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The robustness in real-world complex systems with dependency connectivities differs from that in isolated
networks. Although most complex network research has focused on interdependent undirected systems, many
real-world networks—such as gene regulatory networks and traffic networks—are directed. We thus develop
an analytical framework for examining the robustness of networks made up of directed networks of differing
topologies. We use it to predict the phase transitions that occur during node failures and to generate the phase
diagrams of a number of different systems, including treelike and random regular (RR) networks of directed
Erdős-Rényi (ER) networks and scale-free networks. We find that the the phase transition and phase diagram
of networks of directed networks differ from those of networks of undirected networks. For example, the RR
networks of directed ER networks show a hybrid phase transition that does not occur in networks of undirected
ER networks. In addition, system robustness is affected by network topology in networks of directed networks.
As coupling strength q increases, treelike networks of directed ER networks change from a second-order phase
transition to a first-order phase transition, and RR networks of directed ER networks change from a second-order
phase transition to a hybrid phase transition, then to a first-order phase transition, and finally to a region of
collapse. We also find that heterogenous network systems are more robust than homogeneous network systems.
We note that there are multiple phase transitions and triple points in the phase diagram of RR networks of directed
networks and this helps us understand how to increase network robustness when designing interdependent
infrastructure systems.
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I. INTRODUCTION

Complex networks have been widely used to model inter-
connected systems in fields ranging from the power grid [1,2]
to the Internet [3–6], to social and biological systems [7–10].
In these complex networks, node or link failures can occur.
The ability of networks to retain their connectivity under link
or node failures is called network robustness [11–16]. The
robustness of a complex network can be determined either by
the integral size of the giant component during the attacking
process or by the percolation threshold [17–21]. The percola-
tion threshold pc is the minimal fraction of remaining nodes or
links needed to maintain network connectivity and is usually
predicted using percolation theory from statistical physics [3].
Most studies on the robustness of complex networks have
focused on single or isolated networks [6].

Critical infrastructures in the real world interact with
each other and form a network of interdependent networks
[13,16,19,22–33]. In interdependent networks, the failure of a
node in one network causes the failure of dependent nodes in
other networks, which, in turn, can cause further damage to
the first network, leading to cascading failures and possible
catastrophic consequences. For example, the breakdown of
an interdependent communication network and a power grid
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caused the electrical blackout that affected much of Italy on
28 September 2003 [34]. To study complex network inter-
dependence, Buldyrev et al. [13] developed a fundamental
framework of two fully interdependent networks that can be
theoretically analyzed using a generating function formalism
[35] and discovered a first-order discontinuous phase tran-
sition that differs dramatically from the second-order con-
tinuous phase transition found in isolated networks [36,37].
Pashani et al. [23] studied a more realistic model of two
partially interdependent networks and found a change from a
first-order phase transition to a second-order phase transition
when the coupling strength between the networks decreases.
In addition, a systematic series of mathematical frameworks
has been proposed to analyze the robustness of networks of
more than two interdependent networks [15,19,38–42].

All of these studies focus on undirected networks, but
many real-world networks are directed, including metabolic
networks and gene regulatory networks in biological systems
[9,43], transportation networks, and power grids in infrastruc-
ture systems [44,45], and citation networks and trust networks
in social systems [46,47]. Recently Azimi-Tafreshi et al. [48]
studied giant components in directed multiplex networks and
found that a giant strongly connected component (GSCC)
is more vulnerable that a giant weakly connected compo-
nent. Although we have developed a theoretical framework
for analyzing the robustness of two interdependent directed
networks with arbitrary degree distributions and have applied

2470-0045/2019/99(1)/012312(10) 012312-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.012312&domain=pdf&date_stamp=2019-01-07
https://doi.org/10.1103/PhysRevE.99.012312


LIU, PAN, STANLEY, AND GAO PHYSICAL REVIEW E 99, 012312 (2019)

it to real international trade networks [49], we still do not
have a framework for studying the robustness in networks of
directed networks of more than two interdependent networks.

We here build a model of networks of directed networks
(NODNs) and develop a general theoretical framework for
analyzing NODNs with different topologies. We use it to
calculate the percolation thresholds—pI

c for first-order phase
transitions and pII

c for second-order phase transitions—that
characterize system robustness and analyze the systemic
phase diagrams divided by the critical coupling strengths, qc2

that separates the second and hybrid phases, qc1 that separates
the hybrid and first phases, and qmax that separates the first
and collapsed regions. The following findings will enable
us to understand system robustness and design more robust
infrastructures.

(i) The phase transitions in NODNs differ from those
in networks of undirected networks. For example, random
regular (RR) networks of directed Erdős-Rényi (ER) networks
show a hybrid phase transition not present in networks of
undirected ER networks.

(ii) System robustness in networks of directed networks
is affected by network topology. The treelike structure of
directed networks changes from a second-order phase tran-
sition to a first-order phase transition as coupling strength
q increases. RR networks of directed networks exhibit a
second-order phase transition when the coupling strength is
q < qc2, a hybrid phase transition when qc2 < q < qc1, a first-
order phase transition when qc1 < q < qmax, and a complete
collapse when q > qmax.

(iii) In RR networks of directed scale-free (SF) networks,
systems of heterogeneous networks are more robust than
systems of homogenous networks.

