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Various types of walks on complex networks have been used in recent years to model search and navigation
in several kinds of systems, with particular emphasis on random walks. This gives valuable information on
network properties, but self-avoiding walks (SAWs) may be more suitable than unrestricted random walks to
study long-distance characteristics of complex systems. Here we study SAWs in clustered scale-free networks,
characterized by a degree distribution of the form P (k) ∼ k−γ for large k. Clustering is introduced in these
networks by inserting three-node loops (triangles). The long-distance behavior of SAWs gives us information
on asymptotic characteristics of such networks. The number of self-avoiding walks, an, has been obtained by
direct enumeration, allowing us to determine the connective constant μ of these networks as the large-n limit of
the ratio an/an−1. An analytical approach is presented to account for the results derived from walk enumeration,
and both methods give results agreeing with each other. In general, the average number of SAWs an is larger
for clustered networks than for unclustered ones with the same degree distribution. The asymptotic limit of the
connective constant for large system size N depends on the exponent γ of the degree distribution: For γ > 3,
μ converges to a finite value as N → ∞; for γ = 3, the size-dependent μN diverges as ln N , and for γ < 3 we
have μN ∼ N (3−γ )/2.
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I. INTRODUCTION

In the last decades, research in various fields has shown
evidence that many types of real-life systems can be described
in terms of networks, where nodes represent typical system
units and edges correspond to interactions between connected
pairs of units. Such topological characterization has been
applied to describe natural and artificial systems and is used at
present to analyze processes occurring in real systems (social,
economic, technological, biological) [1–5].

Several kinds of theoretical and experimental techniques
have been employed to study and characterize a diversity of
networks [6,7]. Various methods aim at studying dynamical
processes, such as spread of infections [8–12], signal prop-
agation [13,14], and random spreading of information and
opinion [15–17]. The network structure plays an important
role in these processes, as has been shown by using stochastic
dynamics and random walks [18–23].

It turns out that many systems can be described by so-
called scale-free (SF) networks, displaying a power-law dis-
tribution of degrees. In an SF network the degree distribution
Psf (k), where k is the number of links connected to a node,
has a power-law decay Psf (k) ∼ k−γ . Networks displaying
such a degree distribution have been found in both natural
and artificial systems, e.g., internet [24], world-wide web [25],
social systems [26], and protein interactions [27]. In these
networks, the exponent γ describing the distribution Psf (k)
has been usually found in the range 2 < γ < 3 [1,28]. SF
networks have been used to study statistical physics problems,
as avalanche dynamics [29], percolation [30], and cooperative
phenomena [31–37].

Self-avoiding walks (SAWs) can be more effective than
unrestricted random walks in exploring networks, since they

are not allowed to return to sites already visited in the same
walk [38,39]. This property has been used to define local
search strategies in scale-free networks [40]. SAWs have been
employed with various purposes, such as modeling structural
and dynamical aspects of polymers [41–44], conformation of
DNA molecules [45,46], characterization of complex crys-
tal structures [47,48], and analysis of critical phenomena in
lattice models [49–51]. In the context of complex networks,
several features of SAWs have been studied in small-world
[52], scale-free [53], and fractal networks [54,55].

The asymptotic properties of SAWs in regular and complex
networks are usually studied in connection with the so-called
connective constant or long-distance effective connectivity,
which quantifies the increase in the number of SAWs at
long distances [56,57]. For SF networks, in particular, this
has allowed us to distinguish different regimes depending
on the exponent γ of the distribution Psf (k) [53]. One can
also consider kinetic-growth self-avoiding walks on complex
networks, to study the influence of attrition on the maximum
length of the paths [58,59], but this kind of walk will not be
addressed here.

Many real-life networks include clustering, i.e., the proba-
bility of finding loops of small size is larger than in random
networks. This has been in particular quantified by the so-
called clustering coefficient, which measures the likelihood of
three-node loops (triangles) in a network [7]. The relevance
of loops for different aspects of networks is now gener-
ally recognized, and several models of clustered networks
have been defined and analyzed by several research groups
[60–64]. In recent years, it has been shown that generalized
random graphs can be generated incorporating clustering in
such a way that exact formulas can be derived for many of
their properties [65–67]. This includes the study of physical
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problems such as critical phenomena in SF networks, e.g.,
the Ising model [68]. For an exponent γ � 3 it was found
that clustered and unclustered networks with the same size
and degree distribution P (k) have different paramagnetic-
ferromagnetic transition temperature Tc, which indicates that
clustering favors ferromagnetic correlations and causes an
increase in Tc. Other works on clustered networks have ad-
dressed different questions, such as robustness [69], bond
percolation [70–72], and spread of diseases [73,74].

Here we study long-range properties of SAWs in clustered
SF networks. We pose the question whether clustering signifi-
cantly changes the properties of SAWs in this kind of network.
This is particularly interesting for the long-distance behavior
of SAWs, which is expected to depend on network character-
istics such as cluster concentration and decay of the degree
distribution for large degree (exponent γ for SF networks).
Thus, we focus on the influence of introducing clusters (here
triangles) upon the asymptotic limits of SAWs and connective
constants. The average number of walks for a given length
n is calculated by an iterative procedure, and the results are
compared with those obtained from direct enumeration in sim-
ulated networks. Both methods yield results which agree with
each other in the different regions defined by the exponent γ

and for a wide range of cluster densities. Comparing results
for clustered and unclustered networks with the same degree
distribution, we find for large networks with γ > 3 that the
long-distance behavior of SAWs is not affected by clustering.
However, clustering changes the connective constants derived
from SAWs for networks with γ � 3.

The paper is organized as follows. In Sec. II we de-
scribe the clustered SF networks studied here. In Sec. III
we present some generalities on SAWs and its application
to unclustered scale-free networks. In Sec. IV we introduce
an analytical method employed to calculate the number of
SAWs in clustered networks, and in Sec. V we compare results
of this analytical procedure with those obtained by directly
enumerating SAWs in simulated networks. The paper closes
with the conclusions in Sec. VI.

II. DESCRIPTION OF THE NETWORKS

A. Networks construction

We study here clustered networks with a degree distri-
bution P (k), which for large degree k follows a power-law
Psf (k) ∼ k−γ . The exponent controlling the decay of the
distribution is taken as γ > 2, so that the mean degree 〈k〉 re-
mains finite in the large-size limit. Clustering is introduced by
including triangles into the networks, i.e., triads of connected
nodes. One can consider other types of polygons (squares,
pentagons, etc.) to study their effect on the properties of
clustered networks, but we take triangles as they are expected
to give rise to stronger correlations between entities defined
on network sites [68]. The analytical method described here
to study SAWs in the presence of triangles can be easily
extended to other types of motifs.

