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Information transfer from causal history in complex system dynamics
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In a multivariate evolutionary system, the present state of a variable is a resultant outcome of all interacting
variables through the temporal history of the system. How can we quantify the information transfer from the
history of all variables to the outcome of a specific variable at a specific time? We develop information theoretic
metrics to quantify the information transfer from the entire history, called causal history. Further, we partition this
causal history into immediate causal history, as a function of lag τ from the recent time, to capture the influence of
recent dynamics, and the complementary distant causal history. Further, each of these influences are decomposed
into self- and cross-feedbacks. By employing a Markov property for directed acyclic time-series graph, we reduce
the dimensions of the proposed information-theoretic measure to facilitate an efficient estimation algorithm.
This approach further reveals an information aggregation property, that is, the information from historical
dynamics are accumulated at the preceding time directly influencing the present state of variable(s) of interest.
These formulations allow us to analyze complex inter-dependencies in unprecedented ways. We illustrate our
approach for: (1) characterizing memory dependency by analyzing a synthetic system with short memory;
(2) distinguishing from traditional methods such as lagged mutual information using the Lorenz chaotic model;
(3) comparing the memory dependencies of two long-memory processes with and without the strange attractor
using the Lorenz model and a linear Ornstein-Uhlenbeck process; and (4) illustrating how dynamics in a complex
system is sustained through the interactive contribution of self- and cross-dependencies in both immediate and
distant causal histories, using the Lorenz model and observed stream chemistry data known to exhibit 1/f long
memory.

DOI: 10.1103/PhysRevE.99.012306

I. INTRODUCTION

The dynamics of natural systems, such as ecosystems and
climate, arise as a result of spontaneous self-organization.
Their dynamical characteristics, such as existence of strange
attractors or 1/f long-memory dependencies, arise as a result
of feedback between all interacting variables. Information
theory offers compelling approaches for characterizing the
complex nonlinear interdependencies present in such systems
[1]. For example, a recent study has argued that the sponta-
neous formation of a self-organized structure is reflected as
decrease of joint entropy of the system as well as increase of
contemporaneous interdependencies among interacting com-
ponents [2]. However, most of the existing information-
theoretic approaches are anchored on characterizing either
bivariate information transfer using transfer entropy (TE) or
momentary information transfer (MIT) [3–7], or the interac-
tions among a specific set of variables by using methods based
on partial information decomposition [8–12], which becomes
difficult when more than three variables are involved. These
approaches provide important and insightful views associated
with specific interactions within a system, but they do not al-
low us to assess the entire range of information transfer among
all variables. For example, we may ask how the interactions
of several or all variables in a system determine the state of
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an individual variable at a specific time. Alternatively, we
may ask how a finite-time history of interactions results in
an observed outcome of a specific variable at a specific time.
To answer these questions, we require metrics that allow us to
characterize the full range of causal dependency in the system
(in the Granger sense [13]), which structures the transfer of
information that progressively influences a target variable.

Consider a system composed of N variables, �Xt =
{Xt, Yt , Zt , ...}N , varying in time. The current state of a vari-
able, say Zt ∈ �Xt , is a result of the evolutionary history of the
system �X−

t = { �Xt−1, �Xt−2, �Xt−3, ...}, which we call causal
history. We partition this history, based on a partitioning time
lag τ with respect to the present, into recent or immediate
causal history { �Xt−1, �Xt−2, ..., �Xt−τ } and the complementary
distant causal history { �Xt−τ−1, �Xt−τ−2, ...}. Generally, while
the information from the immediate causal history is expected
to be nondecreasing with τ , the degree and convergence of
information from the distant causal history informs the influ-
ence from the remaining historical dynamics beyond the lag τ .
Thus, quantification of the information transfer to a target
variable at time t , from both its immediate and distant causal
histories, would delineate the dependency of the variable on
the prior dynamics as well as the memory in the system,
which are keys for understanding various complex systems
[14–17]. Therefore, the objective of this study is to quantify
and characterize the influence of a immediate, distant, and/or
entire causal history on Zt by using an information-theoretic
framework.
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We use a directed acyclic time-series graph approach to
characterize the temporal dependencies of the system as well
as for simplifying the computation of the information transfer.
Specifically, we demonstrate the features of our approach in
terms of: (1) information aggregation property in the causal
history, achieved through simplification from Markovian as-
sumption in directed acyclic time-series graph; (2) discerning
system memory, and its advantage over traditional methods
such as lagged mutual information; (3) characterizing the
changing interaction information jointly provided by a target
variable’s self- and cross-dependencies, as a function τ , from
both immediate and distant causal histories; and (4) quanti-
fying the change in memory dependency in a system when
the influence of any particular variable is isolated from the
remaining variables.

