E↔E gap-junction diffusive coupling D2/100 cm2

γe Excitatory rate constant 170 s−1

τe,i Neuron time constant 0.040, 0.040 s
V rev

e,i Reversal potential for (AMPA, GABA) receptors 0, −70 mV
ρe Excitatory synaptic gain 1.00×10−3 mV s
ρi Inhibitory synaptic gain, ρi = λi ρ

0
i ρ0

i = −1.05×10−3 mV s
Nα

eb Long-range E→b axonal connectivity 2000 —

N
β

eb,ib Local E→b, I →b axonal connectivity 800, 600 —

〈φsc
eb〉 E→b tonic flux entering from subcortex 300 s−1

s0 Subcortical noise scale-factor (default value) 0.125 —
v Axonal conduction speed 140 cm s−1

Qmax
e,i Maximum firing rate 30, 60 s−1

θe,i Sigmoid threshold voltage −58.5, −58.5 mV
σe,i Standard deviation for threshold 3, 5 mV

Note. Our spinodal simulations apply changes to the five parameters listed at the top of the table: Static excitatory-inhibitory balance is
set by the (�V rest

e , λi ) coordinate; dynamical properties are by controlled by D2 and �eb (spatial stability) and by γi (temporal stability).
Subscript label b indicates that destination can be either of type E (excitatory) or I (inhibitory). Values modified from Table 15.1 in Steyn-Ross
et al. [28].
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dimensionless reversal-potential functions ψab,

ψab(�r, t ) = V rev
a − Vb(�r, t )

V rev
a − V rest

b

,

that are normalized to unity when the neuron is at resting
voltage and are zero when the membrane voltage reaches the
relevant reversal potential, taken to be V rev

e = 0 mV for exci-
tatory (AMPA) receptors and V rev

i = −70 mV for inhibitory
(GABA) receptors.

The four �ab functions in Eq. (1) are postsynaptic fluxes
governed by second-order differential equations,(

∂

∂t
+ γe

)2

�eb(�r, t )

= γ 2
e

[
Nα

eb φα
eb(�r, t ) + N

β

eb Qe(�r, t ) + φsc
eb(�r, t )

]
, (2a)(

∂

∂t
+ γi

)2

�ib(�r, t ) = γ 2
i N

β

ib Qi (�r, t ), (2b)

whose impulse responses are alpha functions of the form
γ 2t exp(−γ t ); γ is the rate constant and 1/γ the time-to-
peak. Connectivities Nα

eb and N
β

eb are the number of long-
and short-range input connections via chemical synapses,
with φα

eb, Qe,i being the corresponding long-range and local
spike-rate fluxes. The long-range incoming flux of spike-rate
activity φα

eb obeys a 2D damped wave equation [29],[(
∂

∂t
+ v�eb

)2

− v2∇2

]
φα

eb(�r, t ) = (v �eb )2 Qe(�r, t ) ,

(3)

where �eb is the inverse length scale for E→b axonal con-
nections and v is the axonal conduction speed. Q(�r, t ) is the
source of spike-rate flux, assumed to be a sigmoidal function
of membrane voltage,

Qa (�r, t ) = Qmax
a

1 + exp[−C(Va (�r, t ) − θa )/σa]
,

with subscript a standing for e [Eq. (2a)] or i [Eq. (2b)] and
C = π/

√
3. Here θa is the population-average threshold for

firing, σa is its standard deviation, and Qmax
a is the maximum

firing rate.
The final source term on the right of Eq. (2a) represents un-

structured stimulatory tone arriving from subcortical sources.
This stimulus is modeled as a low-intensity spatiotemporal
white-noise variation ξeb about a constant tonic background
〈φsc

eb〉,

φsc
eb(�r, t ) = 〈

φsc
eb

〉 + s

√〈
φsc

eb

〉
ξeb(�r, t ), (4)

with s being a dimensionless amplitude scale factor. The
ξeb(�r, t ) is Gaussian-distributed delta-correlated noise with
statistics 〈ξ (�r, t )〉 = 0 and 〈ξm(t1) ξn(t2)〉 = δm,n δ(t1 − t2). In
numerical simulation on a 2D rectangular sheet with grid
resolution (�x,�y) and fixed time step �t , we approximate
white noise ξ (�r, t ) at grid position �r = (x, y) = (i�x, j�y)
and time t = k�t with discrete noise samples {ξk

ij } con-
structed using the MATLAB randn random number generator:
ξk
ij = randn/(�x �y �t )1/2. This construction ensures that

fluctuation statistics are largely independent of our choices

for spatial and temporal resolutions—provided, of course,
that the standard Courant-Friedrichs-Lewy stability criterion
is satisfied—with the noise approximation converging to exact
spatiotemporal white noise in the limit (�x,�y,�t ) → 0.

B. Equilibrium states of the cortex

We assume that the homogeneous equilibrium states of
the model cortex provide a reference substrate that constrains
spatiotemporal cortical dynamics; of particular interest are
regions of state space that support multiple steady states, since
transitions between states become possible.

We locate the homogenous equilibrium states by zeroing
all space- and time-derivatives in Eqs. (1)–(3) (i.e., ∇2 = 0;
∂/∂t = ∂2/∂t2 = 0), and zeroing the noise amplitude terms,
and then solving numerically for the steady-state firing rates
(Qe,Qi ) of the excitatory and inhibitory neural populations.
This process is repeated across a finely spaced grid of
(�V rest

e , λi ) values representing a 2D variation in excitatory-
inhibitory (E-I ) cortical balance. As visualized in Fig. 1,
we identify a wedge-shaped subset of the E-I domain in
which every (�V rest

e , λi ) coordinate can be mapped to three
steady states: a stable high-firing upper-branch node, a stable
low-firing quiescent lower-branch node, and an intermediate-
branch separatrix that is universally unstable (as illustrated in
the dispersion curves of Fig. 2).

Figure 1 highlights the three selected coordinates used in
the four computer simulations (meander, honeycomb, soliton,
and nucleation) that will be reported in Sec. III. It is significant
to note that all four simulations are located within the three-
state region bounded by the “binodal coastlines” shown in
Fig. 1 (left panel), with each simulation being launched from
the unstable separatrix.