Our networks are generated by using the procedure de-
scribed by Newman [65], where the number of single edges
and the number of triangles are independently defined. A
method like this permits us to manage generalized random
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FIG. 1. Schematic representation of a typical network considered
in this work, for which one separately specifies the number of single
edges and triangles (bold red edges) attached to each node. Triangles
are indicated as T. Arrows indicate a possible SAW starting from
node A. For the fourth step (n = 4), there are three available edges
(one s link and two t links) reaching nodes B, C, and D.

graphs, which incorporate clustering in a rather simple man-
ner, thus allowing one to analytically study various properties
of the resulting networks [65]. Given a network, we call N the
number of nodes, ti the number of triangles of which node i

is a vertex, and si the number of single links not included in
triangles (i = 1, ..., N ). This means that, for the purpose of
network construction, edges within triangles are considered
apart from single links. Then, a single link can be regarded as
an element connecting two nodes and a triangle as a network
component joining together three nodes. Thus, the degree ki of
node i is given by ki = si + 2 ti , since each triangle connects
it to two other nodes. A schematic plot of this kind of network
is displayed in Fig. 1, where triangles are marked as T . In this
figure, single links appear as black lines and edges belonging
to triangles are depicted as bold red lines. For clarity of the
presentation below, both kinds of edges will be denoted s links
and t links, respectively.

The networks are built in two steps. In the first one, we
introduce the edges by connecting pairs of nodes. We ascribe
to each node i a random integer si , which will be the number
of outgoing links (stubs) from this node. The numbers {si}Ni=1
are picked up from the probability distribution Psf (s) ∼ s−γ ,
assuming that si � k0, the minimum allowed degree [75].
This gives a total number of stubs K = ∑N

i=1 si , which we
impose to be an even integer. Once the numbers si are defined,
we connect stubs at random (giving a total of L = K/2
connections), with the conditions: (i) no two nodes can have
more than one edge connecting them (no multiedges), and (ii)
no node can be connected by a link to itself (no self-edges).
Networks fulfilling these conditions are usually called simple
networks or simple graphs [7].

In a second step we incorporate N� triangles into the
considered network. N� is defined by the parameter ν, the
mean number of triangles in which a node is included, N� =
1
3Nν. The number of triangles associated to each node is taken
from a Poisson distribution Q(t ) = e−ννt/t!. This gives us
ti corners corresponding to node i, and the total number is
T = ∑N

i=1 ti = 3N�. For consistency, T has to be a multiple
of 3. Then, we randomly choose triads of corners to form
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FIG. 2. Probability density P (k) as a function of the degree k for
networks with γ = 3, minimum degree k0 = 3, and N = 105 nodes.
The displayed data are an average over 200 network realizations for
each value of the parameter ν = 0, 1, and 2.

triangles, avoiding multiple and self-edges as in conditions (i)
and (ii) in the previous paragraph.

It is known that long-tailed distributions including nodes
with very large degree may display undesired correlations
between the degrees of adjacent nodes, especially for expo-
nents γ < 3 [76]. For this reason we have introduced in the
networks considered here a maximum-degree cutoff scut =√

N , which avoids such correlations (see Sec. II B) [68,76].
This restriction is in fact only effective for γ < 3, as explained
below.

The degree distribution P (k) obtained for clustered net-
works generated by following the procedure presented above
is shown in Fig. 2. In this figure, we display P (k) for networks
with N = 105 nodes, γ = 3 and k0 = 3. Shown are results
for three values of the triangle density: ν = 0, 1, and 2,
corresponding in each case to an average over 200 network re-
alizations. One observes that increasing the value of ν causes
clear changes in P (k) for small k values, with respect to the
degree distribution for ν = 0. For large degrees, however, the
distribution follows a dependence Psf (k) ∼ k−γ characteristic
of scale-free networks with γ = 3. This could be expected
from the fact that the Poisson distribution Q(t ) associated to
the triangles has a fast exponential-like decay for large t .

In summary, our networks are defined by the following
parameters: N (number of nodes), k0 (minimum degree), γ

[exponent controlling the distribution of single edges, Psf (s)],
and ν (density of triangles). For the numerical simulations
we have generated networks with several values of these
parameters. For each set (N , k0, γ , ν), we considered different
network realizations, and for a given network we selected at
random the starting nodes for the SAWs. For each considered
parameter set, the total number of generated SAWs amounted
to about 2 × 106. All networks considered here contain a
single component, i.e., any node in a network can be reached

from any other node by traveling through a finite number of
links.

For comparison with the results obtained for clustered
networks, we have also generated networks with the same
degree distribution P (k) than the clustered ones, but without
explicitly including triangles. This means that these networks
are built up from the degree sequence {ki}i=1,...,N given by
ki = si + 2ti , but randomly connecting the ki outgoing links
(stubs) for each node i as indicated above for s links. This
corresponds to the so-called configuration model [7].

B. Mean values 〈k〉 and 〈k2〉
Important characteristics of the considered networks,

which will be used below in our calculations, are the mean
values 〈k〉 and 〈k2〉. For scale-free networks with ν = 0 (no
clustering), the average degree is given by

〈s〉∞ =
∞∑

s=k0

s Psf (s) ≈ k0
γ − 1

γ − 2
, (1)

where the expression on the right has been obtained by
replacing the sum by an integral, which is justified for large
N . For our networks including triangles (ν > 0), we have
ki = si + 2ti , and

〈k〉∞ = 〈s〉∞ + 2 ν ≈ k0
γ − 1

γ − 2
+ 2 ν. (2)

For clarity of the presentation we write 〈s〉 to indicate
an average value for unclustered SF networks (configura-
tion model), i.e., consisting of s links. We write 〈k〉 in the
general case, which includes clustered networks. Moreover,
the subscripts N and ∞ refer to networks of size N and to
the infinite-size limit (when it exists), respectively. When no
subscript appears, we understand that it refers to a general
case, without mention to the system size.