This paper is organized as follows. In Sec. II, we pro-
vide the definitions and the properties of the information
transfer in both immediate and distant causal histories based
on directed acyclic time-series graph representation of the
system. In Sec. III, we implement this approach to delin-
eate the temporal dynamics of three different systems by
quantifying the information transfer from causal history. We
first identify the memory dependency of a trivariate logistic
model—a short-memory system—in Sec. III A. In Sec. III B,
we analyze the chaotic and long-memory Lorenz model for
comparing the proposed approach with lagged mutual infor-
mation in delineating the memory dependency of the system.
In Sec. IIIC, we investigate the information transfer in a linear
trivariate Ornstein-Uhlenbeck (OU) process, whose dynamics
also shows long-memory property but without the existence of
a stranger attractor. While the model-generated synthetic data
are used for analysis in the previous three examples, in the
fourth example in Sec. III D, we demonstrate an application
using observed stream chemistry time-series data, obtained in
the Upper Hafren catchment in Wales, United Kingdom [17].
Last, summary and conclusions are given in Sec. IV.

II. INFORMATION TRANSFER FROM CAUSAL HISTORY

We represent the temporal dependency in the multivariate
system �Xt as a time-series-directed acyclic graph [18,19], as
illustrated in Fig. 1, where each node represents a variable
at a specific time step t (e.g., Zt ) and the parents of a
target node or a set of nodes are denoted as P• (e.g., PZt

).
The directed edge linking two lagged nodes (e.g., Xt−τX

and Zt with τX > 0) in the graph indicates the direct in-
fluence from Xt−τX

to Zt . The causal influence, assumed
here in a Granger sense [13], from a lagged node Xt−τX

to a target Zt , can be either through a directed edge or
indirectly via a causal path CXt−τX

→Zt
, which is a set of nodes

connected by a sequence of directed edges from Xt−τX
to

Zt . That is, CXt−τX
→Zt

≡ {Vt−τV
: Vt ∈ �Xt, τV > 0, Xt−τX

→
· → Vt−τV

→ · → Zt−τZ
} ∪ {Xt−τX

}. We consider the causal
influence to a target node as arising only from a node earlier
in time, which results in a directed acyclic graph (DAG) of
time series. In this section, based on this DAG time-series
graph representation, we provide the mathematical definition
of causal history, its simplification for computation, the as-
sociated properties, and further analyses of causal history in
terms of self- and cross-dependencies.

FIG. 1. Illustration of the causal history �X−
t of a target node Zt .

(a) The partition of �X−
t into an immediate causal history, C �V ⇒Zt

(the dashed blue box), and the complementary distant causal his-
tory, �X−

t \C �V ⇒Zt
(the dashed red box). The parents of the target

Zt [Eq. (3)], PZt
, are identified by the cyan colored box. (b) The

aggregation of contemporaneous momentary information from each
set of contemporaneous nodes �Xt−i (the dashed hollow box) at an
early time step t − i in the causal history [Eq. (10)].

A. Definitions of causal history

The causal history of a target node Zt includes all the
nodes that influence Zt through causal paths in the graph,
and is represented by �X−

t = { �Xt−1, �Xt−2, ...}. Therefore, the
total information, T , to Zt given by the causal history, can be
expressed as the mutual information (MI) [20] between the
two, which is given by

T = I (Zt ; �X−
t ). (1)

Further, an immediate causal history of Zt is considered as
a finite-length causal history immediately preceding time t ,
�Xt−τ = {Xt−τ , Yt−τ , ...}N starting from all the contempora-
neous source nodes at lag τ . It is represented by a multitude
of causal paths, that is, C �Xt−τ ⇒Zt

= ∪Xt−τ ∈ �Xt−τ
CXt−τ →Zt

[the
blue dashed box in Fig. 1(a)]. To generalize the following
theory, we define the immediate causal history as a sub-
graph preceding Zt arising from a set of lagged sources
�V = {Xt−τX

, Yt−τY
, ...} to Zt , C �V ⇒Zt

= ∪Vt−τV
∈ �V CVt−τV

→Zt
.

Then, the complementary distant causal history can be nat-
urally expressed as the remaining part of the causal history,
�X−

t \C �V ⇒Zt
, where \ is the subtraction operator [the red

dashed box in Fig. 1(a)]. By using the chain rule of MI
[20], the total information T can be decomposed into the
information from (1) the immediate causal history, J , and (2)
the distant causal history, D, such that

T = I (Zt ; C �V ⇒Zt
, �X−

t \C �V ⇒Zt
)

= I (Zt ; �X−
t \C �V ⇒Zt

)︸ ︷︷ ︸
=D

+ I (Zt ; C �V ⇒Zt
| �X−

t \C �V ⇒Zt
)︸ ︷︷ ︸

=J

= D + J . (2)
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Equation (2) expresses that the information from the distant
causal history, D, is provided by all the lagged nodes not in
the immediate history, i.e., �X−

t \C �V ⇒Zt
, through their mutual

information with Zt ; while the information from the recent
dynamics, J , is accounted for by the conditional mutual
information (CMI) between the target and the immediate
causal history conditioned on the distant history.