C. Linear stability predictions for the model cortex

Noting the parameter symmetries evident in Table I
(Nα

ee =Nα
ei ; N

β
ee =N

β

ei ; N
β

ie =N
β

ii ), cortical equations (1)–(3)
are equivalent to eight first-order differential equations. We
define the eight-variable state vector �X = [Ve, Vi, �eb, �̇eb,

�ib, �̇ib, φeb, φ̇eb]T and express the cortical state as its equi-
librium value �X(0) plus a small plane-wave perturbation δ �X,

δ �X(t, �r ) = δ �X(t ) ei �q·�r = δ �X(0) e�t ei �q·�r

with wave vector �q and wave number |�q| = q; � is an eigen-
value whose real part gives the growth rate of the δ �X(0) initial
perturbation: If Re(�) > 0, then an instability is predicted.
Substituting �X = �X(0) + δ �X into Eqs (1)–(3) and retaining
only linear terms gives the matrix equation,

d

dt
δ �X = J(q ) δ �X,

where J is an 8×8 Jacobian matrix in which the ∇2 Laplacians
for diffusion [Eq. (1)] and wave propagation [Eq. (3)] appear
as −q2 terms. For each wave number q, we extract and plot
the dominant eigenvalue—i.e., that eigenvalue whose real part
is most positive (or least negative)—since this describes the
most strongly growing (or most long-lived) mode at a given
spatial frequency.

Figure 2 plots the homogeneous linear stability predictions
for the four simulation experiments indicated in Fig. 1 and
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FIG. 2. Linear stability predictions as a function of wave number for the four decomposition simulations indicated in Fig. 1 and captured in
the (a) meander (Fig. 5), (b) nucleation (Fig. 6), (c) honeycomb (Fig. 4), and (d) soliton (Fig. 10) snap-shot galleries. From top to bottom, panel
rows display, respectively, the dispersion trends for the top, middle, and bottom homogeneous equilibrium states. Dispersion graphs have been
ordered from left to right to show progressive increases in the degree of instability of the middle branch. Solid-blue (black) curves show growth
rate α (in s−1) predicted from linear eigenvalue analysis, with α(q ) > 0 indicating instability at wave number q; dashed-red (dashed-gray)
curves show corresponding ω(q )/2π (Hz) eigenfrequency trends. In all cases, top- and bottom-branch equilibria are stable across all wave
numbers, although the top branch for (d) soliton is very close to a 3.5-Hz Hopf bifurcation (α = −0.001 s−1 at zero wave number). The
emergent Turing-like labyrinth structure in (a) seems to be guided by the presence of a damped Turing bifurcation (⊕) on the bottom branch
near q/2π ≈ 0.5 cm−1.

later explored in Sec. III. In all cases the top and bottom
branches are stable (i.e., growth rate α = Re(�) < 0 for all
wave numbers q)—although this is only marginally true for
the upper-branch soliton setting (top-right panel). Negative
growth rates mean that small perturbations away from steady
state (on either the top or bottom branch) will decay back to
the homogeneous equilibrium substrate, and thus no emergent
Turing or wave patterns are expected for simulations launched
from either stable node.

In contrast, the midbranch separatrix is strongly unstable
in all cases, with maximum growth predicted at q = 0, i.e.,
the homogeneous state is maximimally unstable. Therefore
a simulation launched from the homogeneous separatrix will
rapidly evolve into inhomogeneous patches of higher and
lower activity, and these will be attracted toward the high- and
low-firing stable nodes. This is the fundamental mechanism
for spontaneous phase separation—and subsequent cortical
pattern formation—via spinodal decomposition.

D. Linking cortical pattern formation to thermodynamic
spinodal decomposition

In the standard Ginzburg-Landau [30] analysis of the
spinodal decomposition of a metallurgic binary alloy, the
free energy g(c) of the binary mixture is expressed as a

function of order parameter c, the fractional concentration of
one of the two constituent phases. For the cartoon shown in
Fig. 3(a), we have hypothesized that it is possible to map
the binary metallurgic order parameter (c) to a neuronal
firing rate (Q) in the cortical system, with high or low
concentrations corresponding to high or low firing rates and
that there exists a corresponding free energy function g(Q)
whose shape depends on a cortical “temperature” T . If the
temperature exceeds a critical value (upper curve: T2 > Tc),
then the free energy has a single minimum corresponding to
the homogeneous well-mixed state Q = Qmid. But if the tem-
perature is lowered below critical (lower curve: T1 < Tc), the
energy graph deforms into a double-well potential allowing
separation into distinct phases Qlow and Qhi with the Qmid

homogeneous state forming an unstable separatrix. The spin-
odals mark the points of inflexion where d2g/dQ2 = 0. When
the order parameter Q lies within the spinodal boundaries, i.e.,
when Q− < Q < Q+, fluctuations about the initial state Qmid

promote spontaneous precipitation into separated phases Qlow

and Qhi. This is phase separation via spinodal decomposition.
The corresponding Q-T phase diagram is presented

in Fig. 3(b). The binary mixture is prepared in a high-
temperature (T = T2 > Tc) state within which the homoge-
neous phase Qmid is preferred and then abruptly quenched to
a lower temperature (T = T1 < Tc) lying inside the spinodal

012318-5



STEYN-ROSS, STEYN-ROSS, VOSS, AND SLEIGH PHYSICAL REVIEW E 99, 012318 (2019)

(a)

quench

(b)

FIG. 3. Hypothetical free energy curves and phase diagram for
an idealized “temperature”-driven spinodal decomposition of cortical
activity. Here Q represents the firing rate of the excitatory neural
population with 0 � Q � Qmax

e . Tc is the critical “temperature”
below which homogeneous cortical activity Qmid spontaneously
separates into high- and low-activity states Qhi and Qlow, respec-
tively. (a) Black upper free energy curve for elevated temperature
T2 > Tc shows a single minimum at activity Qmid. Curve deforms
downward into the blue (dark-gray) double-well potential at reduced
temperature T1 < Tc with minima corresponding to separated phases
(binodal points) Qhi and Qlow. Points of inflexion Q−, Q+ mark
the bounds of the unstable spinodal region. (b) Activity–temperature
phase diagram showing a rapid temperature quench (vertical flow)
from T2 to T1 inside the spinodal region, leading to separation into
distinct phases (horizontal flows). (Panel B modified from Fig. 1 of
Ref. [20].)

region. The homogeneous phase is now unstable with respect
to small perturbations, so promptly decomposes into high-
and low-firing phases. If the initial Qmid homogeneous phase
lies outside the spinodal limits but within the coexistence
region [Qlow,Qhi], then decomposition into nucleation cells
can occur if there is sufficient system noise.