For finite networks, a size effect appears in the mean
degree, as a consequence of the effective cutoff kcut appearing
in the degree distribution. In fact, for a given network of size
N one has [31,77]

∞∑
kcut

Psf (s) = c

N
, (3)

where c is a constant on the order of unity. This yields for
kcut 	 k0 [68],

kcut ≈ k0

(
N

c

) 1
γ−1

, (4)

so that kcut ∼ N1/(γ−1), as in Refs. [31,77]. From Eq. (4), one
obtains for finite scale-free networks [68],

〈s〉N ≈ 〈s〉∞
[

1 −
( c

N

) γ−2
γ−1 + O

(
1

N

)]
. (5)

For the mean value 〈s2〉, the size dependence and its large-
size behavior change with the exponent γ . For SF networks
with γ > 3, the dependence of 〈s2〉 on N is similar to that of
〈s〉, namely [68],

〈s2〉N ≈ 〈s2〉∞
[

1 −
( c

N

) γ−3
γ−1 + O

(
1

N

)]
, (6)
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with 〈s2〉∞ ≈ k2
0 (γ − 1)/(γ − 3).

For γ = 3, we have

〈s2〉N =
kcut∑
k0

s2Psf (s) ≈ 2

k−2
0 − k−2

cut

ln
kcut

k0
, (7)

and using Eq. (4) we find for kcut 	 k0,

〈s2〉N = k2
0 ln N + O(1). (8)

For SF networks with an exponent γ < 3, Catanzaro et al.
[76] found appreciable correlations between degrees of ad-
jacent nodes when no multiple and self-edges are allowed.
These degree correlations can be avoided by introducing a
cutoff kcut ∼ N1/2, as indicated above. Thus, for γ < 3 we
generate here networks with a cutoff kcut = N1/2. Note that
for γ > 3 the cutoff derived above from the condition given
in Eq. (3) is more restrictive than putting kcut = N1/2, so that
in this case the effective cutoff is given by Eq. (4). Then, for
finite networks with γ < 3 the mean values 〈s〉N and 〈s2〉N
are given by

〈s〉N ≈ 〈s〉∞
[

1 −
(

k0√
N

)γ−2
]

(9)

and

〈s2〉N ≈ k2
0

γ − 1

3 − γ

(√
N

k0

)3−γ

. (10)

For clustered SF networks with a triangle density ν > 0,
the average value 〈k2〉 is given by

〈k2〉 = 〈(s + 2t )2〉 = 〈s2〉 + 4〈s〉〈t〉 + 4〈t2〉, (11)

where we have used the fact that 〈s t〉 = 〈s〉〈t〉, since variables
s and t are independent for the way of building up these
networks. Then, for clustered networks with γ > 3, we have
in the large-size limit,

〈k2〉∞ ≈ k2
0

γ − 1

γ − 3
+ 4 k0 ν

γ − 1

γ − 2
+ 4 ν (ν + 1) , (12)

where ν and ν (ν + 1) are the average values 〈t〉 and 〈t2〉
corresponding to the Poisson distribution of triangles Q(t ).
For scale-free networks with γ � 3 one can write expressions
for 〈k2〉N derived from Eq. (11) by using the corresponding
formulas for 〈s〉N and 〈s2〉N given above.

C. Clustering coefficient

The clustering coefficient C is usually defined for complex
networks as the ratio [7,65,78]

C = 3N�

N3
, (13)

where N� is the number of triangles and N3 is the number of
connected triplets. Here a connected triplet means three nodes
n1n2n3 with links (n1, n2) and (n2, n3), and N3 is given by

N3 = N
∑

k

k(k − 1)

2
P (k) = 1

2
N (〈k2〉 − 〈k〉). (14)

Taking into account that the triangle density in our clustered
networks is related to the number of triangles N� by the

expression N� = Nν/3, we have

C = 2ν

〈k2〉 − 〈k〉 . (15)

Note that in our clustered networks it is possible for single
edges to form triangles. The average number N rd

� of such
triangles is given by [7]

N rd
� = 1

6

( 〈k2〉
〈k〉 − 1

)3

. (16)

This mean value is small for scale-free networks with large
γ and rises as γ decreases. The density of these triangles,
N rd

� /N , vanishes in the thermodynamic limit for γ > 7/3, and
for γ < 7/3 this ratio scales as a power of N with exponent
(7 − 3γ )/2. Calling ν0 the mean number of randomly gener-
ated triangles per node, we have

ν0 = 3N rd
�

N
, (17)

which rapidly converges to zero for large N for the network
parameters considered here. For the minimum value of γ

studied here, γ = 2.5, we have ν0 ≈ 1
2k

3/2
0 N−1/4, i.e., ν0 ≈

0.15 for k0 = 3 and N = 105. With these parameters and
γ = 3, we find ν0 ≈ 0.02.

In Fig. 3 we show the clustering coefficient C as a function
of the triangle density ν for clustered scale-free networks.
Figure 3(a) corresponds to γ = 5 and several values of the
minimum degree k0. Solid symbols were derived from simu-
lations of networks with N = 105, and the lines were obtained
by using Eq. (15) with the mean values 〈k〉∞ and 〈k2〉∞ given
in Sec. II B, Eqs. (2) and (12). Small differences between
both sets of results are due to the finite size of the simu-
lated networks. For small triangle density ν, the clustering
coefficient increases for rising ν and reaches a maximum,
which is more pronounced for smaller k0. For a given triangle
density ν, C decreases for increasing minimum degree k0, as
a consequence of the rise in the difference 〈k2〉 − 〈k〉, which
appears in the denominator of Eq. (15).

In Fig. 3(b), C is plotted versus ν for scale-free networks
with γ = 2.5 and three system sizes: N = 103, 104, and 105.
Here one observes a clear dependence of C on N , with the
clustering coefficient decreasing when rising N for a given
triangle density ν. For large ν, one finds a slow decrease in C

for increasing ν, with the different curves approaching one to
the other.