(iv) We find triple points in the phase diagrams of both
RR networks of ER and SF networks, which indicate ways
of pushing the interdependent system into a safe region to
prevent system collapse.

II. MODEL

Our NODN model is a network of n interdependent di-
rected networks in which each node i (i = 1, 2, . . . , n) is
a network containing Ni nodes connected by directed con-
nectivity links, and each link indicates a fully or partially
dependent pair of networks. A NODN may have a treelike
structure with no loops [see Figs. 1(a)–1(c)] or a random reg-
ular structure with loops [see Figs. 1(d) and 1(e)]. Networks
i and j are connected by a dependency link when there is a
qij > 0 fraction of nodes in network i that depends on nodes
in network j or a qji > 0 fraction of nodes in network j

that depends on nodes in network i [see Fig. 1(f)]. Nodes in
one network stop functioning when nodes on which they are
dependent in a second network stop functioning. In addition,
the nodes from two networks are coupled under the “no-
feedback” condition [19]. A node in one network can depend
on only one node in a second network. Thus when node a

in network i depends on node b in network j and node b

in network j depends on node c in network i, then a = c.
We assume that a node remains functional if it has not been
removed and belongs to the GSCC. This assumption can cause
cascading failures between networks. Nodes in network i

FIG. 1. Schematic of NODNs. (a)–(c) are treelike NODNs with-
out loops. (d) and (e) are random regular NODNs with loops. (f)
A partially dependent pair of two directed networks: network 3
and network 5 are coupled by directed dependency links (dotted
green lines) with a no-feedback condition [19]. A dotted directed
line from node i in one network to node j in the other network
indicates that a failure of node i will cause node j to fail. There
is a fraction q35 = 5/11 of nodes in network 3 that depend on the
nodes of network 5, and the q53 = 6/12 fraction of nodes in network
5 depends on the nodes of network 3.

fail when they do not belong to the GSCC, and these failed
nodes cause dependent nodes in other networks to also fail.
This may divide the networks into components and cause
more failures of nodes not in the GSCC, which can cause
further failures back in the nodes in network i. This process
continues iteratively until failures are no longer possible, and
the surviving nodes in all networks form a final GSCC in the
NODN.

III. ANALYTIC FRAMEWORK OF THE DYNAMIC
PROCESS OF CASCADING FAILURES

The Ni nodes of network i are connected following a
joint degree distribution Pi (kin, kout ), where kin and kout are
the in degree and out degree of a given node, respectively.
Each network i can be characterized by a generating function
[50,51],

�i (x, y) =
∞∑

kin,kout

P (kin, kout )x
kinykout , (1)

where x and y are arbitrary complex variables. The generating
functions for the branching processes [50,51] are

�i1(x, 1) = ∂y�i (x, y)|y=1

∂y�i (1, 1)
, �i1(1, y) = ∂x�i (x, y)|x=1

∂x�i (1, 1)
.

(2)

To compute the size of the GSCC in network i, we define a
generating function [49],

�
(s)
i (x, y) = �i (x, 1) + �i (1, y) − �i (x, y). (3)
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When a fraction 1 − p of nodes is randomly removed from
network i, the relative size of the GSCC in the remaining
network [50] is

gi (p) = 1 − �
(s)
i [pxc(p) + 1 − p, pyc(p) + 1 − p], (4)

where xc(p) and yc(p), respectively, satisfy

xc(p) = �i1[pxc(p) + 1 − p, 1],

yc(p) = �i1[1, pyc(p) + 1 − p]. (5)

To compute the size of the final GSCC we analyze the the
cascading failure dynamics step by step. At t = 1 we ran-
domly remove a fraction 1 − pi of nodes from each network
i after which the remaining fraction of nodes of each network
i is ψ ′

i,1 ≡ pi and the remaining functional part is ψi,1 =
ψ ′

i,1gi (ψ ′
i,1). Since the dependency links between networks

follow the no-feedback condition, the damage spreading from
network i to network j at step t − 1 does not spread back
from network j to network i at step t . We define rij,t as the
fraction of remaining nodes in network i after the damage
from all networks connected to i, denoted Ni , except network
j (j ∈ Ni ) at time step t . At time step t = 1 each network i

receives damage from initial failures 1 − pi but no damage
from other networks. Thus rij,1 = pi for j ∈ Ni . At time
step t > 1 each network i receives damage from all of its
neighboring networks. The damage from a neighbor network
j (j ∈ Ni ) to network i is qji[1 − rji,t−1gj (ψ ′

j,t−1)]. Thus the
fraction of the remaining nodes in network i at step t is

ψ ′
i,t = pi

∏
j∈Ni

{1 − qji[1 − rji,t−1gj (ψ ′
j,t−1)]}, (6)

and according to the definition of rij,t , it satisfies

rij,t = ψ ′
i,t

1 − qji[1 − rji,t−1gj (ψ ′
j,t−1)]

. (7)

At time step t , the fraction of the remaining functional part of
network i is ψi,t = ψ ′

i,t gi (ψ ′
i,t ).

