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Next-generation neural field model: The evolution of synchrony within patterns and waves
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Neural field models are commonly used to describe wave propagation and bump attractors at a tissue level in
the brain. Although motivated by biology, these models are phenomenological in nature. They are built on the
assumption that the neural tissue operates in a near synchronous regime, and hence, cannot account for changes
in the underlying synchrony of patterns. It is customary to use spiking neural network models when examining
within population synchronization. Unfortunately, these high-dimensional models are notoriously hard to obtain
insight from. In this paper, we consider a network of θ -neurons, which has recently been shown to admit an exact
mean-field description in the absence of a spatial component. We show that the inclusion of space and a realistic
synapse model leads to a reduced model that has many of the features of a standard neural field model coupled to
a further dynamical equation that describes the evolution of network synchrony. Both Turing instability analysis
and numerical continuation software are used to explore the existence and stability of spatiotemporal patterns
in the system. In particular, we show that this new model can support states above and beyond those seen in a
standard neural field model. These states are typified by structures within bumps and waves showing the dynamic
evolution of population synchrony.
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I. INTRODUCTION

The act of passing information between brain regions
produces waves of neural activity. These waves are readily
observed using noninvasive techniques such as electroen-
cephalography (EEG) and magnetoencephalography (MEG)
[1], as well as in brain slices [2]. Both experimental and theo-
retical work has shown that EEG and MEG recordings and
evoked potentials can exhibit traveling and standing waves
[3]. In particular, traveling waves are seen in EEG sleep
recordings propagating across the cortex at a speed of about
1.2–7.0 m/s [4]. Standing waves are often associated with
idle brain states. For example, standing waves at α frequency
(8–13 Hz) are observed in the vicinity of the visual cortex
when the subject has their eyes closed [5]. Another commonly
observed spatial pattern is the so-called bump attractor. This
spatially localized increase in population firing is produced in
working memory tasks and the location of the bump can be
linked to memory location [6].

*aine.byrne@nyu.edu

Traditionally, neural field models are used to describe
wave and bump states in the brain. Although inspired by
biology, these models are entirely phenomenological in na-
ture. Even so, they have been particularly successful in de-
scribing neurophysiological phenomena, such as EEG and
MEG rhythms [7], working memory [8], binocular rivalry
[9], and orientation tuning in the visual cortex [10]. They are
typically cast as a system of nonlocal differential equations
which describe the spatiotemporal evolution of coarse-grained
population variables, such as the firing rate of a neuronal pop-
ulation, the average synaptic current, or the mean membrane
potential [11].

The first attempt at a neural field mode is attributed to
Beurle [12], who built a model to describe the propagation
of activation in a given volume of neural tissue. This model
was purely excitatory, but even so allowed him to examine
the propagation of large-scale brain activity. In the 1970s
Wilson and Cowan [13,14] extended this model to include a
second inhibitory layer. Unlike Beurle, they were interested
in spatially localized bump solutions. In his seminal paper,
Amari [15,16] created what is now known as the standard
neural field equation. By introducing a Mexican hat–type
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coupling function (local excitation and long-range inhibition),
he reduced the model to a single equation with a mixture
of excitatory and inhibitory connections. This allowed him
to construct explicit solutions for spatially localized patterns
and assess their stability (at least for a Heaviside firing rate
function). For a review of the Amari model and bumps in
one spatial dimension, see Ref. [17], and for a discussion of
bubbles in two spatial dimensions, see Ref. [18].

One of the main assumptions in many types of neural
field models, and especially those for describing EEG, is
that pointwise they describe a density of neurons operating
in a near synchronous regime [19]. This wholly reasonable
assumption can be traced back to the observation that an
EEG scalp electrode, which typically experiences the activity
of roughly 109 cortical pyramidal cells, can only detect an
electric field if all the individual cell dipoles add coherently
[20]. However, a near synchrony assumption in any neural
mass model precludes its use in describing the increase and
decrease of power commonly seen in given EEG and MEG
frequency bands. These temporal variations are believed to be
the result of changes in synchrony within the neural tissue.
The former phenomenon is called event-related synchroniza-
tion (ERS), and the latter event-related desynchronization
(ERD) [21]. Consequently, there is a pressing need to develop
the next generation of neural field models, which include
this notion of a dynamic within-population synchrony (not
fixed to be near synchronous), to more accurately describe the
evolution of large-scale spatiotemporal brain rhythms.

When looking at within-population synchronization one
typically uses a spiking neural network model. However,
these high-dimensional models are almost impossible to gain
insight from. In an ideal world there would be a mathematical
procedure for linking microscopic dynamics to macroscopic
dynamics. This link has proved elusive for the majority of
spiking models. However, Luke et al. [22] showed that the
θ -neuron model is amenable to such a reduction for pul-
satile coupling. Montbrió et al. [23] used a similar approach
to reduce a network of quadratic integrate-and-fire neurons.
Laing [24] has also shown that the same approach can be
applied to a network of spatially extended θ -neurons, in the
presence of gap junction coupling. In previous papers [25,26],
we have shown that the approach of Luke et al. can be ex-
tended to incorporate a biologically realistic form of synaptic
coupling. Here we build on this work to construct a neural
field model that incorporates within population synchrony
and a realistic form of synaptic coupling. We shall refer to
this model as a next generation neural field model. Esnaola-
Acebes et al. recently showed that a similar model of pulse-
coupled excitatory and inhibitory quadratic integrate-and-fire
neurons displayed damped temporal oscillations, which mod-
ulate a spatially nonlocalized profile [27]. Such oscillations
are, however, not self-sustained. Here, we show, through the
inclusion of synaptic dynamics, that the model can support
self-sustained oscillations.

Unlike more traditional neural field models the one studied
here has a population firing rate at a point in the tissue that
depends on the degree of synchrony at that point. This firing
rate is a real valued function of the complex Kuramoto order
parameter, and as such different values of the order parameter
can give rise to the same population rate. Thus, in contrast

to phenomenological neural field models that are closed un-
der the choice of a firing rate that is a nonlinear (typically
sigmoidal) function of mean-membrane potential or synaptic
activity, the one presented here is expected to have a richer
set of responses, due to the more sophisticated representation
of the response of the population rate to synchrony levels.
This allows the model to represent underlying patterns of
spike-train synchrony that cannot be accounted for in standard
neural field models. In particular, we show, using a mixture
of analysis and simulation, that this new neural field model
can support exotic patterned states more reminiscent of high-
dimensional spiking networks, with spatiotemporal patterns
showing the evolution of synchrony.