III. GENERALITIES ON SELF-AVOIDING WALKS

A self-avoiding walk is defined as a walk along the edges of
a network which cannot intersect itself. The walk is restricted
to moving to a nearest-neighbor node in each step, and the
self-avoiding condition restricts the walk to visit only nodes
which have not been occupied earlier in the same walk.
Here we do not consider SAWs as kinetically grown walks
in a dynamical process, and just calculate (i.e., count) the
number of possible SAWs starting from a given node in a
given network. This means that all those SAWs have the same
weight for calculating ensemble averages, e.g., the connective
constant discussed below. This is not the case of kinetically
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FIG. 3. Clustering coefficient C as a function of the triangle
density ν for clustered scale-free networks. (a) γ = 5 and various
values of the minimum degree k0. From top to bottom, k0 = 3, 5, 7,
and 9. Solid circles represent results derived from clustered networks
with N = 105 nodes. Solid lines were analytically derived in the limit
N → ∞ by using the expressions given in the text. (b) γ = 2.5 and
three different network sizes: N = 103, 104, and 105. Solid lines were
calculated by using the formulas for 〈s〉N and 〈s2〉N given in Sec. II B
for γ < 3.

grown SAWs, for which the weight is in general not uniform
[53,58]. The number of SAWs of length n in complex net-
works depends in general on the considered starting node;
however, some properties such as the connective constant of a
given network are independent of the initial node (see below).
In the following we will call an the average number of SAWs
of length n, i.e., the mean value obtained by averaging over
the network sites and over different network realizations (for
a given set of parameters N , k0, γ , and ν).

Self-avoiding walks have been traditionally studied on
regular lattices. In this case, it is known that the number of
SAWs increases for large n as an ∼ n�−1μn, where � is a
critical exponent which depends on the lattice dimension D

and μ is the connective constant or effective coordination
number of the considered lattice [56]. For D > 4 one has
� = 1 [57,79]. For a lattice with connectivity k0, the connec-
tive constant verifies μ � k0 − 1, and can be obtained from
the large-n limit

μ = lim
n→∞

an

an−1
. (18)

This parameter depends on the particular topology of each
lattice, and has been calculated very accurately for two- and
three-dimensional lattices [79].

For complex networks in general the situation is rather
different than in the case of regular lattices in low dimensions.
This is particularly clear for random networks, which are
locally treelike and do not display the so-called attrition of
SAWs caused by the presence of small-size loops of con-
nected nodes. A simple case of network without loops is a
Bethe lattice (or Cayley tree) with fixed connectivity k0, for
which the number of SAWs is given by aBL

n = k0(k0 − 1)n−1,
and then μBL = k0 − 1. For Erdös-Rényi random networks
[80] with poissonian distribution of degrees, one has aER

n =
〈k〉n [52], and then the connective constant is μER = 〈k〉.

For generalized random networks (configuration model),
one has [53]

an = 〈k〉
( 〈k2〉

〈k〉 − 1

)n−1

. (19)

In this expression, the ratio 〈k2〉/〈k〉 is the average degree of a
randomly chosen end node of a randomly selected edge [7,81].
The term −1 in Eq. (19) introduces the self-avoiding condi-
tion. Thus, the connective constant μ for random networks is
given by

μ = 〈k2〉
〈k〉 − 1. (20)

Note that the expression given above for μ in Erdös-Rényi
networks is a particular case of Eq. (20), since for these
networks one has 〈k2〉/〈k〉 = 〈k〉 + 1. As indicated above,
the number of SAWs on regular lattices scales for large n

as an ∼ n�−1μn [57,79]. For unclustered SF networks one
has an ∼ μn, indicating that � = 1, the same exponent as for
regular lattices in D > 4.

For scale-free networks with γ > 3, both 〈k〉 and 〈k2〉
converge to finite values in the large-system limit. Thus,
for unclustered networks (triangle density ν = 0) one can
approximate the average values in Eq. (20) by those given in
Sec. III A for 〈k〉∞ and 〈k2〉∞, yielding

μ ≈ k0
γ − 2

γ − 3
− 1. (21)

For large γ we recover the connective constant corresponding
to random regular networks (ki = k0 for all nodes), μ = k0 −
1, as for the Bethe lattice commented above.

For γ � 3 the mean value 〈k2〉 diverges for N → ∞, and
the connective constant μ defined in Eq. (18) also diverges
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in the large-size limit [53]. In this case we will consider a
size-dependent connective constant μN defined as

μN = 〈k2〉N
〈k〉N − 1. (22)

Then, for unclustered SF networks with γ = 3 and ν = 0, one
has

μN ≈ 1
2k0 ln N. (23)

For 2 < γ < 3 and ν = 0, μN behaves for large unclustered
networks as

μN ≈ k0
γ − 2

3 − γ

(√
N

k0

)3−γ

. (24)

We emphasize that the expressions given in Eqs. (20)
and (22) for the connective constants μ and μN , as well as
those presented in this section for SF networks with different
values of γ , are valid for unclustered networks (configuration
model). For clustered networks (in our case, triangle density
ν > 0), those expressions are not valid because triangles
introduce correlations in the degrees of adjacent nodes. In this
case, one has to implement a different procedure to calculate
the ratio an/an−1 necessary to obtain the connective constant
of clustered networks.

IV. SELF-AVOIDING WALKS: ANALYTICAL PROCEDURE

In this section we present an analytical method to calcu-
late the connective constant in clustered scale-free networks,
based on an iterative procedure to obtain the average number
of walks an for increasing walk length n. The ratio an/an−1

derived from this method converges fast for the networks
studied here (parameter γ > 2). In this procedure we take
advantage of the fact that the number of links si and ti
connected to a node i are independent.

The number of n-step self-avoiding walks, an, can be
written as

an = bn + cn, (25)

where bn and cn are the number of walks for which step n

proceeds via an s link or a t link, respectively (no matter
the kind of links employed in the previous steps). Note that
the quantities an, bn, and cn are average values for all possible
starting nodes in the considered networks. To simplify the
notation, we will call α = 2ν, i.e., α is the average number
of t links connected to a node, α = 2〈t〉. Moreover, we will
call

z = 〈s〉, r = 〈s2〉
〈s〉 . (26)

To obtain bn and cn we will use the iteration formulas (for
n > 1):

bn = (r − 1) bn−1 + z cn−1

cn = α bn−1 + (α + 1) cn−1 − α an−3

}
. (27)

The initial conditions are b1 = z, c1 = α, a0 = 1, a−1 = 0.
In the first equation of Eqs. (27), bn is calculated from the
number of walks bn−1 and cn−1 of length n − 1. If step n − 1
goes on an s link, then the prefactor is r − 1 to avoid returning

on the previous link, as for unclustered SF networks with only
s links [see Eq. (19)]. If step n − 1 proceeds on a t link, then
the prefactor of cn−1 is z (variables s and t are independent).