At the end of the cascading failure process the system is
in a stationary state, and no more failures occur. If the system
reaches a stationary state at step τ , then the fraction of the
remaining nodes is ψ ′

i,τ = ψ ′
i,τ+1 for each network i. Thus the

stationary state of the system satisfies the n equations,

ψ ′
i,τ = pi

∏
j∈Ni

{1 − qji[1 − rji,τ gj (ψ ′
j,τ )]}, (8)

where i = 1, 2, . . . , n and

rij,τ = ψ ′
i,τ

1 − qji[1 − rji,τ gj (ψ ′
j,τ )]

. (9)

For each network i, the relative size of the final GSCC in the
full complex network is

p
(s)
∞,i = ψ ′

i,τ gi (ψ
′
i,τ ). (10)

Note that, if n = 2, then r12,τ = p1, r21,τ = p2, and
the n equations [Eq. (8)] can be simplified into two
equations: ψ ′

1,τ = p1[p2q21g2(ψ ′
2,τ ) − q21 + 1] and ψ ′

2,τ =
p2[p1q12g1(ψ ′

1,τ ) − q12 + 1], which is in accord with the
result of two interdependent directed networks [49]. We

next calculate the stationary states of NODNs with differing
topologies: treelike NODNs and random regular NODNs.

IV. TREELIKE NETWORKS OF INTERDEPENDENT
DIRECTED NETWORKS

Generally speaking, all NODNs with a topology with-
out loops are treelike. For example, interdependent network
systems with linelike [Fig. 1(a)], starlike [Fig. 1(b)], and
treelike [Fig. 1(c)] structures are all treelike NODNs. We
examine a simplification that can be solved analytically: A
treelike NODN in which each pair of connected networks is
fully interdependent, i.e., qij = 1 for i = 1, 2, . . . , n and j =
1, 2, . . . , n. We simplify Eq. (9) to rji,τ = ψ ′

j,τ /rij,τ gi (ψ ′
i,τ ).

Similarly rij,τ = ψ ′
i,τ /rji,τ gj (ψ ′

j,τ ). These two equations

yield ψ ′
i,τ gi (ψ ′

i,τ ) = ψ ′
j,τ gj (ψ ′

j,τ ) = p
(s)
∞ , where p

(s)
∞ is the

size of the final GSCC, which is the same for every network
in the treelike NODN.

Because the nodes of each pair of fully interdependent
networks are connected following the no-feedback condition,
every node of one network can reach one node of any other
network via a path consisting of dependency links, and there
is no crossing between the dependency paths. When a node
in one network fails, all the nodes on its dependency link path
also fail. Thus initial attacks on the fraction of nodes 1 − pi in
each network i are equivalent to initial attacks on a fraction of
nodes 1 − ∏n

i=1 pi in one network. In addition, by calculating
the values of rij,τ one by one, we get the size of the final
GSCC,

p(s)
∞ =

n∏
i=1

pigi (ψ
′
i,τ ), (11)

where gi (ψ ′
i,τ ) = 1 − �

(s)
i (pxi + 1 − p, pyi + 1 − p). Here

we show the calculating process by using three networks (1–3)
with two connecting bi-directional dependency links: 1 ↔ 2
and 2 ↔ 3. According to Eq. (8), the fractions of the final
remaining nodes in these three networks are

ψ ′
1,τ = p1r21,τ g2(ψ ′

2,τ ), ψ ′
2,τ = p2r12,τ g1(ψ ′

1,τ )r32,τ g3

(ψ ′
3,τ ), and ψ ′

3,τ = p3r23,τ g2(ψ ′
2,τ ), respectively. We compute

the value of r21,τ = p2r32,τ g3(ψ ′
3,τ ) and get r32,τ = p3

according to Eq. (9). Thus the size of the final GSCC is
p

(s)
∞ = ψ ′

1,τ g1(ψ ′
1,τ ) = ∏3

i=1 pigi (ψ ′
i,τ ).

For simplification, we introduce two new variables,

zi in = ψ ′
i,τ xi + 1 − ψ ′

i,τ , zi out = ψ ′
i,τ yi + 1 − ψ ′

i,τ . (12)

Substituting Eq. (12) in Eq. (5), we get

ψ ′
i,τ = 1 − zi in

1 − �i1(zi in, 1)
= 1 − zi out

1 − �i1(1, zi out )
. (13)

Using Eq. (13) and p
(s)
∞ = ψ ′

i,τ gi (ψ ′
i,τ ) we obtain

p(s)
∞ = (1 − zi in )

[
1 − �

(s)
i (zi in, zi out )

]
1 − �i1(zi in, 1)

. (14)

When n coupled networks follow the same degree distribu-
tion, �(s)

i = �(s) and �
(s)
i1 = �

(s)
1 for i = 1, 2, . . . , n. Without

loss of generality, we set pi = p for i = 1, 2, . . . , n. We
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simplify Eqs. (14) and (11) to be

p(s)
∞ = (1 − zin )[1 − �(s)(zin, zout )]

1 − �1(zin, 1)
, (15)

where zin and zout satisfy

1

pn
= [1 − �(s)(zin, zout )]n−1[1 − �1(zin, 1)]

1 − zin

= [1 − �(s)(zin, zout )]n−1[1 − �1(1, zout )]

1 − zout
. (16)

We denote a function R(zin, zout ) ≡ 1
p

. The behavior of the
final GSCC size when the fraction of the remaining nodes
p after the initial failures varies from 0 to 1 can be solved
numerically using the function R(zin, zout ). When n > 2, the
critical point pI

c where the size of the final GSCC jumps to
zero as p decreasing is

pI
c = n

√
1 − zc

out[
1 − �(s)

(
zc

in, z
c
out

)][
1 − �1

(
1, zc

out

)] , (17)

where zc
in and zc

out satisfy

∂zinR
(
zc

in, z
c
out

) = 0,

∂zout R
(
zc

in, z
c
out

) = 0. (18)

We next show the results when applying this analytic frame-
work to treelike networks of directed ER, RR, and SF net-
works.