We begin with an overview of the model formulation in
Sec. II and outline the necessary steps for reduction to a neural
field. A Turing instability analysis of the model is covered in
Sec. III. Here, we show that the system can be unstable to
both static and dynamic Turing patterns for a wide window of
parameter space. More interestingly, we show that when the
Turing bifurcation collides with a Hopf bifurcation patterned
states emerge in which there exists an oscillating structure
within a spatially localized bump. The Turing analysis is
complimented with a numerical bifurcation analysis for the
full nonlinear model in Sec. IV. Here we further examine the
emergent patterns away from bifurcation, as well as consider
localized traveling waves. Finally, in Sec. V we discuss our
main results as well as natural extensions of the work pre-
sented.

II. THE MODEL

We first consider a network of N coupled quadratic
integrate-and-fire (QIF) neurons, uniformly distributed along
a line of length � such that the j th neuron is at position
xj = −�/2 + (j − 1)�x, where j = 1, . . . , N and �x =
�/(N − 1) is the spacing between neurons. The coupling be-
tween neuron i and neuron j depends only upon the distance
between the two neurons, wm

ij = wm(|xi − xj |), where m is a
label used to keep track of neural subpopulations. We write the
network dynamics for the voltage, vi ≡ v(xi, t ), in the form

v̇i = v2
i + ηi + Ii, i = 1, . . . , N, (1)

subject to reset, vi → vr , whenever a firing threshold vth

is reached by vi . The time at which the ith cell reaches
threshold from below for the sth time will be denoted by T s

i ,
s ∈ N. Here the background drives ηi will be assumed to be
heterogeneous and chosen from a Lorentzian distribution,

L(η) = 1

π

�

(η − η0)2 + �2
, (2)

where η0 is the center of the distribution and � is the half
width. We assume a synaptic input current of the form

Ii (t ) =
∑
m

gi
m(t )

[
vm

syn − vi (t )
]
, (3)

for a global conductance gi
m, synaptic reversal potential vm

syn
and local voltage vi . In what follows we will assume m =
{1, 2} or m = 1, but one should note that this framework
can be extended to include multiple types of synapses. The
interplay of excitation and inhibition, on different spatial
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scales, is known to play an important role in the generation of
global spatially patterned states [28–30]. Hence, we separate
our synaptic conductance into two parts, such that we have
one excitatory synaptic current (vsyn > 0) and one inhibitory
(vsyn < 0), each with different spatial ranges.

Each of the synaptic conductances will be taken to mimic
that of a synapse with a finite rise and fall time that evolves
according to

Qmgi
m = κm

N

∑
s∈N

N∑
j=1

wm
ij δ

(
t − T s

j

)
, (4)

for some coupling strength κm, where Q is the linear second-
order differential operator

Qm =
(

1 + τm

d

dt

)2

. (5)

Here τm is the synaptic time scale, and Qm has a response
(Green’s function) s(t ) = τ−2

m te−t/τm for t � 0 (and is zero
otherwise), which is a popular choice for many synapse
models in computational neuroscience [31].

It is well known that the QIF model is formally equivalent
to the θ -neuron model [32] under the transformation vi =
tan(θi/2), for θi ∈ [0, 2π ) (when the threshold vth and reset
vr are set to +∞ and −∞, respectively). This relationship
allows us to construct a θ -neuron network dynamics as

θ̇i = 1 − cos θi + (1 + cos θi )ηi

+
∑
m

gi
m

[
(1 + cos θi )v

m
syn − sin θi

]
, (6)

Qmgi
m = 2κm

N

N∑
j=1

wm
ij δ(θj − π ). (7)

To obtain Eq. (7) we have made use of the fact that δ(t −
T s

j ) = δ(θj − π )|θ̇j (T m
j )|. As such, we say that neuron j

“spikes” whenever θj increases through π . The network for-
mulation in terms of dynamics on a circle is particularly
useful since we no longer have to worry about handling the
discontinuous reset process as we would have to do for a QIF
network.

Mean field limit

We take the large N limit, N → ∞, which allows us
to describe the system in terms of a continuous probability
distribution function ρ(x, η, θ, t ), with x, η ∈ R, θ ∈ [0, 2π ),
and t ∈ R+, which satisfies the continuity equation:

∂

∂t
ρ + ∂

∂θ
(ρvθ ) = 0, (8)

where vθ is the following realization of Eq. (6),

vθ = 1 − cos θ + (1 + cos θ )η

+
∑
m

gm

[
(1 + cos θ )vm

syn − sin θ
]
. (9)

The mean-field representation of the synaptic inputs gm are
written as follows:

Qmgm(x, t ) = κm

π

∑
l∈Z

∫ ∞

−∞
dy

∫ 2π

0
dθ

∫ ∞

−∞
dηρ(y, η, θ, t )

× wm(x − y)eil(θ−π ), (10)

where we have used the result 2πδ(θ − π ) = ∑
l∈Z eil(θ−π ) to

write the right hand side in terms of exponentials. The formula
for vθ Eq. (9) may be conveniently written in terms of e±iθ as

vθ = φ(eiθ + e−iθ ) + χ, (11)

where φ = (η + I − 1)/2 and χ = η + I + 1. Note that a
similar approach has previously been considered by Laing
[24]. However, his focus was on smooth (nonpulsatile) inter-
actions with a first-order model of the synapse, and he did not
consider reversal potentials.

To reduce the system we make use of the Ott-
Antonsen (OA) ansatz [33]. This decomposes ρ in the
form ρ(x, η, θ, t ) = L(η)F (x, η, θ, t )/(2π ), where F is
2π -periodic in θ with a Fourier series representation
F (x, η, θ, t ) = ∑

n Fn(x, η, t )einθ . The OA ansatz restricts
the choice of Fn such that Fn(x, η, t ) = α(x, η, t )n, with
|α(x, η, t )| < 1 to ensure convergence. Hence, ρ can be writ-
ten as

ρ(x, η, θ, t ) = L(η)

2π

{
1 +

[ ∞∑
n=1

α(x, η, t )neinθ + cc

]}
,

(12)

where cc denotes the complex conjugate of the previous term.
Substituting Eq. (11) into the continuity Eq. (8) and balancing
terms in eiθ gives an evolution equation for α:

∂

∂t
α − iα2φ − iαχ − iφ = 0. (13)

We define the Kuramoto order parameter as follows:

z(x, t ) =
∫ 2π

0
dθ

∫ ∞

−∞
dηρ(x, η, θ, t )eiθ , (14)

where |z| � 1. The Kuramoto order parameter is a complex
number z = Rei� , whose magnitude R represents the degree
of within population synchrony and angle � represents the
average phase of the population. Substituting Eq. (12) into
Eq. (14) we find that

z̄(x, t ) =
∫ ∞

−∞
dηL(η)α(x, η, t ), (15)

where z̄ denotes the complex conjugate of z. As the Lorentzian
has two simple poles η± = η0 ± i�, the above integral may
be performed by choosing a large semicircular contour in the
lower half η-plane and using the residue theorem, to yield
z̄(x, t ) = α(x, η−, t ).