To calculate cn in the second equation of Eqs. (27) we
have contributions coming from bn−1 and cn−1, but there also
appears a third term with negative contribution corresponding
to the self-avoiding condition, i.e., links associated to closing
triangles are not allowed (here we call “closing a triangle”
to visit its three edges in three successive steps of a walk).
The first two terms on the right-hand side are obtained from
inputs of step n − 1. If step n − 1 follows an s link, then the
prefactor for bn−1 is the mean number of t-links per node, i.e.,
α. If step n − 1 proceeds over a t link, the prefactor for cn−1

on the right-hand side of the second equation is α + 1. This
requires a comment. Remember that in random networks the
average degree of a randomly chosen end node of a randomly
selected edge is given by the ratio 〈k2〉/〈k〉 [7,81], as indicated
above in connection to Eq. (19). Similarly, in our network
of triangles, the average number of triangles, 〈t〉′, linked to
a randomly selected end node of a randomly taken t link is
given by 〈t2〉/〈t〉. For the Poisson distribution of triangles we
have 〈t〉 = ν and 〈t2〉 = ν(ν + 1), so that 〈t〉′ = ν + 1. Hence,
since one t link was already visited in step n − 1 (this refers to
the input associated to cn−1), the number of t links available
for step n is 2(ν + 1) − 1 = α + 1 (each triangle includes two
available links).

The prefactor for an−3 in the second equation of Eq. (27) is
the average number of t links corresponding to triangles that
close at step n. For an SAW of n − 3 steps, there is an average
number of ν triangles that may close after three more steps in
step n.

Using both equations in Eq. (27), one can derive the
connective constant μ from the asymptotic limit of the ratio
an/an−1. This is presented in the Appendix. We find that μ

can be calculated by solving the system [see Eqs. (A6), (A9),
and (A10)]

θμ3 − (θα + θ + α)μ2 + α(1 + θ ) = 0
μ − zθ − r + 1 = 0

}
, (28)

where μ and θ are unknown variables. μ is the connective
constant defined above, and θ is the asymptotic limit of the
ratio cn/bn for large n. Both equations can be combined to
yield a quartic equation in μ with coefficients defined from the
network parameters z, r , and α. For the networks considered
here, this quartic equation has a single positive solution, so
that μ is univocally defined. We note that the initial conditions
b1 and c1 in the system Eqs. (27) are not relevant for the
actual solution of the system. This means that the connective
constant derived from Eqs. (27) is robust, in the sense that
putting for b1 and c1 the values of a particular node i (si and
ti) does not change the result for μ, which is a long-range
characteristic of each network. Putting mean values for the
starting conditions helps to accelerate the convergence of the
procedure.

In the case ν = 0 (i.e., absence of triangles in unclustered
networks, α = 0), one has, from Eqs. (27), cun

n = 0 for all n

and bun
n = (r − 1)bun

n−1 with bun
1 = 〈s〉 (here the superscript

“un” means unclustered). We thus recover the general ex-
pression for unclustered networks, Eq. (19), and then μun =
〈s2〉/〈s〉 − 1.
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FIG. 4. Parameter δn as a function of the step number n for
clustered scale-free networks with triangle density ν = 1, size N =
128 000 nodes, and minimum degree k0 = 3. Symbols correspond to
different values of the exponent γ : 5 (circles), 3 (squares), and 2.5
(diamonds).

For γ � 3, we have defined a size-dependent connective
constant μN . In this case, the limits to infinity presented above
in this section have no sense. However, the ratios an/an−1,
bn/bn−1, and cn/cn−1 considered here converge with our
present method for relatively low number of steps, n � N .
To analyze the convergence of the ratio fn = an/an−1, we
define the parameter δn = |fn − μN |/μN . In Fig. 4 we present
in a logarithmic plot the parameter δn as a function of the
step number n for clustered scale-free networks with triangle
density ν = 1 and size N = 128 000. Symbols correspond to
different values of the exponent γ : 5 (circles), 3 (squares), and
2.5 (triangles). It appears that the couple of Eqs. (27) yields
values of fn that converge fast to the corresponding limit μN

in a similar way for networks with γ < 3 and γ > 3. In the
latter case, μN → μ∞ for large N .

V. COMPARISON WITH NETWORK SIMULATIONS

We have generated clustered scale-free networks by fol-
lowing the procedure described in Sec. II. For comparison,
we have also constructed unclustered networks, according to
the configuration model, with the same degree distribution
P (k) as the clustered networks. For both kinds of networks
we have calculated the connective constant for several values
of the exponent γ , from the ratio an/an−1. The results have
been compared with those obtained by using the analytical
procedures described in Sec. IV. We present these results in
three subsections, according to the behavior of the connective
constant for different values of γ .

A. Case γ > 3

In this case the average value 〈k2〉N converges to a finite
value in the large-size limit, and therefore the connective

0 0.5 1 1.5 2 2.5 3

Triangle  density  ν

2

4

6

8

10

12

C
on

ne
ct

ic
e 

 c
on

st
an

t  
 μ k

0
 = 3

N = 128000 γ = 4

1000

5
8

Clustered  networks

FIG. 5. Connective constant μ vs triangle density ν for clustered
scale-free networks with several values of the exponent γ : From
top to bottom γ = 4, 5, 8, and 1000. The networks size is N =
128,000 and the minimum degree k0 = 3. Solid lines correspond to
the analytical procedure described in Sec. IV, whereas symbols were
derived from enumeration of SAWs in clustered networks. Error bars
are less than the symbol size.

constant is well defined in this limit. In Fig. 5 we display μ

as a function of the triangle density ν for clustered scale-free
networks with size N = 128 000, minimum degree k0 = 3,
and various values of the exponent γ . Symbols are data
points derived from simulations for γ = 4, 5, 8, and 1000.
Here the large exponent γ = 1000 is equivalent to the limit
γ → ∞, as in this case si = k0 for all nodes. Error bars
in Fig. 5 are smaller than the symbol size. Lines represent
results obtained from the analytical method presented above,
and follow closely the data points obtained from the network
simulations. For N = 128 000 the finite-size effect in the
connective constant is almost inappreciable for networks with
γ > 3.