B. Simplifications of T , J , and D
It is noted that the empirical computations of T , J , and

D in Eq. (2) are infeasible due to the potentially infinite
number of nodes in �X−

t and �X−
t \C �V ⇒Zt

. Therefore, to address
this challenge and connect the time-series graph with the
underlying joint probability, we assume the Markov property
for DAG (Ref. [21], Theorem 1). This is consistent with
prior work [5], which states that any node Zt in the graph is
independent of all its nondescendants given the knowledge of
its parents PZt

[22]. For the graph in Fig. 1, for example, this
implies that given its parents PZt

(the cyan colored box), the
target node Zt is conditionally independent of the rest of its
nondescendants, �X−

t \PZt
.

Now, the main idea of reducing the dimensions in T , J
and D originates from the connection between conditional
independence and the node separation in the graph based
on the Markov property [5]. The simplification of T can be
immediately achieved by using chain rule as follows (note that
PZt

⊂ �X−
t ):

T = I (Zt ; PZt
, �X−

t \PZt
)

= I (Zt ; PZt
) + I (Zt ; �X−

t \PZt
| PZt

)︸ ︷︷ ︸
=0

= I (Zt ; PZt
), (3)

which is the mutual information between Zt and its parents
PZt

[see Fig. 1(a)]. The zero value for I (Zt ; �X−
t \PZt

| PZt
)

results from the Markov property that separates Zt from the
remaining historical nodes given its parents.

Furthermore, the distant causal history, �X−
t \C �V ⇒Zt

, which
serves in Eq. (2) as the condition set and information con-
tributor in J and D, respectively, can be partitioned into
two parts: (1) the parents of both Zt and the immediate
causal history C �V ⇒Zt

excluding those in the immediate causal

history, denoted as �Wτ = PC �V ⇒Zt
∪Zt

\C �V ⇒Zt
[the gray nodes in

Fig. 1(a)], and (2) the remaining nodes, �X−
t \(C �V ⇒Zt

∪ �Wτ ).
Then, in a similar manner as for T , the Markov property and
the chain rule also facilitate the simplifications for D:

D = I (Zt ; �Wτ, �X−
t \(C �V ⇒Zt

∪ �Wτ ))

= I (Zt ; �Wτ ) + I (Zt ; �X−
t \(C �V ⇒Zt

∪ �Wτ ) | �Wτ )︸ ︷︷ ︸
=0

= I (Zt ; �Wτ ), (4)

and for J :

J = I (Zt ; C �V ⇒Zt
| �X−

t \C �V ⇒Zt
)

= I (Zt ; C �V ⇒Zt
| �Wτ ). (5)

Both, the zero value for I (Zt ; �X−
t \(C �V ⇒Zt

∪ �Wτ ) | �Wτ ) and

the reduction of the condition set of J into �Wτ in Eqs. (4)
and (5), respectively, are due to the conditional independence
between Zt and �X−

t \(C �V ⇒Zt
∪ �Wτ ) given the knowledge of

�Wτ , which separates the immediate finite history associated
with Zt and Zt itself from the remaining history. In fact, a

decomposition of C �V ⇒Zt
, into (1) P

C �V ⇒Zt

Zt
≡ PZt

∩ C �V ⇒Zt
—

the direct causes of Zt in the immediate causal history, and

(2) C �V ⇒Zt
\P C �V ⇒Zt

Zt
—the remaining intermediate nodes in

C �V ⇒Zt
, enables a further simplification of J , that is (see

Appendix A for derivations)

J =I
(
Zt ; P

C �V ⇒Zt

Zt
| �Wτ

)
, (6)

which is achieved by taking the chain rule expansion based
on C �V ⇒Zt

and dropping off the other term because of the
conditional independence of Zt with the remaining history
given its parents. Also, by substituting Eqs. (4) and (5) back

into Eq. (2) and noticing PZt
⊂ P

C �V ⇒Zt

Zt
∪ �Wτ , we can again

utilize the Markov property to get

T = I
(
Zt ; P

C �V ⇒Zt

Zt
, �Wτ

) = I (Zt ; PZt
),

which reduces to Eq. (3) as we should expect and is constant
in terms of the time lag τ . We also note that the quantities
J and D are functions of τ , but this is not included in the
notation for brevity as this does not cause any ambiguity.

C. Information aggregation property of T and J
The simplifications in Eqs. (3)–(6) imply an important

property of information aggregation from intermediate nodes
to the direct causes of the node(s) of interest. For all three
information transfer measures, the information accumulate at
the nodes that are either the parents of the target node Zt [PZt

for T in Eq. (3) and P
C �V ⇒Zt

Zt
for J in Eq. (6)] or the parents of

the union of Zt and its immediate causal history [ �Wτ for D in
Eq. (4)]. This property, derived from the Markov property for
DAG, illustrates that the latest observations actually contain
all the information of the earlier dynamics in the system,
transferred via the causal paths, and influence the states of the
variables at the next stage.