We use Eq. (14) to write Eq. (10) as

Qmgm(x, t ) = κm

∫ ∞

−∞
dywm(x − y)f [z(y, t )],

≡ κmwm ⊗ f (z), (16)
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FIG. 1. Firing rate dynamics: Density plot showing the firing
rate f as a function of the complex Kuramoto order parameter
z = Rei� . Firing is highest near z = eiπ . This corresponds to highly
synchronous behavior where all of the phases of the neurons go
through π simultaneously.

where ⊗ represents a spatial convolution and f is the popula-
tion firing rate

f (z) = 1

π

{
1 +

[ ∞∑
l=1

(−1)lzl + cc

]}

= 1

π

1 − |z|2
|1 + z|2 , |z| < 1.

Note that Eq. (16) takes the form of a generalised neural
field equation, where the firing rate function f is a derived
quantity that depends on the within population synchrony.
Also noteworthy is the fact that this firing rate function is not a
sigmoid. It is a highly nonlinear function that depends on the
intrinsic population dynamics. The firing rate can be plotted
as a function of the Kuramoto order parameter (Fig. 1). As
expected, the firing rate is highest at z = eiπ (where a single
neuron fires as θ increases through π ).

The dynamics of z are obtained by evaluating Eq. (13) at
η− = η0 − i�, and taking the complex conjugate, which gives
∂z/∂t = F (z; η0,�) + ∑

m G(z, gm; vm
syn), where

F (z; η0,�) = −i
(z − 1)2

2
+ (z + 1)2

2
[iη0 − �], (17)

G(z, g; vsyn) = g

[
i

(z + 1)2

2
vsyn − (z2 − 1)

2

]
. (18)

As in Ref. [26], we interpret Eq. (17) as describing the
intrinsic population dynamics and Eq. (18) as the dynamics
generated by synaptic coupling.

In summary, we have the following evolution equations:

∂tz = F (z) +
∑
m

Gm(z, gm), (19)

(1 + τm∂t )
2gm = κmwm ⊗ f (z), (20)

where Gm(z, gm) ≡ G(z, gm; vm
syn) and we have omitted the

dependence on control parameters. The dynamical system
Eqs. (19) and (20) have therefore one complex (z) and
|m| real (gm) state variables. In what follows, we choose

normalized exponentially decaying synaptic kernels of the
form wm(x) = exp(−βm|x|)/(2/βm), with Fourier transform
ŵm(k) = 1/[1 + (k/βm)2]. The spatial scale is set by the
choice of 1/βm in the exponentially decaying kernels. We
shall choose � to be several times larger than maxm β−1

m .
As the Fourier transform is a rational function, the evolution
Eqs. (19) and (20) are equivalent to the PDEs [34]:

∂tz = F (z) +
∑
m

Gm(z, gm), (21)(
1 − ∂xx/β

2
m

)
(1 + τm∂t )

2gm = κmf (z). (22)

In what follows, we will show that the model can support
Turing patterns, traveling waves, and other complex global
spatiotemporal patterns, for m = {1, 2} and traveling fronts
for m = 1. In the former case, this is achieved by choosing
β1 > β2 such that w1 has a shorter spatial scale than w2. For
v1

syn > 0 and v2
syn < 0 this has the overall effect of short-range

excitation and long-range inhibition, and for v1
syn < 0 and

v2
syn > 0 inhibition dominates at short distances and excitation

at longer distances.

III. INSTABILITY OF THE HOMOGENEOUS STEADY
STATE

We require excitation and inhibition to generate Turing
patterns, hence we let m = {1, 2} in this section. We will
also assume β1 = 1 (without loss of generality) and define
β = β2 < 1 as the parameter which measures the difference
in the spatial scales of w1 and w2. We first recast the system
Eqs. (21) and (22) as a first-order evolution equation in the
state variables u = (a, b,K1, g1,K2, g2), where a = Re(z),
b = Im(z), and Km = (1 + τm∂/∂t )gm, and seek stationary
and spatially homogeneous states u(x, t ) = u∗ for all x

and t .
We apply a small perturbation of the form u(x, t ) = u∗ +

ũ(x, t ), where ũ(x, t ) = Aeλteikx , λ ∈ C, k ∈ R, and A ∈ C6.
Using the identity

wm(x) ⊗ eikx = ŵm(k)eikx,

we obtain, to leading order, ∂t ũ(x, t ) = J (k )̃u(x, t ), where
J is the following 6 × 6 (k-dependent) Jacobian,

J (k) =
( J11 J12

J21(k) J22

)∣∣∣∣
u∗

,

written as a block matrix. We highlight the k-dependence as
follows:

J21(k) =

⎛⎜⎜⎜⎝
τ−1

1 κ1ŵ1(k)∂af τ−1
1 κ1ŵ1(k)∂bf

0 0

τ−1
2 κ2ŵ2(k)∂af τ−1

2 κ2ŵ2(k)∂bf

0 0

⎞⎟⎟⎟⎠,

and we show the other block elements in Appendix A.
The complex eigenvalues λ = ν + iω satisfy the character-

istic equation

E (λ, k) = det |J (k) − λI6| = 0, (23)

where I6 is the 6 × 6 identity matrix. A homogeneous steady
state u∗ is linearly stable to perturbations eikx if ν(k) < 0 for
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FIG. 2. Instabilities of the homogeneous steady state. (a) Two-parameter bifurcation diagram of Hopf and Turing instabilities of the
homogeneous steady state in the (vsyn, η0) plane, where vsyn = v1

syn = −v2
syn. The Hopf (green), Turing (red), and Turing-Hopf (blue) curves

partition the plane into five sectors. The Hopf and Turing curves cross at a codimension-2 point (red circle) where both instabilities occur
simultaneously. The homogeneous steady state u∗ is stable in I. (b) u∗ is unstable to global periodic oscillations in II, and direct numerical
simulations close to the instability show a stationary Turing pattern. We plot R(x, t ) = |z(x, t )| obtained via direct numerical simulation of
Eqs. (21) and (22), for m = {1, 2} with exponentially decaying kernels (top panel). The eigenvalues of the spatially clamped system at the
bifurcation point are shown in the bottom panel. (c) u∗ is Turing unstable in III; hence, we observe stationary periodic patterns. The spectrum
of the linearized operator around u∗ at bifurcation is also shown (bottom panel). (d) u∗ is Turing-Hopf unstable in IV, and the instability
(bottom panel) gives rise to a periodic wave train, as expected. (e) spatiotemporal pattern obtained in V, where u∗ is Turing and Turing-Hopf
unstable. The spectrum in the bottom panel is at the codimension-2 point, marked in (a) with a red circle. Parameters: � = 0.5, κ1 = κ2 = 5,
τ1 = τ2 = 0.2.