The theory for spinodal decomposition was developed
∼60 years ago by Cahn, Hilliard, Hillert, and Cook [31–33].
Building from a free-energy formulation, these theoretical
treatments showed that binary mixtures could separate into
separated phases when the system is temperature quenched
into the spinodal region.

For our eight-variable cortical model, it is not possible
analytically to define a free energy. Instead we are guided
by Cahn’s approach [18] in which he linearizes the kinetic
equations of the chemical system to derive an amplification
factor R that peaks at a critical wave number qc. Cahn showed
that, within the spinodal region, R > 0, so wave-number-
dependent fluctuations grow exponentially as exp[R(qc )t],
leading to development of a characteristic length scale with
a superposition of sinusoidal waves of fixed wavelength but
random orientations, phases, and amplitudes [34]. In fact,
Cahn’s amplification factor corresponds to the real part of
the dominant eigenvalue in standard linear stability analysis:
R ≡ α = Re(�). This correspondence means that we can
apply linear stability analysis to our cortical model as a means
of predicting the emergence of spinodal decomposition. We
need to acknowledge that these predictions are only valid in
early-stage decomposition when fluctuations from the homo-
geneous mean are small.

But if spinodal decomposition is to be a plausible explana-
tion for pattern formation in the cortex, then two questions
immediately arise: (1) What is the cortical equivalent of

thermodynamic temperature T ? and (2) How does one impose
a “thermodynamic quench” that “cools” the cortex through its
critical point Tc into the spinodal region?

As illustrated in Fig. 1, the equilibrium state of the cortex
is determined by the codimensional interaction between exci-
tation parameter �V rest

e (resting-voltage offset for the excita-
tory population) and inhibition parameter λi (scale factor for
synaptic inhibitory gain). Tracing the edge of one of the two
binodal coastlines, we see that an increase in excitation must
be matched with a corresponding, albeit nonlinear, increase
in inhibition (and vice versa). The two coastlines form a
wedge that converges at the cusp CP; at this point the dis-
tinction among activated, quiescent, and midbranch solutions
disappears, and only the single equilibrium state remains.
Therefore we take CP as marking the critical “temperature” Tc

and draw an imaginary line running approximately northwest
to southeast down the central axis of the three-state wedge,
passing through CP, as our “temperature” axis, with effective
temperature increasing with simultaneously larger values of
�V rest

e and λi .
A “thermodynamic quench” would place the cortex in the

single-state region to the right and below CP and then rapidly
“cool” the cortex along a northwest flow line, backward along
the “temperature” axis, into a spinodal zone contained within
the binodal coastlines. The noise-stimulated cortex would
then phase separate via upward and downward vertical flows,
settling onto the activated and quiescent equilibrium nodes.
We characterize such a spinodal decomposition as noncon-
served since the relative proportions of activated and quiescent
cortex can take any value, unlike an alloy or chemical unmix-
ing in which the number of atoms of either species is fixed.

Missing from Fig. 1 is any indication of the outer limits
of the spinodal zone. This is because we cannot know the
form of the free-energy function and therefore cannot locate
its points of inflexion. Instead, we deduce the extent of the
spinodal region via numerical simulations. While the spinodal
explorations are preliminary at this stage, it appears that the
spinodal zone for our cortical model is confined to a narrow
strip just “inland” from the lower binodal coastline.

We now present the results from a suite set of spinodal in-
vestigations and comment on the time course and morphology
of the resulting decomposition patterns. We note in advance
that all stationary patterns observed so far are fundamentally
hexagonal in structure.

III. RESULTS

A. Spinodal decomposition simulations

The numerical simulations reported in Secs. III A–III E
were performed on a 240×240 grid with periodic (toroidal)
boundaries representing a 25×25-cm continuum sheet of
cortical tissue. In order to explore formation of finer-grain
spinodal patterns, we also ran simulations on a 6 × 6-cm
cortex at 240×240 grid sampling (Sec. III F). All grid points
were continuously exposed to low-intensity spatiotemporal
white noise. System equations were iterated in MATLAB us-
ing a forward-time, centered-space Euler-Maruyama scheme
with time step �t = 200×10−6 s for the 25 × 25-cm cortex;
smaller values for time step were tested but did not alter
evolution dynamics or pattern properties. For the 6 × 6-cm
cortex runs, �t was reduced to either 50×10−6 s or 20×10−6
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FIG. 4. Spinodal decomposition into a “honeycomb” structure: red (light gray with white borders) hexagonal islands of activity
surrounded by narrow blue (dark-gray) canals of inactivity. Precipitation of jagged bulk structures occurs rather rapidly (∼1 s), and then
the fine coastal details disappear as the pattern ripens on a much slower timescale (approximately tens of seconds). Parameter settings:
[�V rest

e /mV, λi, D2/cm2, γ 0
i /s−1] = [−1.85, 0.7843, 0.3, 80]; homogeneous model cortex was started on the midbranch equilibrium

point for location (b) in Fig. 1. See Video 1 in the Supplemental Material [35] for a 60-s movie to accompany honeycomb structure emerging
from homogeneous midbranch equilibrium.

s, depending on the value of inhibitory diffusion D2 (see Sec.
III F for details).