Further insights associated with such information aggrega-
tion property can be obtained by a decomposition of both T
and J . We separate C �V ⇒Zt

into τ set of nodes, where τ is
the maximum time lag between the target Zt and the earliest
node in the source nodes �V , that is, τ = arg maxk{Xt−k :
Xt−k ∈ C �V ⇒Zt

}. Each set of nodes �Vt−i represents all the
contemporaneous nodes in C �V ⇒Zt

at the time step t − i (1 �
i � τ ), that is, �Vt−i = {Vt−τV

: Vt−τV
∈ C �V ⇒Zt

| τV = i}. It

is clear that C �V ⇒Zt
= ∪τ

i=1
�Vt−i and �Vt−i1 ∩ �Vt−i2 = ∅ for

i1 �= i2. Therefore, we can express J in Eq. (5) as

J =I (Zt ; �Vt−1, ..., �Vt−τ | �Wτ ),

and by using the chain rule for conditional mutual information
[23], we get

J =
τ∑

i=1

I (Zt ; �Vt−i | �Wτ, �Vt−i−1, ..., �Vt−τ ). (7)
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Note that { �Vt−i−1, ..., �Vt−τ } are actually the remaining
parents of both Zt and the subgraph C �Vt−i⇒Zt

initiated by
�Vt−i , which are not in �Wτ . Therefore, the condition set in
Eq. (7), { �Wτ, �Vt−i−1, ..., �Vt−τ }, in fact, contains the parents
of the union of Zt and C �Vt−i⇒Zt

, or PC �Vt−i⇒Zt
∪Zt

. Also, due
to the Markov property of the time-series DAG, PC �Vt−i⇒Zt

∪Zt

separates C �Vt−i⇒Zt
∪ Zt from their nondescendants, including

the remaining nodes in the conditions in Eq. (7), and thus
gives

Gi ≡ I (Zt ; �Vt−i | �Wτ, �Vt−i−1, ..., �Vt−τ )

= I (Zt ; �Vt−i | PC �Vt−i⇒Zt
∪Zt

\C �Vt−i⇒Zt
), (8)

where Gi is the generalized version of the momentary in-
formation transfer along causal paths [12,18] from multiple
source nodes �Vt−i to Zt along the multiple causal paths
C �Vt−i⇒Zt

. It quantifies the uncertainty reduction in Zt due to
�Vt−i conditioned on the parents of both Zt and C �Vt−i⇒Zt

∪ Zt ,
Correspondingly, Eq. (7) can thus be simplified as

J =
τ∑

i=1

Gi =
τ∑

i=1

I (Zt ; �Vt−i |PC �Vt−i⇒Zt
∪Zt

\C �Vt−i⇒Zt
). (9)

Such accumulation of momentary information can be gen-
eralized to the total information T if the source nodes �V of
the immediate causal history are taken as all the variables
at an infinite past, �Xt−τ = {Vt−τ , Xt−τ , Yt−τ , Zt−τ , ...}, with
τ → ∞. In this case, the immediate causal history is naturally
the whole causal history itself, and thus J = T , which based
on Eq. (9) gives

T = lim
τ→∞

τ∑
i=1

I (Zt ; �Xt−i | PC �Xt−i⇒Zt
∪Zt

\C �Vt−i⇒Zt
). (10)

By relating the above equation with Eq. (2), again we see that
the momentary information from all the previous intermediate
nodes in the causal history are accumulated at the nodes that
directly influence the target Zt , as shown in Fig. 1(b). Note
that a measure similar to Eqs. (7)–(10) is proposed in Ref. [5],
called the decomposed transfer entropy. It approximates the
information coming from all the historical states of a source
variable �X−

t as the summation of individual conditional mu-
tual information from each lagged Xt−τ in a finite set of
�X−

t . This is different from the information aggregation of J
and T proposed here in that Eqs. (9) and (10) approximate
the information from the historical states of multiple source
variables to the target.

D. Interactions from self-feedbacks in J and D
To further dissect the information transfer, we character-

ize the interaction information arising from self- and cross-
dependencies of a target variable Zt in both immediate and
distant causal histories. Note that interaction information
between two sets of source nodes �A and �B contributing
information to Zt is given as

I = I (Zt ; �A| �B ) − I (Zt ; �A)

= I (Zt ; �A, �B ) − [I (Zt ; �A) + I (Zt ; �B )]. (11)

For distant causal history, represented by �Wτ , the two de-
composed parts include: (1) a self-feedback component of

FIG. 2. Illustration of the self- and cross-dependencies in both
simplified immediate and distant causal histories for a target Zt (the
black node). The self-dependencies, �ZJ , and the complementary

part, �Z′
J , in the simplified immediate causal history, P

C �V ⇒Zt

Zt
, are

identified in solid and dashed black boxes, respectively. The self-
dependencies, �ZD , and the complementary part, �Z′

D , in the simplified
distant causal history, �Wτ , are identified in solid and dashed gray
boxes, respectively.