all k. By the implicit function theorem, a branch of solutions
λ(k) to Eq. (23) touches the imaginary axis when

∂kM∂ωN − ∂ωM∂kN = 0, (24)

where M = Re(E ) and N = Im(E ).
We observe a Hopf bifurcation of the spatially uniform

state u∗ if Eq. (23) holds for ν(0) = 0 and k = 0, i.e., if there
is a nonzero solution of

ω6 + p4ω
4 + p2ω

2 + p0 = 0, (25)

p5ω
4 + p3ω

2 + p1 = 0. (26)

Here, pi are scalars which depend on u∗ and the control pa-
rameters of the problem (see Appendix B). Solving Eqs. (25)
and (26), for fixed width of the Lorentzian �, synaptic cou-
pling strengths κ1, κ2, synaptic time constants τ1, τ2, and
relative width of the synaptic kernel β−1, gives the locus
of Hopf bifurcations as a function of the synaptic reversal
potential vsyn and background drive η0 [Fig. 2(a), green
curve]. We fix the synaptic reversal potentials to be equal
and opposite, and define vsyn = v1

syn = −v2
syn. For simplicity,

we set κ1 = κ2 and τ1 = τ2. For this choice of parameters,
excitation dominates for short-range interactions for vsyn >

0 and inhibition dominates for short-range interactions for
vsyn < 0. Note, also, that the Hopf bifurcation occurs for the
same value of η0 for all vsyn. This is a consequence of the
choice of equal coupling strengths and time constants. If this
balance is disrupted, the Hopf bifurcation will depend upon

vsyn and for some parameter choices we see several Hopf
curves in the (vsyn, η0) plane.

The homogeneous steady state u∗ undergoes a static Turing
bifurcation if there exists a nonzero critical wave number kc

such that Eqs. (23) and (24) hold for ν(kc ) = 0, ω(kc ) = 0.
This leads to the conditions

p0 + q1
0 ŵ1 + q2

0 ŵ1 = 0, (27)[
q1

0
dŵ1

dkc

+ q2
0
dŵ2

dkc

](
p1 + q1

1 ŵ1 + q2
1 ŵ2

) = 0, (28)

where ŵi and its derivative depend on kc and β, and the scalars
pi , q

j

i depend on u∗ and the control parameters of the problem
(see Appendix B).

As with the Hopf bifurcation, the locus of Turing bifur-
cations can be plotted as a function of the synaptic reversal
potential vsyn and background drive η0 (Fig. 2, red curve).
The curve exhibits a turning point, therefore the system has
two Turing bifurcations for sufficiently large values of vsyn.
If we fix vsyn at a value in this region, and ascend the bifur-
cation diagram by increasing η0, the spectrum λ(k) touches
the imaginary axis of the (ν, ω) plane with wave number
kc (lower Turing bifurcation) [Fig. 2(c)] and continues to
move to the right, implying that u∗ is unstable to a range
of perturbations with wave numbers k ∈ (k1, k2). As η0 is
further increased, the spectrum returns to the left-hand plane
(upper Turing bifurcation), which restores the stability of
u∗. Note the value of kc is not necessarily the same on the
upper and lower branches. The scenario described above is
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robust to perturbations in other parameters: we found that
changes in τ1, τ1 and � do not significantly affect the lo-
cation of the Turing bifurcations. Increasing κ2 results in an
increase of the gap between the two critical values of η0,
and hence a larger window of instability, while increasing
κ1 decreases this gap and at a certain point the shape is
inverted, such that the unstable region lies predominantly
in the η0 < 0 region of the plot. As κ1 corresponds to the
synaptic strength for the excitatory current for vsyn > 0, when
it becomes significantly larger than κ2 excitation dominates
even for long-range interactions. As patterns arise from the
interplay of excitation and inhibition, an inhibitory external
drive (η0 < 0) is needed to observe Turing patterns in this
regime.

A Turing-Hopf instability of the homogeneous steady state
occurs if there exists a nonzero wave number kc such that
Eqs. (23) and (24) hold with ν(kc ) = 0 and ω(kc ) = ±ωc �= 0.
This instability, which we will also refer to as dynamic Turing
bifurcation, elicits wave trains with wave number kc and phase
velocity ωc/kc (near bifurcation).

From Eqs. (23) and (24) we obtain a system of the form

ω6 + p4ω
4 + P2ω

2 + P0 = 0, (29)

p5ω
4 + P3ω

2 + P1 = 0, (30)[
Q1

2
dŵ1

dk
+ Q2

2
dŵ2

dk

]
(−6ω5 + 4p4ω

3 − 2P2ω)

−
[
Q1

3
dŵ1

dk
+ Q2

3
dŵ2

dk

]
(5p5ω

4 − 3P3ω
2 + P1) = 0, (31)

where Pi = pi + q1
i ŵ1(k) + q2

i ŵ1(k), Qj

i = q
j

i ωi + q
j

i−2ω
i−2,

and pi , q
j

i are scalars which depend on the control parameters
(see Appendix B). In passing, we note that the characteristic
equation now has an imaginary part, resulting in the two
conditions, Eqs. (29) and (30). Solving Eqs. (29)–(31) allows
us to plot the locus of the Turing-Hopf bifurcations in the
(vsyn, η0) plane (Fig. 2, blue curve), together with the Hopf
and Turing bifurcation curves. Note that the Turing-Hopf
curve intersects with the Hopf curve at vsyn ≈ 8. The value of
kc deceases along the Turing-Hopf curve as vsyn is increased,
such that at the point where the two curves collide kc = 0 on
the Turing-Hopf curve.

The curves in Fig. 2(a) were computed using XPPAUT
[35], by continuing a suitable algebraic problem in one of
the parameters of the system (vsyn). The equations defining
an equilibrium are solved simultaneously with Eqs. (25) and
(26), (27) and (28), or (29)–(31) and continued in parameter
space. The curves partition the (vsyn, η0) space into five sec-
tors (labelled I–V). In addition to sectors where u∗ is stable
(I), u∗ is unstable to bulk oscillations (II), Turing instabilities
(III), and Turing-Hopf instabilities (IV), a fifth sector (V) is
generated by the crossing of the Turing and Hopf curves.
At the intersection (codimension-2) point, the spectrum of
the linearized operator around u∗ has one zero eigenvalue
and two complex conjugate eigenvalues, where the critical
wave number kc is nonzero for the zero eigenvalue and equal
to zero for the complex conjugate pair [Fig. 2(e)]. Direct
numerical simulations close to the instability confirm the

predictions of the linear stability analysis: bulk oscillations
are observed in in Sec. I [Fig. 2(b)] stationary Turing patterns
are observed in sector III [Fig. 2(c)] and both wave trains and
standing waves are seen in region IV [Fig. 2(d)]. In sector V,
the simultaneous Turing and Hopf unstable modes compete,
resulting in a characteristic complex spatiotemporal pattern,
where temporal oscillations develop within each bump of a
Turing pattern [Fig. 2(e)]. The existence of the intersection
point of the Turing and Hopf curves and the observation
of the exotic spatiotemporal patterns are robust to changes
in parameters. In passing we note that, close to onset, we
could find only large amplitude patterns of the type shown
in Figs. 2(c)–2(e), indicating that the Turing and Turing-Hopf
bifurcations are subcritical (as confirmed below by numerical
continuation). Interestingly, we also observe dynamic Turing
patterns in region II, implying that the Hopf bifurcation does
not stabilize the system, instead it creates bistability in this
region, where the system supports both bulk oscillations and
dynamic global patterns.