Simulations were initialized to the unstable midbranch
equilibrium state separating the stable upper (activated)
and stable lower (quiescent) equilibrium nodes for a given
(E, I ) = (�V rest

e , λi ) coordinate lying within the three-state
region (Fig. 1) and allowed to run until the emergent patterns
had fully matured. We found that only a small subset of
the available three-state (E, I ) coordinates actually support
stable pattern formation, and we presume that the pattern/no-
pattern boundary defines the areal extent of the spinodal zone
lying within the broader binodal region. Selecting (E, I )
coordinates lying outside the spinodal zone would result in
whole-of-cortex pattern collapse onto either the activated node
or the quiescent node, depending on which of the two stable
equilibria formed the stronger attractor.

We characterize the set of stable decomposition patterns as
belonging to one of three broad classes: honeycomb, meander,
and nucleation; these are described below. The time course
for pattern evolution is discussed in Sec. III B. Evidence for
a common hexagonal basis for cortical patterns is presented
in Sec. III C. In Sec. III D we demonstrate that stationary
spinodal decompositions can be destabilized by proximity
to a Hopf instability to form a shock wave that may relate
to transient precursor electrical activity observed prior to
seizure onset in cortical tissue. We examine the range of
spinodal shapes accessible to the cortical model in a series
of 18 “prospecting” experiments distributed along the binodal
coastline in Sec. III E, and in Sec. III F we conclude Sec. III
by exploring the conditions under which fine-scale (of order
∼ mm) spinodal activity patterns can be generated.

1. Honeycomb

The 2D cortical sheet was initialized to the unstable mid-
branch equilibrium associated with coordinate (b) in the three-
state region of Fig. 1, (�V rest

e /mV, λi ) = (−1.85, 0.7843),
and then allowed to evolve under the influence of continuous
low-intensity spatiotemporal white noise. Clusters of high and
low activity promptly emerge from the homogeneous initial
state (t = 0.2 s) and then consolidate into islands of activity
(red) surrounded by a sea of quiescence (blue); see Fig. 4
(t = 1 s). The activity islands then slowly enlarge over a
period of seconds, gradually compressing the inactive zones
into narrow canals (t = 5 s) before finally reshaping into large
hexagonal continents (t = 60 s).

2. Meander

The meander simulation of Fig. 5 is located at coordinate
(a) in Fig. 1, closer to the three-state/one-state cusp marking
the critical point CP. As was the case for honeycomb, the
bulk patterns are already clear at t = 1 s, with the subsequent
gradual ripening to maturity occurring over tens of seconds.
However, the pattern structure is now highly irregular: a
mazelike labyrinth of activity channels isolated by meanders
of inactivity. While this spatial structure is strongly remi-
niscent of the Turing patterns reported in earlier work [13],
Fig. 5 is the result of spinodal decomposition rather than a
Turing instability. This is made clear in the stability curves
of Fig. 2(a); although the bottom branch dispersion curve
shows a Turing-like peak, it is damped, and both top and
bottom branches are stable attractors rather than sources of
instability.
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FIG. 5. Spinodal decomposition into a “meander” structure: a mazelike labyrinth of continuously linked blue (black) canals of quiescence
isolating red (white-bordered gray) islets of activity. As for the honeycomb of Fig. 4, the bulk pattern is already apparent after ∼1 s and then
matures more slowly. Settings: [�V rest

e /mV, λi, D2/cm2, γ 0
i /s−1] = [1.3, 1.0, 0.35, 80]; initial state: midbranch steady state for location-

(a) in Fig. 1. See Video 2 in the Supplemental Material [35] for a 100-s movie to accompany emergence of a Turing-like labyrinthine cortical
activation.

3. Nucleation and mitosis

The nucleation simulation is located at coordinate (c) in
Fig. 1 in a region of weakened (E, I ) drive and reported in
Fig. 6. As for honeycomb and meander, bulk patterns have
emerged at t = 1 s, but subsequent evolution is very different.
Here larger islands of activity pinch off and separate into
daughter cells, while smaller nuclei grow until they reach a
critical size, thin and elongate, and then split into pairs of
daughter cells. Population growth by mitosis continues until
crowding pressures suppress the expansion.

4. Effect of noise intensity on pattern emergence and stability

All of the numerical simulations reported here are driven
by low-intensity spatiotemporal white noise; see Eq. (4). Pre-
vious modelers investigating phase separation dynamics have
reported that the inclusion of noise in spinodal simulations is
essential to prevent artificial quenching at local minima of the
free-energy functional [36]. This motivated us to probe the
role of noise in pattern emergence and early dynamics for our
cortical model.

We repeated the nucleation experiments reported in Fig. 6
for a wide range of settings for s, the amplitude of the
spatiotemporal white noise; see Fig. 7. These numerical ex-
periments revealed three general properties:

(i) if the noise amplitude is zero, then nucleation patterns
never form;

(ii) provided the noise is non-negligible, pattern morphol-
ogy is both robust and remarkably insensitive to noise ampli-
tude;

(iii) pattern emergence and maturation is hastened by
larger-amplitude noise.

Our simulations commence on the unstable midbranch
separatrix. Because this is an equilibrium point, the rates
of change of all state variables are—by definition—
simultaneously zero, so if the cortical equations are un-
perturbed by noise, then the systems will be frozen there
“forever” [or, more precisely, until numerical errors in the
double-precision (64-bit) floating-point arithmetic accumulate
sufficiently to form an artificial noise disturbance]. Writing
the noise scaling as s = ks0 (with s0 = 0.125 being the de-
fault value), we found that if the amplitude is set too small
(k � 10−10), then patterns fail to emerge. However, for the
range 10−8 < k < 5 (i.e., ∼8.5 orders of magnitude), nu-
cleation patterns emerged promptly and reliably, with the
rate of pattern emergence and maturation being (weakly)
accelerated by larger amplitude noise. Note that these
dynamical properties are universal across the range of
spinodal patterns reported here and are not specific to
nucleation.

But if the noise is too intense, then patterns are eventually
lost in the noise. This is apparent in the fourth column of Fig. 7
(k = 80).