A. Treelike network of n directed ER networks

We construct a treelike network composed of n directed ER
networks in which each network i follows a Poisson degree
distribution with average degree 〈ki〉 with the generating
function,

�i (x, y) = e(〈ki 〉/2)(x+y−2). (19)

Since the in degree and out degrees of each ER network
node are independent, �i (x, y) is equivalent to �i (x, x). The
generating functions for computing the size of the GSCC of a
single ER network are

�
(s)
i (x) = 2e(〈ki 〉/2)(x−1) − e〈ki 〉(x−1),

�
(s)
i1 (x) = e(〈ki 〉/2)(x−1). (20)

Substituting the generating functions of ER networks Eq. (20)
into Eq. (11), the size of the final GSCC in the interdependent
directed ER networks after removing a fraction of nodes 1 −
pi from each network i is

p(s)
∞ =

n∏
i=1

pi (1 − e(〈ki 〉/2)(zi−1))2, (21)

where zi satisfies

1 − zi

1 − e(〈ki 〉/2)(zi−1))
= pi

n∏
j=1, j 	=i

pj (1 − e(〈kj 〉/2)(zj −1))2. (22)

When the average degree of all the n networks is the same,
i.e., ki = k, the size of the final GSCC can be reduced to

p(s)
∞ = (1 − z)(1 − e(〈k〉/2)(z−1)), (23)
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FIG. 2. The percolation behaviors of treelike networks of (a) ER
networks (〈k〉 = 10), (b) RR networks (k = 10), and (c) SF networks
(λ = 2.5). For a single network (n = 1), the size of the final GSCC
continuously decreases to zero when the fraction of remaining nodes
p decreases. When the system composes more than two networks
(n � 2), the size of the final GSCC discontinuously jumps to zero
at a critical point pI

c. The symbols represent simulation results (each
network layer contains N = 106 nodes), the solid lines are theoretic
results, and they agree well with each other.

where z is determined by

R(z) ≡ 1

p
= n

√
(1 − e(〈k〉/2)(z−1))2n−1

(1 − z)
. (24)
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FIG. 3. The final GSCC sizes of the treelike networks of (a) the
ER networks with different average degrees, (b) the RR networks
with different degrees, and (c) the SF networks (λ = 2.5) with
different minimum in degrees and out degrees. The system contains
n = 4 networks. The theoretic results (solid lines) agree well with the
simulation results (symbols). When the fraction of remaining nodes
p changes, these systems all show first order phase transitions.
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FIG. 4. The critical point pI
c of treelike networks of n (a) ER

networks with different average degrees 〈k〉, (b) RR networks with
different degrees k, and (c) SF networks with different degree
distribution exponents λ. The results of the ER networks and the
RR network are computed by Eqs. (28) and (34), respectively. The
results of the SF networks are computed by substituting Eq. (37)
with Eq. (17). They are in good agreement with simulations. As more
networks are added in, the critical point pI

c increase, indicating the
more vulnerable the system is.

Figures 2(a) and 3(a) show that the analytic solutions of
Eq. (23) agree with the simulation results. When n = 1, the
final GSCC size shows a continuous second order phase
transition, which is the same as in single directed networks
[50]. When n � 2, the system shows a discontinuous first
order phase transition at a percolation threshold pI

c. We next
calculate the percolation threshold pI

c in treelike networks of
ER networks.

For simplicity, we define φ∞ = 1 − z, then Eq. (23) can be
rewritten

p(s)
∞ = [1 − e−(〈k〉/2)φ∞ ](2n−1)/n

φ
1/n
∞

. (25)

According to Eq. (24) and because at the critical point R′(z) =
0, the final GSCC size satisfies

e−(〈k〉/2)φc
∞ = 1

(2n − 1) 〈k〉
2 φc∞ + 1

. (26)

When w = −〈k〉
2 φc

∞ − 1
2n−1 , Eq. (26) can be simplified

−1

2n − 1
e−1/(2n−1) = wew. (27)

The percolation threshold pI
c in Eq. (17) can be simplified to

be

pI
c = n

√
−w

〈k〉
2 {1 + 1/[(2n − 1)w]}2n−2

. (28)

Figure 4(a) shows the percolation threshold pI
c as a function

of the number of networks n. The percolation threshold pI
c

increases as n increases, indicating that the greater the number
of networks in the system, the more vulnerable the system.

FIG. 5. The minimum average degree 〈k〉min in treelike networks
of n ER networks. The treelike networks of the ER networks with
〈k〉 < 〈k〉min completely collapse even when no node is removed
(p = 1).