We also found other complex spatiotemporal patterns away
from bifurcation onset, using direct numerical simulation
(Fig. 3). The system supports time-periodic patterns con-
taining structures within bumps [Fig. 3(a)]. This pattern is
observed as we move away from the Turing bifurcation but
stay close to the Hopf curve. Structures of this type, in which
the bumps of a Turing pattern are periodically modulated in
time, were observed initially in sector IV of Fig. 2(a). Spa-
tiotemporal patterns of this form, with modulation at the core,
were found only in parameter sets where the Turing and Hopf
codimension-2 point is present, as expected. Structures within
bump solutions are not seen in standard neural field models.
They are however commonly observed in spiking neuron
models [36,37], which emphasises that this next generation
neural mass model retains information about the underlying
spiking model.

In region IV, we also observe an number of interesting
patterns, such as the wandering bump [Fig. 3(b)] and a form
of standing wave, where both the width and the height of
the bumps is periodically modulated [Fig. 3(c)]. Numerical
simulations indicate that the wandering bump is stable for a
large area of parameter space and can coexist with a periodic
wave train. The standing wave, however, persists for a long
time but ultimately is unstable and transitions to a periodic
traveling wave (not shown).

IV. NUMERICAL BIFURCATION ANALYSIS

To study patterns away from bifurcations, we employ
numerical bifurcation techniques, which allows us to compute
coherent structures, determine their stability, and track their
dependence on control parameters. Here, we employ the
numerical tool kit developed by Avitabile [38] and employed
in the context of standard neural fields in Refs. [39,40].
This tool kit can be used to compute waves and patterns
and their stability. We refer the reader to recent reviews
on numerical bifurcation analysis for coherent structures
[41,42]. First, we rescaled space such that x ∈ [−0.5, 0.5],
to highlight the dependence on the scale of the domain
size �. The equivalent PDE formulation Eqs. (21) and (22)
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FIG. 3. Further spatiotemporal patterns supported by the neural field model. (a) Pattern found in sector V of Fig. 2(a), for η0 = 60,
v1

syn = −v2
syn = 10. The pattern displays a time-periodic structure within each bump of a Turing pattern. (b) Wandering bump observed in

region IV of Fig. 2, for η0 = 2.5, v1
syn = −v2

syn = −20. Similar patterns are also found in sector II (not shown). (c) Weakly unstable standing
wave obtained for η0 = 15, vsyn = −10. After undergoing a breathing instability for a long transient, the standing wave evolves toward a stable
wave train (not shown). Other parameter values as described in the caption of Fig. 2.

becomes

∂tz = [F (z) + G(z, I )],

(�2 − ∂xx )(1 + τ1∂t )
2g1 = �2κ1f (z),

(�2 − ∂xx/β
2)(1 + τ2∂t )

2g2 = �2κ2f (z). (32)

We perform numerical bifurcation analysis for heteroge-
neous spatially patterned steady states and periodic traveling
waves of the system above. We construct the stationary pat-
terns by solving for (z, g1, g2) the boundary value problem

F (z) + G1(z, g1) + +G2(z, g2) = 0,

(�2 − ∂xx )g1 − �2κ1f (z) = 0,

(�2 − ∂xx/β
2)g2 − �2κ2f (z) = 0, (33)

with Neumann boundary conditions. Wave trains are solutions
to Eq. (32) are found by defining ξ = x − ct for c ∈ R, and
setting z(x, t ) = Z(ξ ), g1(x, t ) = G1(ξ ), g2(x, t ) = G2(ξ ),
where Z(ξ ), G1(ξ ) and G2(ξ ) are �-periodic. To compute
wave trains, we solve for (Z,G1,G2, c) the boundary value
problem

c∂ξ z + �(F (Z) + G1(Z,G1) + G2(Z,G2)) = 0,

(�2 − ∂ξξ )(1 − cτ∂ξ )2G1 − �2κf (Z) = 0,

(�2 − ∂ξξ /β
2)(1 − cτ∂ξ )2G2 − �2κf (Z) = 0,

ψ (Z,G1,G2) = 0, (34)

posed on ξ ∈ [−1/2, 1/2] with periodic boundary condi-
tions. The last equation in Eqs. (34) is a standard phase
condition [43],

ψ (Z,G1,G2) =
∫ 1/2

−1/2
dξ

d

dξ
Z̃(ξ )[Z(ξ ) − Z̃(ξ )]

+
∫ 1/2

−1/2
dξ

d

dξ
G̃1(ξ )[G(ξ ) − G̃1(ξ )]

+
∫ 1/2

−1/2
dξ

d

dξ
G̃2(ξ )[G(ξ ) − G̃2(ξ )],

(35)

where (Z̃, G̃1, G̃2) is a reference template solution, such
as one of the solutions obtained via direct simulation. We
discretized the differential operators Eqs. (34) using standard
differentiation matrices, which are also used to compute linear
stability of the coherent structures [38].