FIG. 6. Spinodal decomposition into an almost regular “nucleation” pattern: a cellular array of red (white-bordered gray) activity nuclei in a
sea of blue (black) quiescence. Larger structures pinch off and separate into daughter cells; smaller structures grow until they become unstable,
whereupon they elongate into a dumbbell shape that thins and divides into pairs of daughter cells in a process reminiscent of biological
mitosis. Cell population multiplies until the evident repulsive force between nearest neighbors suppresses the tendency of each cell to grow
and divide. Settings: [�V rest

e /mV, λi, D2/cm2, γ 0
i /s−1] = [−2.5, 0.8, 0.45, 45]; initial state: midbranch steady state for location-(c) in

Fig. 1. See Video 3 in the Supplemental Material [35] for a 60-s movie to accompany emergence of an array of activity cells undergoing
mitosis.
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FIG. 7. Impact of noise intensity on emergence of nucleation spinodal patterns. Each column corresponds to one of four simulation
experiments k = [10−4, 1, 5, 80], where k scales the amplitude of the default setting for white-noise coefficient s0 = 0.125 [see Eq. (4) and
Table I]; time increases vertically downward. Each simulation uses the identical sequence of random numbers. In general, stronger stochastic
stimulation promotes faster nucleation, but patterns became unstable if the noise is too intense (fourth column: k = 80).

B. Three phases of spinodal decomposition in the cortex

In general, we find that patterns generated by spinodal
decomposition in the cortex typically emerge very rapidly
and then mature into final form much more slowly. This slow
phase is described in the metallurgy literature as coarsening or
Ostwald ripening. In fact, examination of the spatial spectra
of the various cortical quench patterns reveals three distinct
dynamical regimes that we label precipitation, differentiation,
and maturation; these phases of development are illustrated
in Fig. 8 for the formation of the cellular nucleation pattern
of Fig. 6. We track the changes in the proportion of high-
and low-wave-number content, relative to a selected midrange
reference wave number (qref/2π = 0.38 cm−1), as a function

of time. We define the high- and low-wave-number fractions
across the cortical grid as

fhi(t ) = 1

N (t )

∫ qmax
y

qref

∫ qmax
x

qref
Q̃e(qx, qy ; t ) dqx dqy, (5a)

flo(t ) = 1

N (t )

∫ qref

0

∫ qref

0
Q̃e(qx, qy ; t ) dqx dqy, (5b)

where Q̃e(�q = qx, qy ; t ) is the zero-mean spectral amplitude
at time t computed from the 2D spatial Fourier transform of
the grid of excitatory firing rates Qe(�r = x, y; t )

Q̃e(�q, t ) = |F[Qe(�r, t ) − Qe(�r, t )]| (6)
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FIG. 8. Time development of the cellular nucleation pattern of Fig. 6 expressed as relative proportions of spectral content above and
below a reference wave number, q/2π = 0.38 cm−1. At t = 0, the unstable midbranch of the homogeneous model cortex is perturbed with
small-amplitude spatial white noise. The upper red (gray) curve shows that the initially high spatial-frequency fraction falls precipitously as
large amorphous structures emerge spontaneously to break symmetry, reaching a minimum at t1 ≈ 0.4 s. The lower blue (black) curve tracks
the low-frequency spatial energy which peaks at this point, signaling the onset of a structural phase transition. The high-wave-number fraction
then grows rapidly as the differentiation into high- and low-firing cortical patches proceeds and then matures more slowly after t2 ≈ 1.25 s.

with Qe(�r, t ) being the average firing rate across the grid
at time t . Here N (t ) is a normalization factor that fixes the
total volume under the 2D spectral surface at unity, and thus
fhi(t ) + flo(t ) = 1.

In Fig. 8, precipitation describes the fast transforma-
tion from a fine-grained white-noise perturbed homogeneous
quench state (fhi ≈ 1, flo ≈ 0) to primordial amorphous
clouds of high- and low-firing neural populations (fhi subsides
as flo approaches its peak). There is no hint of the final
structure at this primeval stage. This is followed by an equally
rapid phase transformation in which the amorphous shapes
promptly differentiate into structured elements, causing fhi

to increase steeply, and then more slowly as the maturation
phase begins. This monotonic increase in fhi is consistent with
the fact that the matured cellular pattern forms a hexagonal
latticework (see top row of Fig. 9) with characteristic wave
number (0.44 cm−1).

C. Underlying hexagonal basis of decomposition patterns

Despite the disparate appearances of the mature honey-
comb (Fig. 4), meander (Fig. 5), and nucleation (Fig. 6)
spinodal decomposition patterns, inspection of their spatial
spectra suggests an underlying hexagonal organization. The
2D spatial Fourier transforms of the nucleation and meander
patterns in Figs. 9(b) and 9(e) show an annular ring structure
with dominant wave number q/2π ≈ 0.4 waves/cm, corre-
sponding to the ∼2.5-cm repetition length in the cell and
maze patterns in Figs. 9(a) and 9(d). As evident in Figs. 9(d)
and 9(e), these ring structures become more clearly defined
when averaged over 25 spectral instances. The fact that the
spectra do not exhibit discrete intensity peaks is consistent

with the decomposition patterns having pattern defects and
orientation irregularities and so look more like the scattering
pattern of a powdered crystal with random orientations rather
than that of a regular crystal. The structure defects are clearest
in the nucleation pattern of Fig. 9(a): Cell shapes vary between
circular and elongated and form a lattice that is primarily
hexagonal but contains some five- and seven-nearest-neighbor
groupings.

D. Soliton generation from spinodal-Hopf interaction

The honeycomb, meander, and nucleation patterns all ex-
hibit the three-stage (precipitation, differentiation, matura-
tion) evolution dynamics illustrated in Fig. 8, with spatial
rates of change gradually relaxing to zero over time. This is
expected behavior for spinodal decomposition into stationary
patterns attracted to the stable binodes defined by the top- and
bottom-branch equilibria.

In previous explorations of our cortical model [14,37–39],
we have demonstrated that interactions between spatial (Tur-
ing) and temporal (Hopf) instabilities can lead to a range
of oscillating, traveling, and chaotic spatiotemporal patterns,
with strong Hopf dominance leading to suppression of chaos
in favor of slow, coherent traveling waves that invade the
entire cortex and which may correspond to epileptic seizure
[39]. This earlier work motivates us to ask: What happens
when a spinodal decomposition process interacts with weakly
damped temporal instability?