In treelike networks of ER networks there is a minimum
average degree 〈k〉min such that when 〈k〉 < 〈k〉min the system
collapses even if no node is removed (p = 1). The minimum
average degree is determined by the condition pI

c = 1, i.e.,

〈k〉min = −2w

{1 + 1/[(2n − 1)w]}2n−2
. (29)

Figure 5 shows that in isolated ER networks (n = 1) there
is a GSCC when the average degree 〈k〉 � 〈k〉min = 2 that
confirms the result in Ref. [50]. In interdependent networks
(n = 2) we solve Eqs. (27) and (29) and obtain 〈k〉min =
6.1783, which is the same as the result in Ref. [49]. When
n → ∞,

〈k〉min = 2 ln(2n − 1) + 2O[ln(2n − 1)]. (30)

B. Treelike network of n directed RR networks and SF networks

We next apply the analytic framework to treelike networks
of directed RR networks [38] and SF networks [52]. In a RR
network, the in degree and out degree of each node are the
same, and the degree of all nodes is the same. The generating
functions for computing the GSCC of a RR network with
degree k are

�(s)(x) = 2xk/2 − xk,

�
(s)
1 (x) = xk/2. (31)

In a network of n RR networks with the same degree k, we
obtain the final GSCC of the system after cascading failure by
substituting Eq. (31) into Eq. (15),

p(s)
∞ = (1 − z)(1 − zk/2), (32)

where z satisfies

R(z) ≡ 1

p
= n

√
(1 − zk/2)2n−1

1 − z
. (33)

Figures 2(b) and 3(b) show the final GSCC size of a network
of n interdependent RR networks. The theoretical results
(solid lines) of Eq. (32) agree with the simulation results
(symbols). When the fraction of remaining nodes after initial
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failure p varies from one to zero, the size of the final GSCC
discontinuously jumps to zero at a critical value of pI

c, which
is determined by

pI
c = n

√
1 − zc(

1 − z
k/2
c

)2n−1 , (34)

where zc satisfies

R′(zc ) = 1 − z
k/2
c − (2n − 1) k

2z
(k/2)−1
c (1 − zc )

n

× n

√(
1 − z

k/2
c

)n−1

(1 − zc )n+1
= 0. (35)

Figure 4(b) shows the critical value of pI
c as a function of

network size n. As in ER networks, when n increases, pI
c

increases, indicating that the greater the number of networks,
the more vulnerable the system.

For a directed SF network with no correlation between
the in degree and out degree of a given node, the generating
function of the degree distribution is

�(x, y) =
∑Min

min

[
(kin + 1)1−λin − k

1−λin
in

]
xkin[

(Min + 1)1−λin − m
1−λin
in

]
×

∑Mout
mout

[
(kout + 1)1−λout − k

1−λout
out

]
ykout[

(Mout + 1)1−λout − m
1−λout
out

] , (36)

where min and Min are the minimum and maximum in degrees,
respectively, mout and Mout are the minimum and maximum
out degrees of the SF network, respectively, and λin and λout

are the power-law exponents of the in-degree distribution and
out-degree distribution, respectively. The generating function
for computing the GSCC of a SF network is

�(s)(x) = 2
∑M

m [(k + 1)1−λ − k1−λ]xk

[(M + 1)1−λ − m1−λ]2

−
{∑M

m [(k + 1)1−λ − k1−λ]xk
}2

[(M + 1)1−λ − m1−λ]2
,

�1(x, 1) = �1(1, x)

=
∑M

m [(k + 1)1−λ − k1−λ]xk

(M + 1)1−λ − m1−λ
. (37)

By substituting Eq. (37) into Eq. (14) we numerically cal-
culate the final GSCC sizes of the treelike networks of SF
networks. Figures 2(c) and 3(c) show that the analytic results
agree with the simulation results. Figures 4(b) and 4(c) show
the percolation thresholds of the RR and SF network systems,
which again indicates that systems become more vulnerable
when they encompass a greater number of networks.

V. RANDOM REGULAR NETWORK OF
INTERDEPENDENT DIRECTED NETWORKS

We here apply the analytic framework to RR networks
of n interdependent networks that display loops. In a RR
network of networks, each network node depends on the same
l of other networks. Figure 1(d) shows when each network
depends on two neighboring networks. Figure 1(e) shows
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FIG. 6. Percolation behavior of the RR networks of (a) the ER
networks (〈k〉 = 15) and (b) the SF network (λ = 2.5) with different
coupling strengths q and l = 3. For both RR networks of the ER
networks and RR networks of the SF networks, systems show second
order, hybrid, and first order phase transitions with different coupling
strengths q. The solid lines represent theoretic results, and they
are in perfect agreement with the simulation results (symbols). In
simulations, each layer network contains 106 nodes, and each data
point is averaged over 30 realizations.

when each network depends on three neighboring networks.
For simplicity and without loss of generality, we assume that
the coupling strengths between each pair of networks are
the same, qij = q, and we remove a fraction of nodes 1 − p

from each network. We here assume that all the networks in
the system follow the same degree distribution and the same
generating function gi (ψ ′