A. Turing patterns

We first analyze the stationary patterns seen in Sec. III,
using numerical continuation to verify the analytical results,
determine the criticality of the Turing bifurcation, and ex-
amine the behavior of these solutions away from the onset
of the instability. We continued solutions to the boundary
value problem Eq. (33) in the parameter η0 with � = 12π ,
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FIG. 4. Continuation of spatially periodic patterns. A bifurcation
diagram in η0 of two stationary patterned states, with different wave
numbers. Each branch of patterned states is connected to the branch
of homogeneous states via a subcritical Turing bifurcations and
reconnect to the steady state within the region of instability. Only
the rightmost and left most Turing points correspond to a change
in stability of the system. The homogeneous steady state undergoes
a Hopf bifurcation at η0 = 3.298 as expected from the instability
analysis in Sec. III. More interestingly, we also see Hopf bifurcations
along the branch of periodic solutions. Solid (dashed) lines represent
stable (unstable) solutions. Parameter values: vsyn = 15, � = 12π ;
other parameters as described in the caption of Fig. 2(a).

vsyn = 15, and all other parameters as described in the cap-
tion of Fig. 2(a). This corresponds to making a vertical
excursion through the two-parameter bifurcation diagram
Fig. 2(a). Solving Eqs. (27) and (28) we found two Tur-
ing bifurcations at η0 = −0.648, kc = 0.738 and η0 = 12.67,
kc = 0.969. Hence, we numerically continued patterns states
with k = 0.738 (blue) and k = 0.969 (red) (Fig. 4). As ex-
pected, the homogeneous steady state bifurcates to patterns
at η0 = −0.648 (blue) and η0 = 12.67 (red), corresponding
to the Turing bifurcations found in Sec. III. The stability of
the patterned states, as well as the homogeneous state, was
numerically calculated along the continuation branch. Along
with the Turing bifurcations, the homogeneous steady state
undergoes a Hopf bifurcation at η0 = 3.298, which matches
the value found analytically. The patterned Turing solutions
were found to go unstable to a globally oscillating periodic
pattern, through a Hopf bifurcation at η0 = 2.8380 (blue) and
η0 = 5.8546 (red). The patterned solutions are also unstable
(through a symmetry breaking bifurcation) to broader patterns
at low values of η0. As anticipated, the bifurcations from
the homogeneous steady state are subcritical, hence we have
bistability between a spatial pattern and the homogeneous
state and the bistability region occurs in a wide region of
parameter space. Further numerical continuation results (not
shown) indicate that the region of bi-stability increases as the
reversal potential vsyn is increased. As vsyn decreases toward 0,
the static Turing bifurcation points collide, and the patterned
states cease to exist, as predicted from the Turing analysis in
Sec. III. We found the scenario presented above to be robust
to changes in the other parameters.

B. Wave trains

We now shift our focus to wave train solutions originating
at a Turing-Hopf bifurcation of the homogeneous steady state.
We recall that we find these states as solutions to Eq. (34) with
periodic boundary conditions, hence � corresponds to the
spatial period of the wave train profile. In addition, the phase
velocity c of a wave train is accessible from the boundary-
value problem solution.

As in Sec. IV A, the spatial frequency kc at bifurcation was
found by solving Eqs. (29)–(31), and we continued patterns
with this wave number by setting � = 2π/kc, where kc =
0.739 [Figs. 5(a) and 5(b), green curve). We also continued
spatial patterns with k = 2kc (red curve) and k = kc/2 (blue
curve), this was achieved by posing the system on domains
� = π/kc and � = 4π/kc, respectively. The wave trains
bifurcate from the homogeneous steady state with a nonzero
phase velocity, at different values of η0 [Fig. 5(b)]. The value
for which periodic waves emerge for � = 2π/kc corresponds
to the Turing-Hopf bifurcation (green dot) found in Sec. III,
and the speed is equal to ωc/kc. The wave trains are unstable
for low values of η0. For the smaller domain size they are
unstable to the stable steady state, whereas for the larger
domain size they transition to finer patterns, with a smaller
spatial wavelength k.

To fully explore the relationship between the wave speed
and the spatial period, we fix the value of η0 = 0 and use
� as a continuation parameter. This opens up the possibility
to trace branches of solutions in the (c,�) plane, and hence,
approximate the dispersion curve of the waves [Fig. 5(c)]. We
found that wave trains occur in isolas, and therefore only exist
for a finite range of spatial periods. For 5.2 < � < 13.1, a
fast (stable) wave train coexist with slower (unstable) one.
Whereas, when 3.2 < � < 5.2 and 13.1 < � < 28.0 the two
waves are unstable. For all other values of � we do not see
wave train solutions. If η0 is increased, the dispersion curve
is no longer an isola, but rather a monotonically increasing
function. Thus, in this regime, the system supports periodic
traveling waves for all values of the spatial period, above a
threshold value.

C. Fronts

Standard neural field models are known to support trav-
eling fronts (for exponentially decaying kernels), which are
travelling waves whose profile connects a uniform high-
activity state to another low-activity state [44,45]. It is there-
fore natural to search for these coherent structures in our
new neural field model Eqs. (19) and (20). As in any other
nonlocal neural field, the existence of the high- and low-
activity states depends on the choice of the synaptic kernel.
As inhibition is not necessary for the generation of localized
patterns, such as traveling fronts, in this section we consider
only a single synaptic conductance, m = 1 and suppress the
m label, leading to the equivalent PDE formulation

∂tz = F (z) + G(z, g),(
1 − ∂2

x

)
(1 + τ∂t )

2g = κf (z), (36)

which we pose on ξ ∈ R. We now set z(x, t ) = Z(x − ct ),
g(x, t ) = G(x − ct ), and we seek traveling fronts as bounded
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FIG. 5. Numerical bifurcation analysis of wave trains. (a) Bifurcation diagram of wave trains in the parameter η0, for various values of the
domain size, where kc = 0.739. Here we show only the maximum of the synaptic conductance g1 as our solution measure. The green solution
bifurcates off the steady state solution (gray) at a Turing-Hopf bifurcation, and the other solutions go unstable at slightly larger values of η0.
(b) The branches in (a) are plotted using the phase velocity c as solution measure. The diagrams in (a) and (b) confirm that the Turing-Hopf
bifurcation is subcritical. At the critical points, the wave train emerges with a nonzero phase velocity (ωc/kc). (c) Branches of wave trains in
the continuation parameter �, for η0 = 0. This curve is effectively a dispersion relation, showing the wave speed as function of the spatial
period. In this region of parameter space the branch is an isola, therefore the wave train exists only for a finite range of periods. Parameter
values: vsyn = −30; other parameters as described in the caption of Fig. 2.

solutions U (ξ ) = [U1(ξ ), . . . , U6(ξ )] to the boundary-value problem

∂ξU = N (U ), ξ ∈ R, lim
ξ→±∞

U (ξ ) = U∓, (37)

where N : R6 → R6 is the real-valued nonlinear function

N (U ) =

⎛⎜⎜⎜⎜⎜⎜⎝
− Re[F (U1 + iU2) + G(U1 + iU2, U3)]/c

− Im[F (U1 + iU2) + G(U1 + iU2, U3)]/c
(U3 − U4)/(τc)

U5

U6

U5 + [U6 + κf (U1 + iU2) − U4]/(τc)

⎞⎟⎟⎟⎟⎟⎟⎠.