Using the same (E, I ) settings as for the honeycomb
simulation (Fig. 4), we lowered the inhibitory rate constant by
a factor of ∼4 (γi = 80 → 22 s−1) to bring the top-branch dis-
persion curve of Fig. 2(d) very close to a zero-wave-number
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FIG. 9. Hexagonal structuring of (a) cellular and (d) labyrinthine decomposition patterns revealed by 2D spatial Fourier transforms in
panels (b) and (c), respectively; panels (c) and (f) show the amplitude spectra obtained after averaging over 25 sets of 100-s grid simulations.
The radius of the primary ring structures (q/2π = 0.44 and 0.40 cm−1) correspond to the inverse of the characteristic repetition lengths of
the cell and maze patterns of (a) and (d). In (a), some representative cells have been joined (white lines) to aid the eye; while most show the
expected six-nearest-neighbor hexagonal links, structure defects are evident with some seven- and five-neighbor arrangements.

instability such that the top branch is still linearly stable
but only marginally so (dominant eigenvalue has real part
α = −0.001 s−1 at q = 0).

Simulation results are shown in Fig. 10. We find a qualita-
tively different and new dynamics in which the initial decom-
position results in vigorous competition between activated
and quiescent patches; these interactions eventually condense
onto a narrow soliton-like shock-front of activity that traverses
the cortex at ∼4 cm/s. Since this near-Hopf setting produces
soliton waves, and a full-Hopf instability produces putative
seizure, we argue that these soliton fronts may correspond
the the interictal waves of population-spike activity commonly
seen between periods of full seizure.

Figure 11 shows the time course of a typical seizurelike
event recorded from five electrodes placed in a slice of
mouse cortex. We estimate the propagation speed at 3–5 cm/s,
providing a pleasing match with the soliton speed in the
simulation, and with the published 10 ± 9 cm/s range of
speeds for interictal spikes detected in tissue slices from
human subjects [40,41]. Unlike the soliton wavelet in our
homogeneous spinodal model, the wave of electrical activity
in the mouse brain changes shape and attenuates as it moves,
presumably because the biological tissue is neither isotropic
nor homogeneous.

E. Diversity of spinodal patterns

In order to survey of the types of spinodal decomposition
patterns accessible to the mean-field cortical model, we ran
a series of simulations for a range of (E, I ) coordinates dis-
tributed across the binodal region. Most of these prospecting

simulations resulted in eventual homogeneous collapse onto
either the activated (high-firing) or quiescent (low-firing) sta-
ble branches (not shown). However, we found a narrow strip
of coordinates—just inland from the lower binodal coastline
marking the three-state/one-state boundary—that supported
stable patterns. The type of pattern could be controlled both
by small displacements toward or away from the coast and by
displacements parallel to the coast.

Figure 12 shows the results of 18 prospecting simulations,
traveling southeast along the coast in the direction of increas-
ing (E, I ) drive. Each numerical experiment was halted after
10 s, so the captured patterns are precursive indicators of the
fully matured decompositions. As (E, I ) drive increases, the
patterns evolve in a general sequence: (honeycomb precursor)
→ (cellular nucleations: active cells in a background of quies-
cence) → (meandering labyrinths), eventually terminating in
inverse-nucleation patterns (cells of quiescence embedded in
a sea of activity) as we approach the cusp marking the critical
point. In all stable-pattern cases, the fully matured decompo-
sitions share a fundamentally hexagonal spatial structure.

F. Length scale of spinodal patterns

Many of the spinodal patterns exhibited here have spatial
extents covering several centimeters, so are probably too large
to be biologically plausible, particularly given our assumption
of a homogeneous isostropic cortex. This has motivated us
to investigate the conditions under which millimeter-scale
patterns might emerge.

Of the ∼27 model parameters listed in Table I, only
a small subset (D1,2, γe,i ,�eb, τe,i , v)—i.e., diffusions, rate

012318-11



STEYN-ROSS, STEYN-ROSS, VOSS, AND SLEIGH PHYSICAL REVIEW E 99, 012318 (2019)

FIG. 10. Destabilization of spinodal phase separation by close proximity to a Hopf bifurcation. Cortex was initialized at the same
(�V rest

e , λi ) starting coordinate that produced the stationary honeycomb pattern of Fig. 4, but the inhibitory rate-constant was reduced by
a factor of ∼4 to induce a marginally damped Hopf instability in the upper branch (see Fig. 2(d)). Although initial coastline shapes are similar
(compare the 0.2-s panel here with the 0.3-s panel of Fig. 4), temporal evolution is now qualitatively different with vigorous competition
between red (white-bordered gray) activated and blue (black) quiescent patches that eventually resolves into a soliton-like wave of activity
that traverses the cortex at ∼4 cm/s. See Video 4 in the Supplemental Material [35] for a 38-s movie to accompany emergence of a soliton
shockwave in the cortical model. Settings: [�V rest

e /mV, λi, D2/cm2, γ 0
i /s−1] = [−1.85, 0.7843, 0.4, 22].

constants, time constants, and the like—can be varied without
disturbing cortical steady state. Since proximity to the multi-
root region is essential for spinodal pattern formation, it is es-
sential not to lose contact with the binodal coastlines in these
parameter-space explorations. For this reason we chose not to
alter synaptic gains, synaptic connection counts, or sigmoidal
voltage-to-firing-rate transfer functions, since changes in any
one of these parameters will alter the underlying distribution
of cortical steady states.