Zt , �ZD ≡ {Vt−τ ∈ �Wτ | V = Z} (the gray box in Fig. 2);
and (2) the complementary component, �Z′

D ≡ �Wτ\ �ZD (the
dashed gray box in Fig. 2). The difference between D and the
summation of the mutual information between Zt and each
of the two components in �Wτ then accounts for an interaction
information, ID, which is given by

ID = D − [I (Zt ; �ZD ) + I (Zt ; �Z′
D )]. (12)

ID quantifies the interaction information in Eq. (11) trans-
ferred to the target Zt from its self-dependency, �ZD, as well
as the complementary component, �Z′

D, in distant history. A
negative ID [i.e., D < I (Zt ; �ZD ) + I (Zt ; �Z′

D )] shows a net
redundancy in the interaction between the two components,
while a positive ID [i.e., D > I (Zt ; �ZD ) + I (Zt ; �Z′

D )] illus-
trates a net synergistic influence on the target.

Similarly, the simplified immediate causal history of Zt ,

represented by P
C �V ⇒Zt

Zt
, can be partitioned into (1) a com-

ponent containing the self-dependence of the target, �ZJ ≡
{Vt−τ ∈ P

C �V ⇒Zt

Zt
| V = Z} (the black box in Fig. 2); and (2) the

complementary part, �Z′
J ≡ P

C �V ⇒Zt

Zt
\ �ZJ (the dashed black box

in Fig. 2). The corresponding interaction information from the
two parts of immediate causal history, IJ , can be computed
as

IJ = J − [I (Zt ; �ZJ | �Wτ ) + I (Zt ; �Z′
J | �Wτ )], (13)

quantifying the conditional interaction information to Zt from
its self- and cross-dependencies in the immediate causal
history.

We also note that in Ref. [18], the interaction information
is used for investigating how the influence from a source node
Xt−τ to Zt is intervened by the immediate nodes in the causal
path CXt−τ →Zt

. In this study, we evaluate the interaction effects
on Zt from immediate and distant causal histories in terms of:
first, Zt ’s own history, and second, historical states of the other
variables.
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III. APPLICATIONS

To illustrate the capability of the approach described above
for delineating the temporal dependency of a system, we
quantify the information transfer from the causal history in
three different systems. We first characterize the temporal
dependency of a short-memory system through a trivariate
logistic model. Then, we illustrate how the proposed approach
is different from lagged mutual information in addressing
system’s memory dependency using an example of a chaotic
system—the Lorenz model. Further, we compare the Lorenz
model with a trivariate Ornstein-Uhlenbeck process to inves-
tigate how the information transfer differs in processes with
and without strange attractor. Finally, we quantify the mem-
ory dependency from time-series observations, representing
catchment chemistry, which is known to have long-term de-
pendency. Especially, by decomposing the distant history into
the self-feedback of the target and the complementary compo-
nent characterizing information transfer from other interacting
variables, we observe the redundancy-dominated J , as well
as consistent nonzero and synergy-dominated D in both the
Lorenz model and the stream chemistry system, which we
conjecture as sustaining chaotic and fractal features of the two
systems.

A. Trivariate logistic system: A short-memory system

In the following, we empirically analyze the information
transfer in the causal history of a nonlinear model-generated
synthetic data. Consider a trivariate coupled logistic system,
mathematically expressed as

Xi,t = 1 − ε

3

3∑
j=1

4Xj,t−1(1 − Xj,t−1)+εη
Xi

t , i ∈ {1, 2, 3},

(14)

where η
Xi

t ∈ [0, 1] is a uniform noise term and 0 < ε < 1
is its coupling strength. To investigate the total information
and its two components to the target node X3,t , we con-
sider the immediate causal history as the causal subgraph
C{X1,t−τ ,X2,t−τ ,X3,t−τ }⇒X3,t

starting at an earlier time step t − τ

(τ � 1) [see Fig. 3(a)]. J , D, and T are calculated for τ

ranging from 1 to 50 and ε ∈ [0.1, 0.2, 0.3, 0.5, 0.8]. For each
pair of τ and ε, 10 000 data points are generated to conduct the
empirical estimations, with an ensemble of 10 runs for each
to get an average behavior. To avoid the infinite dimensions in
Eq. (2) in the computation, we compute T , D, and J based
on Eqs. (3), (4), and (6), respectively. The k-nearest-neighbor
(kNN) estimator [4,24] is adopted for the estimation of J ,
T , and D with k = 5 (low k facilitates a low bias of the
estimated MI and CMI [4]). In the next two applications, the
computation of T , D, and J are also conducted in the same
manner.