For ν = 0 (no triangles) the connective constant can be
directly derived from the mean values 〈s〉N and 〈s2〉N given
in Eqs. (5) and (6), as

μN = 〈s2〉N
〈s〉N − 1, (29)

as follows from Eq. (19) for unclustered networks. Then, for
large N , μN converges to μ∞ given in Eq. (21). For clustered
networks with ν > 0, the connective constant can be obtained
by introducing the parameters z and r derived from 〈s〉N and
〈s2〉N [see Eq. (26)] into the iterative Eqs. (27), or alternatively
into the system Eqs. (28). This gives for different values of γ

the lines shown in Fig. 5.
For unclustered networks with ν > 0, μ∞ is derived from

〈k〉∞ and 〈k2〉∞ in Eqs. (2) and (12). For a given network
size (N = 128 000 in Fig. 5), μ∞ converges to 2ν for large ν,
irrespective of the exponent γ . This comes from the dominant
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FIG. 6. Connective constant μN as a function of system size N

for scale-free networks with γ = 3 and triangle density ν = 2. The
solid and dashed lines were obtained analytically for clustered and
unclustered (configuration model) networks, respectively. Symbols
correspond to results found from simulated scale-free networks.
Error bars are smaller than the symbol size.

terms in the ratio 〈k2〉∞/〈k〉∞; i.e., 〈k2〉∞ ≈ 4ν2 and 〈k〉∞ ≈
2ν for ν 	 1.

The results for the connective constant μ∞ of unclustered
networks are very close to those corresponding to clustered
networks, and are not shown in Fig. 5. Both sets of results are
in fact indistinguishable within error bars, which are smaller
than the symbol size. This is mainly due to the very low
probability of high-degree nodes in these networks. This fact,
which occurs for μ∞ in networks with γ > 3, does not happen
for networks with γ � 3, where results for μN appreciably
differ for clustered and unclustered networks (see below).

B. Case γ = 3

For scale-free networks with γ = 3 the average value
〈k2〉N diverges logarithmically with N ; see Eq. (8). This
behavior controls the asymptotic dependence of the connec-
tive constant on system size. In Fig. 6 we present the size-
dependent μN versus N for scale-free networks with γ = 3
and ν = 2. Shown are results for clustered and unclustered
(configuration model) networks. As in the case γ > 3 shown
above, symbols are data points derived from SAWs in simu-
lated networks, whereas lines were obtained from analytical
calculations. For small networks, μN is similar for both kinds
of networks, and the connective constant corresponding to the
clustered ones becomes appreciably larger as the system size
increases. For given N and ν > 0, we have μcl

N > μun
N .

For clustered networks (solid line), the procedure to calcu-
late μN is the same as that employed above for γ > 3, using
the iterative Eqs. (27), and taking into account the adequate
expressions for 〈s〉N and 〈s2〉N given in Eqs. (5) and (7),
respectively. We cannot write an exact analytical expression
for μN as a function of N and ν for clustered networks, but
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FIG. 7. Connective constant μN vs. triangle density ν for scale-
free networks with γ = 3 and k0 = 3. The data shown correspond
to two different network size: N = 512 000 (top) and 32 000 (bot-
tom). Solid and dashed lines correspond to analytical calculations
for networks with and without triangles, respectively. Symbols are
results derived from network simulations. Error bars are of the order
of the symbol size. “cl” and “un” refer to clustered and unclustered
SF networks, respectively.

we can analyze its behavior for large N and ν from the results
of our calculations and network simulations. For large N and
relatively small ν, the right-hand side of the first equation in
the iterative system Eq. (27) giving bn is dominated by the
contribution of bn−1 because r 	 z. Then, bn/bn−1 converges
to μN ≈ 〈s2〉N/〈s〉N ≈ 1

2k0 ln N .
For unclustered networks (dashed line in Fig. 6) μN is

given by Eq. (22), valid for the configuration model. Here
〈k〉N and 〈k2〉N are obtained from average values correspond-
ing to s links and t links separately; see Eq. (11). Then, for
large N the ratio 〈k2〉N/〈k〉N is dominated by the contribution
of s links, yielding

μN ≈ 〈k2〉N
〈k〉N ≈ 〈s2〉N

〈s〉N + 2ν
≈ k2

0 ln N

2(k0 + ν)
, (30)

which coincides with Eq. (23) for ν = 0. This means that for
the data shown in Fig. 6 (ν = 2, k0 = 3), the slope of the
dashed line for large N is given by ∂μN/∂ ln N = 0.9. For
SF networks with γ = 3 and ν = 0, one has μN ∼ 1

2k0 ln N

for large N , Eq. (23), and we find a slope ∂μ/∂ ln N = 1.5.
In Fig. 7 we show μN for networks with γ = 3 as a

function of the triangle density ν. We present results for
clustered and unclustered networks and two network sizes:
N = 32 000 and 512 000 nodes. For both network sizes,
μcl

N > μun
N for ν > 0. For clustered networks with relatively

large N , μN increases monotonically for rising ν, with a slope
dμ/dν that grows converging to a value of 2 for large ν. This
can be derived from Eq. (A4), where the variable θ , defined
in Eq. (A1), is the limit of the ratio cn/bn for large n. Taking
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into account that cn and bn are the mean number of SAWs
ending in t links and s links, respectively, one expects that
θ increases as the triangle density (or the number of t links)
increases. Thus, we have θ � 〈t〉/〈s〉, as can be found from
numerical solutions of Eq. (28) or Eq. (A4). Then, for large
ν, i.e., α 	 1, we have θ 	 1, μN 	 1, σ = 1/μN � 1, and
from Eq. (28) we find that θ → 2ν/z. Using again Eq. (28),
one has μN = r + zθ − 1, with r and z independent of ν, so
that ∂μN/∂ν = z ∂θ/∂ν, which converges to 2 for large ν.

For unclustered networks (configuration model) we have
for large ν, see Eq. (22),

μN = 〈k2〉N
〈k〉N − 1 ≈ k2

0 ln N

2ν
+ 2ν, (31)

and for a given N , ∂μN/∂ν → 2 for large ν. However, for
large N this convergence is slower than in the case of clustered
networks, as can be observed in Fig. 7.