We selected the nucleation coordinate (c) in Fig. 1 (see
Fig. 6 caption for settings) as the reference point for our search
for finer-grained spinodal patterns. We found that pattern

granularity (i.e., wave-number spatial frequency) could be
increased by reducing inhibitory diffusion D2 simultaneously
with increases in �eb, the excitatory axonal spatial decay
rate. Because the fine-grained patterns eventually become
impossible to resolve at 240×240 resolution on the default
25 × 25-cm grid (i.e., 1.04-mm pixels), we down-scaled the
cortex to a 6 × 6-cm grid at 240×240 to give 0.25-mm pixels.
In order to guarantee numerical stability, this change in spatial
resolution necessitated a reduction in simulation time step
from the default value of �t = 200×10−6 s on the 25-cm
cortex to 50×10−6 s for D2 < 0.20 cm2 and 20×10−6 s for
D2 � 0.20 cm2. Thus simulations on the smaller fine-grained

FIG. 11. Time series for a seizurelike precursor event in mouse cortex. The electrical activity of a 400-μm-thick coronal slice of mouse
brain tissue is sampled with five numbered Ag/AgCl electrodes (left photo). A seizurelike event (SLE) impinges simultaneously on electrodes
1 and 2 (right-hand traces) and then traverses the cortical rind to reach electrodes 3, 4, and 5 at successively later times. The mesh spacing is
∼1.5 mm, giving an SLE travel speed of 3 to 5 cm/s. [See the Appendix for experiment details.]
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FIG. 12. Gallery of representative spinodal decomposition patterns for 18 (�V rest
e , λi ) coordinates located slightly inland from the lower

binodal coastline. Each snapshot shows early pattern development 10 s after launching from the unstable midbranch separatrix. In addition to
precursor honeycomb (panels 1–3), red-on-blue (gray-on-black) nucleation (4–10), and meander (11–16) patterns, blue-on-red (black-on-gray)
inverse nucleations are also evident (panels 17 and 18). Spatiotemporal settings: [D2/cm2, γ 0

i /s−1] = [0.35, 80].

cortical grid ran ∼3–10 times slower than on the larger coarse
grid.

Four representative results for the small-cortex simulations
are displayed in the top row of Fig. 13; the bottom row
shows the corresponding spatial spectra. As expected, the
more finely structured labyrinthine and nucleation patterns
(viewing left-to-right along top row) exhibit successively
higher dominant wave numbers with spatial fluctuation energy
peaking at larger annular radius (bottom row). Figure 13(d)
shows a strong spectral peak at q/2π ≈ 2.67 cm−1 corre-
sponding to a pattern periodicity of ∼3.7 mm; this is about
six times smaller than the ∼23-mm spatial scale of the default
nucleation pattern of Fig. 6.

Figure 14(a) illustrates how the spectral peak for the
Fourier spectrum of Fig. 13(d) is determined by computing
the radially averaged spatial activity and then smoothing
with a Whittaker filter [42]. Figure 14(b) shows the ap-
proximately linear trend obtained when the dominant wave
number at each of 20 simulations (13 runs at Lx,y = 25 cm,

plus 7 runs at 6 cm) is plotted versus the composite ratio
0.183[�eb/

√
D2]1/2. This proportionality follows from our

empirical discovery that

q2
dom ∼ �eb/

√
D2,

where �−1
eb is the length scale for excitatory axonal connec-

tions and
√

D2 is an effective “side-length” for inhibitory gap-
junction diffusive connections. Thus finer spinodal structures
are associated with smaller axonal ranges (i.e., larger values
of �eb) and smaller values of inhibitory diffusion.

IV. DISCUSSION

In this paper we propose spinodal decomposition as a novel
agent for hexagonal pattern formation in the cortex. Standing
in marked contrast to conventional pattern-formation mod-
els based on network-attractor theory [e.g., 43–45], spinodal
decomposition supports spontaneous emergence of patterns
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FIG. 13. Spinodal patterns (first row) and spatial spectra (second row) developed after 10 s on a 6 × 6-cm cortex. From left to right,
respective inhibitory diffusion (D2) and excitatory axonal decay rate (�eb) are D2/cm2 = [0.20, 0.05, 0.02, 0.015] and �eb/cm−1 =
[24, 24, 24, 28]. Other model settings are identical to those used for the nucleation patterns of Figs. 1 and 6 on a 25 × 25-cm cortex. [(a)–(d)]
As diffusive and axonal connectivities reduce, the characteristic length scales of the spinodal patterns shrink, and, consequently, the dominant
spatial mode (second row) increases in frequency (units: cm−1). White ring indicates dominant spatial frequency obtained from radial averaging
[see Fig. 14(a)].

of high- and low-firing activity without requiring learning
rules or growth laws to tune synaptic strengths and without
imposing an inhibitory annular surround as seen in Mexican
hat (and related) lateral-inhibition connectivity kernels.

Our spinodal model requires access to a pair of stable
equilibrium nodes, isolated by an unstable separatrix, and a
modest level of inhibitory gap-junction diffusion [Dii = D2

in Eq. (1)] that is insufficient to destabilize either node (see
growth-rate curves in the upper and lower panels of Fig. 2).
This latter requirement distinguishes the present work from
previous investigations of our cortical model [13,14,37–39] in
which strong inhibitory diffusion leads to destabilization of a
previously stable node via Turing bifurcation.

It is clear that the fully developed spinodal patterns re-
ported here (e.g., Figs 1 and 9) have a fundamentally hexag-
onal basis. At low values of (E, I ) drive [coordinate (c) in
Fig. 1], we see spontaneous nucleation: formation and mitotic
growth of “activity cells” that evolve into a quasistationary
hexagonal array (Fig. 6).