In this spatial-dynamical system formulation of the problem,
the first three components of U have a direct interpretation in
terms of the state variables (z, g) of Eq. (36),

U1 = A ≡ Re Z, U2 = B ≡ Im Z, U3 = G,

whereas U4, U5, and U6 are auxiliary variables, necessary
to cast the problem as a system of first-order differential
equations in ξ . The equilibria U± = (U±

1 , U±
2 , U±

3 , U±
3 , 0, 0)

of the spatial-dynamical system Eq. (37) correspond to high-
and low-activity homogeneous steady states of Eq. (36) and
are completely determined by solving for (U1, U2, U3) the
algebraic problem

Re[F (U1 + iU2) + G(U1 + iU2, U3)] = 0,

Im[F (U1 + iU2) + G(U1 + iU2, U3)] = 0,

κf (U1 + iU2) − U3 = 0. (38)

We define U+ as the high activity state, which displays
high synaptic conductance and U− as the low activity state,
displaying lower synaptic conductance. Note that we also seek
the symmetric counterpart solution where limξ→±∞ U (ξ ) =

U±. We have continued solutions to Eq. (38) in η0 and vsyn

using XPPAUT [35] [Fig. 6(a)]. The system has three fixed
points in the region enclosed by the saddle-node curves, two
of which are stable (U±). Therefore, we look for traveling
waves in this shaded region of parameter space. We note that,
as τ is decreased, a Hopf bifurcation of the U− state arises,
opening up the possibility of creating heteroclinic connec-
tions to periodic orbits, which we will not consider further
here.

The state at ξ → −∞ (ξ → ∞) displays a high-
conductance (low-conductance) G, hence a high (low) firing,
and it is therefore referred to as the high (low) activity
state [Fig. 6(b)]. We computed traveling waves using the
routines from Ref. [38], which allows us to study the spectral
stability of the waves. Computations are performed on a
large truncated domain � = 60, and plotted on [−10, 10] for
convenience. Interestingly, we see ripples in the wake of the
front, which indicates that the solution connects a node to a
focus. The solution in the phase space (A,B,G) illustrates
that the high-activity state (U−) is a focus, and the low activity
one (U+) a node.
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FIG. 6. Numerical continuation results for traveling fronts. (a) Two-parameter bifurcation diagram of stationary homogeneous states of
Eq. (36) [equilibria of Eq. (37)] in the (η0, vsyn) plane. We plot the locus of saddle-node bifurcations of the steady state, colliding at a cusp
bifurcation. To the left of the cusp we identify a low-activity state, U−, and a high-activity one, U+, which coexist and are stable in the shaded
area. Parameter values: � = 0.5, κ = 5, τ = 1. (b) Travelling front profile, computed by solving Eq. (37) on a truncated domain [−30, 30],
for η0 = −3, vsyn = 4. We show the profiles in the synaptic conductance variable G(ξ ) and the synchrony variable R(ξ ) = |Z(ξ )|. (c) The
traveling front in (b) is a heteroclinic orbit connecting the equilibria U+ and U− of the spatial-dynamical system Eq. (37). We show a projection
of the (approximate) heteroclinic orbit in the (A, B, G) space. (d) Numerical continuation of the traveling front U (ξ ) found in (b) (blue) and
its symmetric counter U (−ξ ) (red), using η0 as continuation parameter and c as solution measure. The fronts live on an isolated branch and
destabilise at saddle-node bifurcations. The bifurcation curve is symmetric, with respect to the axis c = 0. Solutions with c > 0 and c < 0 are
related via the transformation U (ξ ) �→ U (−ξ ).

We continued the traveling wave shown in Fig. 6(b) (blue),
and its symmetric counterpart (red), in the mean background
drive η0, using c as a solution measure [Fig. 6(d)]. Fronts
live on an isolated branch and destabilise at saddle-node bi-
furcations. The bifurcation diagram is symmetric with respect
to the axis c = 0, as solutions on the branch with c > 0 and
c < 0 are related via the transformation U (ξ ) �→ U (−ξ ). Up
to six coexisting waves exist in a wide region of η0 parameter
space, albeit only two of them are stable. In addition, we found
stable waves in which the high activity state U+ is moving
across the tissue, invading the low activity state U−, and vice
versa. The inversion of velocity occurs where the blue and red
stable branches overlap.

As the isola of traveling fronts is traced, these solutions
gain or lose oscillations in the wake of the wave. To investigate
further this aspect, we monitor the spectrum of U± [as equi-
libria of the spatial-dynamical system Eq. (37)] as we move
along the branch. Taking a vertical excursion in Fig. 6(d), we
find three independent solutions, one of which is stable and
two of which are unstable. We examine the stability of the
fixed points U± in the traveling wave frame for each of these
solutions. As expected, oscillations in the wake of the wave
are absent where the unstable spectrum of U− is purely real
[Fig. 7(a)], and they develop when a complex-conjugate pair
of eigenvalues crosses the imaginary axis [Fig. 7(b)]. We also
find that the amplitude of the oscillations is small when the
real part of the complex eigenpair is small [Fig. 7(c)].

V. DISCUSSION

We have presented the derivation of an atypical neural field
model from a network of spatially distributed θ -neurons. In
the reduced model, which we dub a next generation neural
field model, within population synchrony drives the popu-
lation firing rate. This model supports a range of patterns,
such as bumps, waves and breathers. Noteworthy is the state
characterized by structures within bumps, as these states are
not seen in standard neural mass models. These structures

instead typify patterns seen in networks of spiking neurons
[36,37], which signifies that by maintaining the notion of
within population synchrony this neural field model can retain
information about the underlying spiking network. Exotic
states, with within-bump oscillations, were found in the region
where the Hopf and Turing bifurcations collided.

A Turing instability analysis provided us with an under-
standing of how the system behaved close to bifurcation
points, allowing us to determine when the system transitioned
from the homogeneous steady state. However, unlike the
Amari model we cannot use the Heaviside approximation to
make further analytical progress since the firing rate is now
a fixed real valued function of the Kuramoto order parameter.
As such, we have moved to numerical continuation techniques
to analyze the behavior of the system away from these bifurca-
tion points. Numerical techniques were also used to examine
the existence and stability of travelling fronts.

Previous work [25] illustrated that the point version of this
model could support β-rebound, an event-related modulation
of the β rhythm, as seen in MEG. This work showed that an
external time-dependent drive desynchronized the population
and when switched off the population synchrony peaked be-
fore returning back to its steady-state level. These changes in
population synchrony resulted in modulation of the β rhythm,
similar to modulations observed in neuroimaging data. An
interesting extension of this work would be to include a
similar spatially dependent drive in the neural field model
presented here and examine how the inclusion of space affects
β-band modulations, and perhaps explain why β rebound is
seen in both hemispheres during movement of a single side of
the body. More generally, the model parameters can be altered
so that the population oscillates at other frequencies, and
hence, used to explain other event-related desynchronization
and synchronization phenomena in the brain.