Summarizing the results presented in this section for clus-
tered networks with γ = 3, we find that for large N or ν, the
leading contribution to the connective constant μN appears
to be either a function f (N ) or another function g(ν), de-
pending on the values of both variables N and ν. This means
that the behavior of μN can be described as μN ∼ f (N ) +
g(ν) + h(N, ν), where we include a contribution h(N, ν) that
becomes negligible for large N or ν. For γ = 3 we have
f (N ) → 1

2k0 ln N for large N and g(ν) → 2ν for large ν.
Then, for k0 ln N 	 ν, one has μN ≈ 1

2k0 ln N , whereas for
k0 ln N � ν, μN ≈ 2ν. This indicates that one has a crossover
from a parameter region where the behavior of the connective
constant is dominated by the scale-free character of the degree
distribution Psf (s), to another region where it is controlled
by the cluster distribution (triangles). This is not a sharp
crossover, and in the intermediate region a simple decomposi-
tion of μN into two independent contributions is not valid, as
indicated above with the function h(N, ν). For a given N , the
crossover occurs for a triangle density νc ∼ 1

4k0 ln N . Thus,
for N = 5 × 105, νc ≈ 10, and for N = 104, νc ≈ 7.

C. Case γ < 3

In this case the average value 〈k2〉N scales as a power of
the network size N , similar to 〈s2〉N in Eq. (10), and this de-
pendence controls the behavior of the connective constant μN .
In Fig. 8 we display μN as a function of N for clustered and
unclustered SF networks with exponent γ = 2.5 and triangle
density ν = 2. As in previous figures, symbols are data points
obtained from enumeration of SAWs in simulated networks,
and lines correspond to calculations following the procedure
described in Sec. IV and the Appendix. As for γ = 3 (see
above), the connective constant for γ = 2.5 is similar for
clustered and unclustered networks for relatively small N . The
results for both kinds of networks differ progressively as N

increases, being larger than the value for clustered networks,
as in Fig. 6 for γ = 3. Note, however, that the vertical scale in
Fig. 8 is logarithmic in contrast to Fig. 6, where it is linear.

For clustered networks with relatively large N one has
μN ≈ 〈s2〉N/〈s〉N , as reasoned above for γ = 3. We find for
γ = 2.5 a dependence μN ≈ √

k0N
1/4. This agrees with the

results shown in Fig. 8 (solid line), where the derivative
∂ ln μN/∂ ln N converges to 0.25 for N → ∞. In fact, this
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FIG. 8. Connective constant μN as a function of system size N

for scale-free networks with γ = 2.5 and triangle density ν = 2. The
solid and dashed lines were obtained analytically for clustered and
unclustered networks, respectively. Symbols correspond to results
obtained from simulated scale-free networks. Error bars are less than
the symbol size.

derivative rises for increasing N , and for N = 106 it is already
very close to its asymptotic limit.

For unclustered networks with γ = 2.5 we have

μN ≈ 〈k2〉N
〈k〉N ≈ 3k

3/2
0

3k0 + 2ν
N1/4, (32)

which coincides with Eq. (24) for ν = 0. Thus, for large N

the connective constant behaves in a similar way to clustered
networks, i.e., μN ≈ AN1/4, but now the prefactor in Eq. (32)
depends on the triangle density ν. For the case presented in
Fig. 8 (ν = 2) we find A = 1.20 (large-N limit of dashed
line), in agreement with the results obtained from simulations
of unclustered networks (solid squares). We note that the
convergence to the power-law behavior μN ∼ N1/4 is faster
(occurs for smaller size N ) for clustered than for unclustered
networks. In general, for γ < 3 one has μN ∼ N (3−γ )/2, as
can be derived from the expressions for the mean values 〈s〉
and 〈s2〉 given in Sec. II B.

In Fig. 9 we show the dependence of μN on triangle
density ν for clustered and unclustered (configuration model)
networks with γ = 2.5 and system size N = 128 000 nodes.
The connective constant for clustered networks increases
monotonically with the parameter ν and the slope ∂μN/∂ν

grows and converges to 2 for large ν. This happens in a way
similar to the case γ = 3 discussed above (Fig. 7).

For unclustered networks (solid squares and dashed line in
Fig. 9) it is remarkable the decrease in μN for increasing ν

close to ν = 0 for N = 128 000, i.e., for small ν we have
∂μN/∂ν < 0. This is due to the fact that, for growing ν,
the relative increase is larger for 〈k〉N than for 〈k2〉N , so the
ratio 〈k2〉N/〈k〉N decreases for small ν. This becomes more
appreciable for larger network size. In the μN versus ν curve
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FIG. 9. Connective constant μN vs. triangle density ν for clus-
tered SF networks with γ = 2.5: the solid line is the result of
the analytical model described in Sec. IV, whereas solid circles
are data points derived from enumeration of SAWs in simulated
clustered networks. The dashed line and solid squares correspond to
unclustered networks (configuration model). Error bars are less than
the symbol size.

shown in Fig. 9 one has a minimum of μN for ν = 2.7. For
higher triangle density ν, the slope of the curve increases,
approaching the line corresponding to clustered networks. For
a given system size N , the quotient 〈k2〉N/〈k〉N yielding μN

is dominated for large ν by the term 〈t2〉 = 4ν(ν + 1) in
the numerator [see Eqs. (11) and (12)], and 〈t〉 = 2ν in the
denominator, so ∂μN/∂ν → 2 in the large-ν limit.

Summarizing the results shown in this section for clustered
networks with γ = 2.5, we obtain that for large N or ν,
the connective constant behaves as μN ∼ √

k0N
1/4 + g(ν) +

h(N, ν), with g(ν) ∼ 2ν for large ν. As in the case γ = 3
discussed above, one has in general a contribution h(N, ν)
that becomes negligible in the limits discussed here, and for
which we do not have an analytical expression. Then, for N 	
ν4 we have μN ≈ √

k0N
1/4, and for N � ν4, we have μN ≈

2ν. For a given N , there appears a crossover at a triangle
density νc ∼ 1

2

√
k0N

1/4. On one side, for ν < νc, the behavior
of the connective constant μN is dominated by a power of N ,
corresponding to the scale-free degree distribution of single
links Psf (s). On the other side, for ν > νc, μN is controlled
by the distribution of triangles Q(t ). For γ = 2.5 and N =
5 × 105 we have νc ≈ 23, and for N = 104, we have νc ≈ 9.
In general, for γ < 3 the crossover takes place at a triangle
density νc given by

νc ∼ 1

2

γ − 2

3 − γ
k

γ−2
0 N (3−γ )/2. (33)

Note that in this expression the exponent (3 − γ )/2 is the
same as that of the connective constant for large N : μN ∼
N (3−γ )/2. In the parameter region where the behavior of μN

is controlled by the large-degree tail of the power law Psf (s)

(i.e., ν < νc), the connective constant can be described by an
expression μN ∼ Nβ , where β is a variable parameter that
evolves from zero for small system size to (3 − γ )/2 for large
N . Specifically, one can define β as the logarithmic derivative
β = d ln μN/d ln N . Thus, from the results shown in Fig. 8
for clustered networks with γ = 2.5 we find a parameter β in
the interval from 0.14 for N = 103 to 0.247 for N = 7 × 106.
The latter value is close to the exponent (3 − γ )/2 = 0.25
corresponding to a pure scale-free network. The variable
parameter β is in principle regulated by the function h(N, ν)
mentioned above, but we do not know a precise expression
for it.