The contribution of immediate causal history J , and the
proportion of distant causal history, D, in the total information
transfer T , D/T , are shown in Fig. 3(b). We observe that
for the range of noise coupling strengths ε, J , and D/T
increases and decreases, respectively, with lag τ , and D/T

FIG. 3. Illustration of the trivariate coupled logistic model.
(a) The times-series graph of the system with the causal subgraph
C{X1,t−τ ,X2,t−τ ,X3,t−τ }⇒X3,t

as the immediate causal history [the repre-
sentations of the nodes are the same as in Fig. 1(a)]. (b) Plots of
J , D/T , S̄ , ID, and IJ for τ ranging from 1 to 50 with ε ∈
[0.1, 0.2, 0.3, 0.5, 0.8] (blue and red crosses, connected through a
vertical line, represent the convergence points of J , D/T , and S̄ for
ε = 0.1 and ε = 0.2, respectively; note that results for ε = 0.8 are
not plotted (except J ) due to its high variability resulting from a
near-zero total information T ).

achieves asymptotic convergence to zero when the lag is
sufficiently large. In particular, the convergence to zero of
D/T illustrates that this trivariate coupled logistic model has a
short memory for influencing the target. Further, the decrease
of J with increasing coupling strength ε implies that a strong
noise can reduce the information transfer from the preceding
finite-length period and, thus, also reduce the total information
in this short-memory system.

Also, it is noted that the curves in D/T decrease with
increasing τ but intersect for different values of ε. This
is because of different interactions and synchronization of
coupled logistic maps as a function of ε [25–27]. Therefore,
we compute the lag synchronization for each pair of lagged
variables Xi,t−τ and Xj,t (i, j ∈ {1, 2, 3}) with τ ranging from

012306-5



PEISHI JIANG AND PRAVEEN KUMAR PHYSICAL REVIEW E 99, 012306 (2019)

FIG. 4. Illustration of the Lorenz model with parameters σ = 10, ρ = 28, and β = 8/3. (a) The times-series graph of the system with
the causal subgraph C{Xt−τ ,Yt−τ ,Zt−τ }⇒Ut

(U ∈ {X, Y, Z}) as the immediate causal history. (b) The corresponding plots of the lagged mutual
information, J , and D for the time lag τ ranging from 1 to 1000. (c) The corresponding plots of ID , IJ , and J − D for the time lag τ ranging
from 1 to 1000.

1 to 50, which is given by

Sij (τ ) =
{

E[(Xi,t−τ − Xj,t )2][
E

(
X2

i,t−τ

)
E

(
X2

j,t

)]1/2

}0.5

, (15)

where E is the expectation function. Since the dynamics is
highly symmetric in terms of {X1, X2, X3} for this trivariate
model, we compute the averaged lag synchronization S̄ (τ )
as

S̄ (τ ) =
∑

i,j Sij (τ )

9
, (16)

which is sketched in the middle plot of Fig. 3(b). It shows that
for each noise coupling strength ε, S̄ oscillates for small τ ,
and then the amplitude decreases and S̄ eventually converges
with increasing τ , implying a consistent similarity structure
between each pair of lagged variables given an ε. The con-
vergence of the averaged lag synchronization, S̄ , implies that
the similarity between a target Xj,t and a lagged history node
Xi,t−τ gradually becomes invariant with increasing τ . It is
consistent with the convergences of both J and D/T for each
ε, which are illustrated for ε = 0.1 and ε = 0.2 in blue and
red crosses, respectively.

Further, the interaction information ID and IJ increases
and decreases with time lag τ , and then converges to zero
and a negative value, respectively. The rapid convergence to
the asymptotic values suggests no synergy or redundancy for

this short-memory model. Meanwhile, the drop of IJ with
increasing τ means the contributions from self- and cross-
dependencies in the immediate causal history share a higher
redundancy.

B. The Lorenz model: A comparison with lagged
mutual information

Now, we perform the analysis of the Lorenz model to
investigate the difference between the proposed measures of
causal history and traditional methods such as lagged mutual
information in capturing the temporal dependency of a sys-
tem, as well as to understand the potential interdependencies
embedded in its chaotic behavior. The Lorenz model is pro-
totypical of its chaotic behavior [28], that is, its dynamics
are contained in a strange attractor with a fractal dimension
between 2 and 3, and its governing equation is given by a
system of three variables Xt , Yt , and Zt as

dXt

dt
= σ (Yt − Xt ), (17a)

dYt

dt
= Xt (ρ − Zt ) − Yt , (17b)

dZt

dt
= XtYt − βZt , (17c)
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where the parameters σ , ρ, and β in this study are set as
10, 28, and 8/3, respectively.

To analyze the information dynamics in the system as
well as the resulting long-term dependence, we empirically
quantify the influence on a target Ut ∈ {Xt, Yt , Zt } based
on (1) the lagged mutual information between each pair
of variables I (Ut ; Vt−τdt ), where Vt ∈ {Xt, Yt , Zt }, and τ

and dt are the lag step and the time interval, respectively;
(2) the information transfer from the immediate and distant
causal histories for each variable, J and D, respectively; and
(3) the interaction information contributed by a self-feedback
and the corresponding complementary components in both
distant and immediate causal history, ID and IJ , as indi-
cated in Eqs. (12) and (13), respectively. The immediate
causal history is now the subgraph C{Xt−τdt ,Yt−τdt ,Zt−τdt }⇒Ut

[see Fig. 4(a)], from which we can observe that given a
time lag τdt the representative distant causal history �Wτ =
{Xt−(τ+1)dt , Yt−(τ+1)dt , Zt−(τ+1)dt }. The measures are calcu-
lated for τ ranging from 1 to 1000 with the time interval
dt = 0.01. 10 000 data points are generated to conduct the
empirical estimations, with an ensemble of 10 runs to get an
average behavior.