In Sec. IV, we pointed to the existence of a front which
connects periodic orbits to nodes and focuses, for the model
with an exponential coupling kernel. We observed such fronts
by decreasing the synaptic time constant τ (Fig. 8). The
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FIG. 7. Spectrum of the high- and low-activity homogeneous states connected by selected traveling wave profiles, in Fig. 6. (a) c =
−0.8769, (b) c = 0.3594, (c) c = 0.9470. Parameter values: η0 = −3, vsyn = 4, � = 0.5, κ = 5, τ = 1.

numerical machinery used here does not allow for the con-
tinuation of these solutions, known as defects. The analysis
of defects is still an open problem. Close examination of
Fig. 8 reveals that there are two fronts in the connection
between the node and the limit cycle, which appear to be
moving at different speeds. Even more interesting, would be
the analysis of fronts which connect two periodic orbits of
different amplitudes. The spreading of such a wave across
the cortex could be viewed as the spreading of an epileptic
seizure. Another numerical challenge would be to continue
the exotic patterned states seen in Sec. III when the Turing and
Hopf bifurcations collide. These patterns have both a spatial

FIG. 8. Travelling wave connecting a periodic orbit to a node:
Surface plots showing the evolution of (a) the synaptic conductance
g and (b) the synchrony R for a front which connects an oscillatory
state to a fixed point state. Simulations for the system defined by
Eq. (36), with η0 = −5, vsyn = 10, � = 0.5, κ = 5, τ = 0.2

and a temporal period, which would require extending the
numerical machineries [38] to continue both a spatial and a
temporal pattern. This has been achieved in Ref. [46] for the
Brusselator model.

A natural extension to the work presented in Secs. III
and IV would be to include a second spatial dimension. It is
more natural to view the cortex as a two dimensional sheet and
examine the propagation of waves across it. We would expect
that the 2D system supports the two dimensional versions of
the patterned states presented here, but also potentially some
more exotic states. Extending both the Turing analysis and the
numerical machinery to include a second spatial extension is
worthy of further exploration.
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APPENDIX A: JACOBIAN

To calculate the Jacobian we first write the system Eqs. (19)
and (20) in full six-dimensional form,

∂a

∂t
= b(a − 1) − b(a + 1)

(
η0 + v1

syng1 + v2
syng2

)
− (a + 1)� − 1

2
(a2 − b2 − 1)(� + g1 + g2),
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∂b

∂t
= −1

2
[(a − 1)2 − b2] − b� − ab(� + g1 + g2)

+ 1

2
[(a + 1)2 − b2]

(
η0 + v1

syng1 + v2
syng2

)
,

∂g1

∂t
= 1

τ1
(−g1 + K1),

∂K1

∂t
= 1

τ1
[−K1 + κ1wm ⊗ f (a + ib)],

∂g2

∂t
= 1

τ2
(−g2 + K2),

∂K2

∂t
= 1

τ2
[−K2 + κ2wm ⊗ f (a + ib)].

The Jacobian of the system can be written as follows:

J (k) =
( J11 J12

J21(k) J22

)
,

where

J11 =
(

∂
∂a

∂a
∂t

∂
∂b

∂a
∂t

∂
∂a

∂b
∂t

∂
∂b

∂b
∂t

)
,

J12 =
(

0 ∂
∂g1

∂a
∂t

0 ∂
∂g2

∂a
∂t

0 ∂
∂g1

∂b
∂t

0 ∂
∂g2

∂b
∂t

)
,

J21(k) =

⎛⎜⎜⎜⎝
τ−1

1 κ1ŵ1
∂f

∂a
τ−1

1 κ1ŵ1
∂f

∂b

0 0

τ−1
2 κ2ŵ2

∂f

∂a
τ−1

2 κ2ŵ2
∂f

∂b

0 0

⎞⎟⎟⎟⎠,

J22 =

⎛⎜⎜⎜⎝
−τ−1

1 0 0 0

τ−1
1 −τ−1

1 0 0

0 0 −τ−1
2 0

0 0 τ−1
2 −τ−1

2

⎞⎟⎟⎟⎠.

The variables, a, b, g1, and g2 are evaluated at the steady state
and hence depend upon the control parameters, ŵi depend on
k and β and f is given by Eq. (17).

The derivatives are computed as follows:

∂

∂a

(
∂a

∂t

)
= ∂

∂b

(
∂b

∂t

)
= b − (a + 1)� − b

(
η0 + v1

syng1 + v2
syng2

)
− a(g1 + g2),

∂

∂b

(
∂a

∂t

)
= − ∂

∂a

(
∂b

∂t

)
= (a − 1) − (a + 1)

(
η0 + v1

syng1 + v2
syng2

)
+ b(� + g1 + g2),

∂

∂gi

(
∂a

∂t

)
= b(a + 1)vi

syn − (a2 − b2 − 1),

∂

∂gi

(
∂b

∂t

)
= 1

2
[(a + 1)2 − b2]vi

syn − ab,

∂f

∂a
= − 2

π

(a + 1)2 − b2

[(a + 1)2 − b2]2
,

∂f

∂b
= − 4

π

b(a + 1)

[(a + 1)2 − b2]2
.

APPENDIX B: TURING COEFFICIENTS

The coefficients of the characteristic Eq. (23) in Sec. III are
calculated as follows:

p0 = [A2 + B2]/(τ1τ2)2,

p1 = 2[(τ1 + τ2)(A2 + B2) − A]/(τ1τ2)2,

p2 = [(
τ 2

1 + τ 2
2 + 4τ1τ2

)
(A2 + B2) + 1

− 4(τ1 + τ2)A
]
/(τ1τ2)2,

p3 = 2
[(

τ1τ
2
2 + τ 2

1 τ2
)
(A2 + B2) + (τ1 + τ2 − 4A)

− (τ 2
1 + τ 2

2 )A
]
/(τ1τ2)2,

p4 = τ−2
1 + τ−2

2 + A2 + B2 + 4(1 − (τ1 + τ2)A)/(τ1τ2),

p5 = 2
(
τ−1

1 + τ−1
2 − A

)
,

qi
0 = κiCi/(τiτj )2,

qi
1 = [κif (a, b) + 2τjκiCi]/(τiτj )2,

qi
2 = [2κif (a, b) + τjκiCi]/

(
τ 2
i τj

)
,

q1
3 = κif (a, b)/τ 2

i ,

where i, j ∈ {1, 2} and

A ≡ ∂

∂a

(
∂a

∂t

)
= ∂

∂b

(
∂b

∂t

)
B ≡ ∂

∂b

(
∂a

∂t

)
= − ∂

∂a

(
∂b

∂t

)
Ci = −Af (a, b) + B

π

[
vi

syn − 2b

(1 + a)2 + b2

]
.
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