τ ) = g(ψ ′
τ ) and that there are no cor-

relations between the in-degree and out-degree distributions.
Because of the symmetry among all networks, the sizes of the
final GSCCs of all the networks is the same, i.e., ψ ′

i,τ = ψ ′
τ

and rij,τ = rτ . We simplify the equations of the final GSCC
size, Eqs. (8) and (9), to

ψ ′
τ = p[qrτ g(ψ ′

τ ) − q + 1]l ,

rτ = p[qrτ g(ψ ′
τ ) − q + 1]l−1. (38)

When the in-degree and out-degree distributions are inde-
pendent, Eq. (4) can be written as gi (p) = 1 − �

(s)
i [px(p) +

1 − p, px(p) + 1 − p], and Eq. (5) can be simplified to be
x(p) = �i1[px(p) + 1 − p, 1]. We substitute z = px(p) +
1 − p into Eq. (10), and the size of the final GSCC becomes

p(s)
∞ = (1 − z)[1 − �(s)(z, z)]

1 − �1(z, 1)
, (39)

where z satisfies

R(z, q ) ≡ 1

p
= 1 − �1(z, 1)

1 − z

[1 − q+
√

(1 − q )2+4qp∞]l

2l
.

(40)

For any parameters q and p, and using the generating function
of the degree distribution of each network layer, we obtain
the value of z by solving Eq. (40). We then substitute z into
Eq. (39) to get the size of the final GSCC. Figure 6 shows that
the theoretical solution of the final GSCC in the RR network
of the ER networks and the RR network of the SF networks
both agree with the simulation results.

Under different coupling strengths q, the RR network of
the ER networks and the RR network of the SF networks
exhibit different phase transitions. For example, when q = 0.4
for the ER networks and q = 0.2 for the SF networks, the
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FIG. 7. The final GSCC size of the RR networks of (a) ER
networks with 〈k〉 = 15 and q = 0.45, and (b) SF networks with
λ = 2.5 and q = 0.32. When the degree of every network of the RR
network equals one, the system contains a single network and shows
a second order phase transition. As l increases, the system becomes
more vulnerable. The solid lines represent theoretic results, and
they are in perfect agreement with the simulation results (symbols,
N = 106 and averaged over 30 realizations).

size of the final GSCC continuously decreases to zero at a
percolation threshold of pII

c as p decreases, showing a second
order phase transition [Fig. 6, purple circle]. When q = 0.5
for the ER networks and q = 0.4 for the SF networks, the
size of the final GSCC jumps to zero at another percolation
threshold of pI

c as p decreases, showing a first order phase
transition [Fig. 6, red triangle]. When q = 0.45 for the ER
networks and q = 0.32 for the SF networks, the size of the
final GSCC first jumps to a very small nonzero value at pI

c and
then continuously decreases to zero at pII

c , showing a hybrid
phase transition [Fig. 6, green square]. In addition, the phase
transitions are different in the RR networks of networks with
different degrees l (see Fig. 7). The system becomes more
vulnerable as l increases.

The percolation thresholds pI
c and pII

c are the physically
meaningful extrema of R(z, q ) as a function of z, which can
be either computed by dR(z, q )/dz = 0 or determined by
limz→1 R(z, q ).

(i) When the system exhibits a second order phase tran-
sition, R(z, q ) is a monotonically increasing function of z

[Fig. 8, cyan solid line], and the maximum value of R(z, q )
is obtained when z → 1, which corresponds to the reciprocal
of percolation threshold of pII

c . In addition, for the hybrid
phase [Fig. 8, red dashed line], R(z, q ) is a nonmonotonic
increasing function of z, but the maximum value of R(z, q )
is also obtained when z → 1, corresponding to the reciprocal
of percolation threshold of pII

c . Thus the percolation threshold
of pII

c becomes

pII
c = 1

limz→1 R(z, q )
= 1

�′
1(1, 1)(1 − q )l

. (41)

(ii) When the system displays a hybrid or a first order
phase transition, R(z, q ) as a function of z has a peak at
zc [Fig. 8, blue dashed-dotted line], where zc is a root
of F (zc, q ) = 0, and F (z, q ) = ∂zR(z, q ). The percolation
threshold of pI

c is

pI
c = 1

R(zc, q )
. (42)

We next calculate the critical coupling strengths qc1, qc2,
and qmax.
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q = 0.488
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FIG. 8. The solution of R(z, q ) as a function of z in the RR
networks of the ER networks with different coupling strengths q,
where 〈k〉 = 15 and each network node has three neighbors. When
q < qc2 = 0.4348, R(z, q ) is a nondecreasing function of z, and
when z → 1, R(z, q ) reaches its maximum value as the cyan solid
line shows. When qc2 < q < qc1 = 0.4826, R(z, q ) shows a peak in
the region z ∈ (0, 1) (red triangle), but the maximum value continues
to be limz→1R(z, q ) as the red dashed line shows. When qc1 <

q < qmax = 0.5136, R(z, q ) shows a peak (blue triangle), and the
peak value is also its maximum value as the blue dashed-dotted
line shows. When q � qmax, R(z, q ) � 1 for all the z ∈ [0, 1] as the
black dot line shows. The magenta solid line shows the reference
line of R(z, q ) = 1. The cyan circle and the red circle represent
the percolation threshold of pII

c = 1/limz→1R(z, q ), and the red
triangle and blue triangle represent another percolation threshold
pI

c = 1/R(zc ), where zc is the critical point where the peak appears.