The results of the lagged mutual information, D, and J
are shown in Fig. 4(b). The quantities J and D increases
and decreases, respectively, with increasing τ , converging to
some nonzero values when τ is around 500. The consistent
nonzero D for large τ arises from the fact that the Lorenz
system is a long-memory process such that information pro-
vided from the distant history informs the present dynamics.
Meanwhile, the lagged mutual information, I (Ut ; Vt−τdt ), for
all the three variables shows strong oscillations and gradu-
ally decays to zero. The oscillations are due to the chaotic
behavior where the “butterfly” trajectory of the strange at-
tractor in this phase space determines the frequency of these
oscillations, and the slow decay to zero reflects the long-
term dependency. However, the lagged mutual information
does not show the consistent information contributed from
the past as D does. Therefore, the proposed information
transfer from the causal history provides a view for ana-
lyzing the memory dependency of the system that is com-
plementary to traditional methods such as lagged mutual
information.

Furthermore, the difference between J and D as well as
their interaction information IJ and ID, shown in Fig. 4(c),
illustrate different roles of the immediate and distant causal
histories in shaping the target. First, the recent dynamics of the
Lorenz model has a stronger influence on the target than the
remaining earlier dynamics as time lag τ becomes larger than
around 200. This is evidenced by the convergence of J − D
to a positive value (the black thick line). Also, the convergence
of IJ to a negative value (the blue thick line) implies a
higher redundancy effect from the interaction information of
cross and self dependencies in the immediate causal history,
as observed in the trivariate chaotic map. Meanwhile, the
convergence of ID to zero (the orange thick line) suggests a
balanced contribution from synergistic and redundant effects,
each of which are not necessarily zero in the Lorenz model
due to the nonzero convergence of D plotted in Fig. 4(b).
In short, the Lorenz model with a strange attractor shows
each variable is affected by (1) a strong influence given by

immediate causal history with dominant redundant effects
from the self- and cross-dependencies, and (2) less influence
from distant causal history with balanced redundancy and
synergistic effects.

C. The Ornstein-Uhlenbeck process: A long-memory process
without strange attractor

To investigate the difference between processes with and
without strange attractors in terms of the information trans-
fer from causal history, we now conduct the analysis on a
trivariate linear Ornstein-Uhlenbeck process with long-term
dependency. The OU process is chosen such that the model
has the same structure of the directed acyclic time-series graph
as the Lorenz model shown in Fig. 4(a) and it is stationary,
which is given by:

dXt

dt
= −0.5Xt + 0.3Yt + ζX, (18a)

dYt

dt
= 0.4Xt − 0.4Yt − 0.3Zt + ζY , (18b)

dZt

dt
= 0.4Xt + 0.6Yt − 0.7Zt + ζZ, (18c)

where ζX, ζY , and ζZ are independently and identically
distributed noise terms following standard normal distribu-
tion. As in the analysis of the Lorenz model, we quantify
the influence on each variable in the OU process in terms of
lagged mutual information, the information from immediate
and distant causal history J and D, and their interaction
information IJ and ID. The computation settings of the above
information-theoretic measures are the same as the Lorenz
model. The trajectory and the time series of each variable of
the OU process are plotted in Fig. 5(a) with time interval dt =
0.01 and 10 000 simulated data points, visually showing that
the dynamics are confined in a three-dimensional confined
domain which is not a strange attractor.

The long-memory property of the OU process in Eq. (18)
is evidenced in the nonzero convergence of D and a slow-
decay of the auto mutual information of each variable in
Fig. 5(b), as also observed in the Lorenz model [Fig. 4(b)].
Nevertheless, different from the Lorenz model which shows a
higher convergence value in J , the convergence value of D in
the OU process is larger. It indicates that, for the OU process,
the distant causal history always provides more information
to the target than the immediate causal history no matter how
much of the finite recent dynamics are considered. Further,
while the interaction information IJ and ID still decreases
and increases with the time lag τ , respectively, similar to the
Lorenz model, ID in the OU process converges a value larger
than zero. The convergence of ID to a positive value implies
a net synergistic effect from the interaction contribution to the
target. In summary, compared with the Lorenz model, the evo-
lutionary dynamics of the OU process, which shows a similar
long-term dependency but without a strange attractor, contains
a more dominant influence from distant causal history with a
net synergistic effect on each variable in the process.
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FIG. 5. Illustration of the Ornstein-Uhlenbeck process in Eq. (18). (a) The trajectories of the process (left) and the time series of each
variable (right). (b) The corresponding plots of the lagged mutual information, J , and D for the time lag τ ranging from 1 to 1000. (c) The
corresponding plots of ID , IJ , and J − D for the time lag τ ranging from 1 to 1000.