VI. CONCLUSIONS

Self-avoiding walks are a suitable means to analyze the
long-distance properties of complex networks. We have stud-
ied the connective constant for clustered scale-free networks
by using an iterative analytical procedure that converges in a
few steps. The results of these calculations agree well with
those derived from direct enumeration of SAWs in simu-
lated networks. These data have been compared with those
corresponding to unclustered networks with the same degree
distribution P (k). For large unclustered networks, the number
of SAWs rises with the number of steps n as an/an−1 ≈
〈k2〉/〈k〉 − 1, but in the presence of clusters the ratio an/an−1

depends explicitly on the distribution of both s and t links.
Our results can be classified into two different groups,

depending on the exponent γ of the power-law degree dis-
tribution in this kind of networks. Comparing clustered and
unclustered networks, the conclusions obtained for γ > 3 dif-
fer from those found for γ � 3. For networks with γ > 3, one
has a well-defined connective constant μ∞ in the thermody-
namic limit (N → ∞). Adding motifs (here triangles) to the
networks causes an increase in μ, mainly due to a rise in the
average value 〈k2〉. Nevertheless, we find a small numerical
difference in μ for clustered and unclustered networks with
the same degree distribution P (k).

For γ � 3, the size-dependent connective constant μN is
similar for clustered and unclustered networks with the same
P (k) when one considers small network sizes (N � 103). This
behavior changes for larger networks, where μcl

N > μun
N . This

difference is more apparent for decreasing γ , due to the larger
number of high-degree nodes. For SF networks with γ � 3,
μN increases with system size N , and diverges for N → ∞.
Depending on the values of the system size N and triangle
density ν, we find two regimes for the connective constant μN .
For a given N there appears a crossover from a region where
μN is controlled by the scale-free degree distribution Psf (s) of
single links (for small ν) to another parameter region where
the behavior of μN is dominated by the triangle distribution
Q(t ) (large ν). The crossover between both regimes appears
at a triangle density νc such that νc ∼ 1

4k0 ln N for γ = 3 and
νc ∼ N (3−γ )/2 for γ < 3 [see Eq. (33)].

The numerical results for clustered and unclustered scale-
free networks may change when different degree cutoffs are
employed. This is particularly relevant for γ < 3, since the
dependence of μN on system size is important. In this respect,
to avoid undesired correlations between degrees of adjacent
nodes, we have employed here a degree cutoff kcut = N1/2.
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Other probability distributions, different from the short-
tailed Poisson type considered here for triangles, may be
introduced to change more strongly the long-degree tail in
the overall degree distribution P (k). Thus, a power-law dis-
tribution for the triangles can cause a competition between
the exponents of both distributions (for s links and t links),
which can change the asymptotic behavior of SAWs in such
networks in comparison to those presented here.

There are clear similarities between the asymptotic behav-
ior of the connective constant (μ∞ or μN ) derived from SAWs
and the ferromagnetic-paramagnetic transition temperature
for the Ising model in this kind of network [68]. This is
related to the fact that both directly depend on the mean
value 〈k2〉, which changes with the exponent γ of the degree
distribution. The extent of such similarities in the case of
clustered networks is an open question that should be further
investigated.
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APPENDIX: CALCULATION OF THE
CONNECTIVE CONSTANT

In this Appendix, we present a derivation of the connective
constant in clustered networks as the asymptotic limit of the
ratio an/an−1. It is based on the coupled iterative equations
given in Eq. (27). To find the values of bn and cn for large n,
we define

θn = cn

bn

; θ = lim
n→∞ θn (A1)

and

σn = bn

bn+1
; σ = lim

n→∞ σn. (A2)

Then, from Eqs. (27), (A1), and (A2), we have

θn = α + θn−1(α + 1) − σn−3σn−2α − θn−3σn−3σn−2α

r − 1 + θn−1z
,

(A3)
and taking the limit n → ∞,

θ = α + θ (α + 1) − σ 2α(1 + θ )

r − 1 + θz
. (A4)

Moreover, from Eq. (27) we have

bn+1

bn

= r − 1 + θnz, (A5)

so that

1

σ
= lim

n→∞
bn+1

bn

= r − 1 + θz. (A6)

Equations (A4) and (A6) can be used to obtain the limits θ

and σ , as well as to find the simplified expression

θ

σ
= α + θ (α + 1) − σ 2α(1 + θ ). (A7)

Combining Eqs. (A6) and (A7), one can eliminate σ , which
yields a quartic equation in θ .

The connective constant μ is defined as

μ = lim
n→∞

an+1

an

. (A8)

Taking into account that an = bn + cn [Eq. (25)], we have

μ = lim
n→∞

1 + θn+1

σn + θnσn

= 1

σ
. (A9)

Using Eq. (A9) we can rewrite Eq. (A7) as

θμ3 − (θα + θ + α)μ2 + α(1 + θ ) = 0, (A10)

which can be used, along with Eq. (A6), to form the system of
Eq. (28) in the text.

We note that the asymptotic limit of both bn+1/bn and
cn+1/cn is also μ. In fact, from Eqs. (A2) and (A9), we have

lim
n→∞

bn+1

bn

= 1

σ
= μ (A11)

and

lim
n→∞

cn+1

cn

= lim
n→∞

cn+1

bn+1

bn+1

bn

bn

cn

= θμ
1

θ
= μ. (A12)

For γ � 3, we have defined in Sec III a size-dependent
connective constant μN . In this case, the limits to infinity
presented in this Appendix have no sense. However, the ratios
an/an−1, bn/bn−1, and cn/cn−1 considered here converge with
our present method for relatively low number of steps, n �
N , as indicated in Sec. IV (see Fig. 4).
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