(i) The critical coupling strength qc2 separates the sec-
ond order and hybrid phase transitions. The cyan solid line
in Fig. 8 indicates that R(z, q ) monotonically increases as
z increases in the region of a second order phase transi-
tion, i.e., F (z, q ) � 0 for any z ∈ [0, 1]. In the region of
a hybrid phase transition, R(z, q ) has a peak at zc, i.e.,
F (zc, q ) = 0, as shown in Fig. 8. Thus at the critical coupling
strength qc2, the function F (z, q ) = 0 has only one solution
z = zvc, which can be guaranteed only when F (zvc, qc2) =
∂zF (z, q )|z=zvc, q=qc2 = 0. Thus the critical point qc2 is

F (zvc, qc2) = 0,

∂zF (z, q )|z=zvc, q=qc2 = 0. (43)

(ii) The critical coupling strength qc1 separates the hybrid
and first order phase transitions. Figure 8 shows a peak at
z = zf c, which is the smaller root of F (zf c, q ) = 0 in both
the first order and the hybrid phase transitions, but the two
differ because, in the region of a first order phase transition,
R(zf c, q ) is the maximum value of the function R(z, q ) for
z ∈ [0, 1], whereas, in the region of a hybrid phase transition,
R(s)(zf c, q ) < limz→1 R(z, q ). Thus at the critical coupling
strength qc1, the system satisfies

R(s)(zf c, qc1) = lim
z→1

R(s)(z, qc1).

F (zf c, qc1) = 0. (44)

(iii) Another critical point qmax appears, above which (q >

qmax) the system collapses when even a single node is removed
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FIG. 9. The percolation thresholds of the RR networks of (a) ER
networks with different 〈k〉’s and (b) SF networks with different λ’s.
As the coupling strength q increases, the system where each network
node has three neighbors shows different phase transitions: (a) The
RR networks of the ER networks with small average degrees, such
as 〈k〉 = 6, show second order phase transitions until qmax is reached
where the system suffers from collapse; when the average degree
is larger, such as 〈k〉 = 8, the system shows a second order phase
transition then changes into a hybrid phase transition and collapse
when qmax is reached; for even greater average degrees, such as
〈k〉 = 12, the system displays a second order phase transition through
a hybrid and then changes into a first order phase transition. (b) For
the RR networks of the SF networks with small degree exponents,
such as λ = 2.2, the system shows a second order then a hybrid
phase transition and collapse at last. For larger degree exponents,
systems undergo a second order through a hybrid to a first order
phase transition. The dashed-dotted lines represent the percolation
threshold pII

c , and the solid lines are another percolation threshold of
pI

c. These two thresholds both appear under the same q, meaning the
system shows a hybrid phase transition.

from each network. In the collapsed regions, the function
R(s)(zmc, qmax) < 1 for z ∈ [0, 1] as with q = 0.52 in Fig. 8.
The critical point qmax separates the first order phase transition
and the collapsed regions determined by

R(s)(zmc, qmax) = 1,

F (zmc, qmax) = 0. (45)

Figure 8 shows that function R(z, q ) equals 1 when z = 0
because the failure of even a single node collapses the system.
Thus the critical coupling strength qmax is

F (z, qmax)|z→0 = 0. (46)

We next calculate the sizes of the final GSCC p
(s)
∞ , the

percolation thresholds of pI
c and pII

c , the critical coupling
strengths qc1 and qc2, and qmax in the RR networks of the ER
networks and the RR networks of the SF networks.

Substituting the generating functions for calculating the
size of a single ER network of Eq. (19) into Eqs. (39) and (40),
we obtain the size of the final GSCC of the interdependent
directed ER networks,

p(s)
∞ = (1 − z)(1 − e(〈k〉/2)(z−1)), (47)

where z satisfies

R(s)(z, q ) = 1

p
= (1 − e(〈k〉/2)(z−1))[1 − q +

√
(1 − q )2 + 4q(1 − z)(1 − e(〈k〉/2)(z−1))]l

2l (1 − z)
. (48)

Substituting Eq. (48) into Eqs. (41) and (42), we obtain the percolation thresholds of pI
c and pII

c of the RR network of the
ER networks. Figure 9(a) shows that the percolation threshold of pII

c (dashed-dotted line) increases as the coupling strength q

increases and disappears at the critical strength qc1 or qmax. Note that in ER networks with the same average degree 〈k〉 we have

pII
c = 2

〈k〉(1 − q )l
. (49)

The percolation threshold of pI
c (solid line) appears at critical strength qc2 and then increases as q increases. To calculate

percolation thresholds of pI
c and pII

c , critical coupling strengths qc1 and qc2 and qmax in the RR networks of the ER networks, we
determine the derivation function F (z, q ) of the function R(s)(z, q ),

F (z, q ) ≡ dR(s)(z, q )

dz

= e(〈k〉/2)(1−z) − 〈k〉
2 (1 − z) − 1

p(1 − z)(e(〈k〉/2)(1−z) − 1)
− 2ql

{
e(〈k〉/2)(z−1)