The prospect of hexagonal spatial patterning in the brain,
and its potential association with representation and memory,
has been vigorously debated since the late 1950s. Quasi-
hexagonal patterns have been observed in the clustering of
cortical minicolumns [46–48]: vertical columns extending
through the layers of the cortex, containing ∼100–200 neu-
rons; Mountcastle (1957) argues that minicolumns are the
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FIG. 14. (a) Radially averaged spatial activity for spinodal pattern Fig. 13(d). (b) Wave-number trend with axonal decay-rate and inhibitory
diffusion (right) across 20 spinodal simulations and two cortical domain sizes. Evidently the dominant wave number follows a linear trend
qdom ∝ [�eb/

√
D2]1/2 across a sixfold change in characteristic length scale from 1/0.44 cm−1 = 2.3 cm (lower-left datum) to 1/2.67 cm−1 =

0.37 cm (upper-right datum). Error bars show ±2/�x (blue circles: 25 × 25-cm cortex) and ±1/�x (red crosses: 6 × 6-cm cortex), where
�x = 1/Lx is the resolution limit of the spatial Fourier transform on an Lx = Ly square grid. Crosses labeled (a)–(d) correspond to the four
spectra of Fig. 13.
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fundamental unit of cortical organization [49]. Apparent corti-
cal hexagonal symmetry has inspired others to theorize on the
likely structure and logistics of memory development. Calvin
suggests memories are stored on honeycomb-like structures,
quasihexagonal tessellating activated regions [50] evolving
via a Darwinian mechanism. The quasiperiodic orientation
maps observed in primate cortex may be generated by Moiré
interference between offset hexagonal mosaics of retinal cells,
giving rise to hexagonally symmetric patterns on a larger
spatial scale [51], but this suggestion remains contentious
[52].

We must acknowledge that these examples from the litera-
ture are typically referring to the organization of minicolumns
containing some hundreds of neurons, whereas our nucle-
ation process yields much larger aggregates. However, we
emphasize that spinodal decomposition provides an unforced
organizing principle by which quasihexagonal patterning can
emerge. In Sec. III F we showed how, with appropriate scal-
ing of model parameters, centimeter-scale nucleation patterns
(Fig. 6) could be replaced by millimeter-scale activity patterns
(Fig. 13). Specifically, the simulations predict that smaller-
scale patterns can emerge in the model cortex, provided there
are balanced reductions in both inhibitory diffusive strength
(D2) and excitatory axonal range (�−1

eb ). Thus subregions of
the cortex that can be modelled as approximately homoge-
neous and isotropic—and that have modest gap-junction dif-
fusion and axonal range—can support fine-scale spinodal pat-
ternings. However, these millimeter-scale patterns are prob-
ably too small to be resolved with the present generation of
functional magnetic resonance imaging machines.

Our model is inherently static with only low-intensity
white noise acting to perturb cortical activity, whereas the
human cortex is exposed to a constantly changing spatiotem-
poral flux of incoming nonrandom and/or structured stimuli
from both subcortical and long-distance cortical sources. This
means that only the fastest-developing spinodal patterns are
likely to be visible before being washed out by new pat-
terns evoked by subsequent input stimuli. From the time-
development traces of Fig. 7, we might expect to see, in a
real cortex, the bloblike primordial patterns of precipitation
and early differentiation but not the fully ripened forms that
evolve over tens of seconds. There is evidence that emer-
gence of conscious awareness (e.g., recognition of a person
or object) takes around ∼0.3 to 0.6 s (e.g., Ref. [53]), and
these timescales are entirely consistent with the ∼0.4- to 1.0-s
transition between “precipitation” and early “differentiation”
for our spinodal patterns.

With the exception of the soliton simulation, the present
spinodal model is simplified and static: We place the homo-
geneous cortex at an unstable separatrix and allow primordial
activity patterns to precipitate, differentiate, and then slowly
mature over tens of seconds under the influence of continuous
low-intensity spatiotemporal white noise. Absent from the
model is the notion that the conscious brain changes state
relentlessly, so the patterns would not be expected to fully
mature. Also, we have not attempted to design a homeostasis
rule that would keep the cortex close to the spinodal zone
within the binodal region and permit repeated cycling among
the quench, decomposition, and annealing phases. In addition,
in future work we would need to explore the effect of small

fluctuations in (E, I ) drive and to quantify to what extent the
nucleation grid can track changes in stimulus position.

The spontaneous dynamics that emerges in Fig. 10 when
a weakly damped Hopf instability—induced by a slowed
inhibitory synaptic response—interacts with spinodal de-
composition flows is remarkable and unexpected. The self-
organization into a soliton shockwave may represent a prop-
agating population spike as seen in the brain-slice measure-
ments shown in Fig. 11, believed to be a traveling-wave
precursor characteristic of interictal activity and signaling
proximity to a seizure state. Previous modeling has identified
the Hopf instability as a source of the coherent slow waves
observed during seizure [14,39]. Thus a slight adjustment of
model parameters can take the system from soliton (interictal
waves) to a global Hopf (full seizure).

In summary, spinodal decomposition has not previously
been investigated as an agent for cortical pattern formation.
Given appropriate initial conditions, and sufficient inhibitory
gap-junction diffusivity, hexagonally symmetric activation
patterns can emerge spontaneously from the homogeneous
equilibrium state. Our preliminary findings indicate that a
wide diversity of patterns is supported (e.g., Fig. 12) and that
spinodal decomposition provides an alternative mechanism
underpinning formation of cortical representations.

APPENDIX: DETAILS FOR MOUSE BRAIN-SLICE
MEASUREMENTS

Following ethics approval from the University of Waikato
Animal Ethics Committee, a 400-μm coronal neocortical slice
was extracted from an adult male C57 wild-type mouse.
The slice was prepared in carbogenated (95% O2, 5% CO2)
“normal” artificial cerebrospinal fluid (aCSF) and then per-
fused (5 ml/min) with carbogenated “zero-magnesium” aCSF
during extracellular field potential recording of population
activity; see Table II for aCSF chemical components and
concentrations. The elimination of Mg2+ ions in the perfusate
provides a proconvulsant function that compensates for the
severed connections and consequent lack of excitatory stimu-
lus entering the cortical slice [54]. Spontaneous field potential
events were recorded with five 75-μm-diameter silver–silver
chloride electrodes positioned in the cerebral cortex. Field
potential signals were amplified (×1000 gain), conditioned
with 1-kHz low-pass and 1-Hz high-pass analog filters (A-M
Systems, Carlsborg), and then sampled at 10 kHz per channel
(CED, Cambridge, England) for storage and analysis.

TABLE II. Chemical concentrations for artificial CSF solutions
(mM).

Compound Normal Zero-Mg2+

NaCl 125 124
KCl 2.5 5.0
MgCl2 1.0 –
CaCl2 2.0 2.0
NaH2PO4 1.25 1.25
NaHCO3 26 26
D-glucose 10 10
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