[ 〈k〉
2 (1 − z) − 1

] + 1
}

p(1 − q + a(s) )a(s)
, (50)

where a satisfies

a(s) =
√

(1 − q )2 + 4q(1 − z)(1 − e(〈k〉/2)(z−1)). (51)

By solving zc from F (zc, q ) = 0 for each coupling strength q we get another percolation threshold,

pI
c = 2l (1 − zc )

(1 − e(〈k〉/2)(zc−1))[1 − q +
√

(1 − q )2 + 4q(1 − zc )(1 − e(〈k〉/2)(zc−1))]l
. (52)

We obtain the critical coupling strengths qc1, qc2, and
qmax by substituting Eqs. (50) and (51) into Eqs. (43)–(45),

respectively. Figure 10(a) shows the phase diagram of the RR
network of the ER networks where each network depends on
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FIG. 10. Phase diagrams of the random regular networks of (a)
the ER networks and (b) the SF networks where each network node
has three neighbors. The green region labeled Phase II is the region of
the second order phase transition. The purple region labeled Hybrid
is the region of the hybrid phase transition. The blue region labeled
Phase I is the region of the first order phase transition. The orange
region labeled Collapse is the region where the system collapse even
without removing nodes. Triple points (red dots) appear in the phase
diagram.

three neighboring networks, the curve separates the region of
the second order phase transition (the green region labeled
“Phase II”), and the region of the hybrid phase transition
(the purple region labeled Hybrid) is the critical strength qc2

under different average degrees 〈k〉. The curve of the critical
strength qc1 separates the hybrid phase transition and the
first order phase transition (the blue region labeled “Phase
I”), and the critical strength qmax separates the first order
phase transition and the region of collapse (the orange region
labeled “Collapse”). These three critical strengths increase
as the average degree 〈k〉 increases, indicating that the more
dense the ER network, the more robust the system. A triple
point intersected by regions of Phase I, Hybrid, and Collapse
and another triple point intersected by regions of Phase II,
Hybrid, and Collapse appear in the phase diagram, which is
a quantitative index that enables us to design robust systems
far from the collapse region.

Computing the size of the final GSCC, the percolation
thresholds, and the critical coupling strengths in the RR
networks of the SF networks is similar to the procedure
for the RR networks of the ER networks. We substitute the
generating function Eq. (37) for calculating the size of a single
SF network into Eqs. (39) and (40) and obtain the size of
the final GSCC in interdependent directed ER networks and
the function R(s)(z, q ). Using the function R(s)(z, q ) and its
derivation, we calculate percolation thresholds of pI

c and pII
c

in Fig. 9(b) and the critical coupling strengths qc1, qc2, and
qmax in Fig. 10(b). Note that when using Eqs. (39) and (40)
to calculate the critical coupling strength qmax we rewrite the
function F (z, q ) to be

F (z, q ) = −�′
1(z, 1)R(z, q )

1 − �1(z, 1)
+ R(z, q )

1 − z

+ 2lR(z, q )

1 − q +
√

(1 − q )2 + 4qp
(s)
∞

× qp′
∞√

(1 − q )2 + 4qp
(s)
∞

. (53)

When q = qmax, p
(s)
∞ |z→0 = 1, and p

(s)
∞ |z→0 = −1. We solve

Eq. (46) and obtain

qmax = 1

l − 1
. (54)

Note that the qmax for the RR network of the directed SF
networks is the same as that for the RR network of the
undirected SF networks [53]. Figure 10(b) shows that for the
RR network of the SF networks with l = 3 where each SF
network depends on three neighboring networks, qmax = 0.5.
In the phase diagram of the RR network of the SF networks
there are triple points intersected by regions labeled Phase I,
Hybrid, and Collapse that help us understand the robustness
mechanisms and suggest ways of pushing the system into a
safe region. In addition, the other critical coupling strengths
qc1 and qc2 decrease as the degree distribution exponent λ

increases. Thus in the RR networks of the SF networks, the
more heterogenous (smaller λ) the networks, the more robust
the system.

VI. CONCLUSION

We have developed a general theoretical framework for
analyzing the robustness of networks of directed networks
with arbitrary degree distributions and have discovered that
the phase diagram of a network of directed networks differs
from that of a network of undirected networks. For example,
the RR network of a directed ER network shows a hybrid
phase transition that is absent in a network of undirected ER
networks. We also find that system robustness in directed
networks is affected by network topology. The treelike struc-
ture of directed networks changes from a second order phase
transition to a first order phase transition as coupling strength
q increases. An RR network of directed networks shows a
second order phase transition when the coupling strength q <

qc2, a hybrid phase transition when qc2 < q < qc1, a first order
phase transition when qc1 < q < qmax, and collapses when
q > qmax. We also find triple points in the phase diagram of
the RR network of both directed ER and directed SF networks.
These findings enable us to better understand system robust-
ness and to design more robust infrastructures.

The framework presented in our paper suggests some ques-
tions for further study. (i) How do in-degree and out-degree
correlations in a network and degree correlations between
networks influence system robustness? (ii) The NODN model
assumes that nodes in one network are randomly dependent on
nodes in other networks, but in real-world systems interdepen-
dent relations are not random. How do we study robustness in
real-world networks of networks? Answering these questions
will expand our understanding of robustness in interdependent
complex systems.
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