D. Catchment chemistry data: An observed
long-memory system

We now employ our approach to analyze the water solutes
in the Upper Hafren in Wales, where the stream chemistry
records are found to have 1/f fractal signatures reflecting
long-term dependencies due to the complex interactions oc-
curring in the catchment [17,29]. In this application, the
logarithm of flow rate, ln Q, and six water chemistry vari-
ables, Na+, Cl−, Al3+, Ca2+, SO42−, and pH, are chosen
for analysis, which are sampled every 7 h from March 2007
to Jan 2009. The 1/f fractal signatures are found in the
corrected chemistry data, where the trend of the logarithm
of stream flow is excluded [17]. Both the raw and the flow
rate-corrected data are available from Ref. [17], which are
used here. Here, we construct the time-series graph for both
the raw data and the flow rate-corrected data by using the
Tigramite algorithm [5,18,30,31]—a modified PC algorithm
[22] anchored on the conditional independence test to remove
any spurious relationship between each pair of nodes.

The two resulting time-series graphs are shown in Fig. 6
(see the details of the graph construction in Appendix B),
where coupling strengths in each directed edge, represented
as the thickness of the edge, is computed as the momentary
information transfer [32] between the two nodes. We can

observe strong self-feedback dependencies (shown as thick
edges) for most variables in both graphs. Meanwhile, the
remaining “hairy” causal influences, in a Granger sense, illus-
trate the relatively weaker lagged interdependencies (shown
as thin edges) among the variables, which, along with the
self-feedback dependency, contribute to the current state
of each variable. Furthermore, the comparison between the
two graphs shows that with the influence of flow rate ex-
cluded, the graph constructed from the flow-rate-corrected
data [Fig. 6(b)] contains fewer cross-dependencies [Fig. 6(a)].
It reflects the fact that flow rate (based mixing) plays a key role
in establishing the connectivities among the stream chemistry
variables.

Based on the graphs, we now compute the information
transfer measures, T and D, and the interaction information
IJ and ID in Eqs. (12) and (13), respectively. The immediate
causal history is initiated by all the five variables with a same
time lag τ ranging from 1 to 400 (117 days for 7-h dataset).
Again, T and D are first calculated based on Eqs. (3) and (4)
with the number of nearest neighbors k = 5 (in kNN method).

The plots of D and the proportion D/T as a function of
τ shown in Fig. 7 are insightful. First, for all the variables in
both graphs, the information from the distant causal history,
D (the left column of Fig. 7), drops rapidly at small lags τ

but starts to converge to a value far from zero for larger time
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(a)

(b)

FIG. 6. Time-series graph constructed by using the Tigramite
algorithm from (a) observed logarithm of flow rate and six catchment
chemistry time series data; and (b) the six catchment chemistry data
with the variation of logarithmic flow rate corrected. The thickness of
edges represents the coupling strength between two nodes computed
by momentary information transfer shown in Fig. 9 (see the details
of the graph construction in Appendix B).

FIG. 7. Plots of the information transfers D (left) and the pro-
portion D/T (right) over the time lag τ for the raw data and the flow
rate-corrected data taking the immediate causal history initiated from
all the variables with a same lag τ based on the estimated time-series
graph in Fig. 6.

self-dependent

FIG. 8. Plots of the interaction information from distant causal
history, ID in Eq. (12) (black line), and immediate causal history, IJ
in Eq. (13) (blue line), over the time lag τ for the raw data and the
flow rate-corrected data taking the immediate causal history initiated
from all the variables with a same lag τ based on the estimated time
series graph in Fig. 6.

lags (except for pH). Such persistent nonzero D reflects the
long-term dependence present in the water chemistry data,
and illustrates that the dynamics from a distant causal history
in the stream plays an important role in shaping the current
states of the solutes [29]. Further, the right column of Fig. 7
shows that, for each variable in both networks, the percentage
of the convergence value of D in the total information T is
less than 50%, illustrating a more dominant influence from
the immediate causal history. Also, by comparing the dynam-
ics with and without flow rate, both D and its percentage
in the total information, D/T , decrease when the influence
of flow rate is excluded. It illustrates that flow rate is an
important driving variable that connects various water stream
variables, and contributes to maintaining the long-memory
dependence. However, this dependence varies for different
variables. Specifically, for variables that are highly dependent
on flow rate, such as Ca2+ and pH, D declines significantly
when the influence of flow rate is excluded. For other vari-
ables, especially Na+ and Cl− the majority of which origi-
nates from the oceanic sources through atmospheric pathways
in this close-to-coast location [33], D drops to a lesser degree
and thus still holds a relatively strong memory persistence due
to their lower dependencies on flow rate.

Further, the interaction information IJ and ID of the im-
mediate and distant causal histories, respectively, as a function
of lag τ are plotted in Fig. 8. First, we see that when the
influence of the flow rate is included (the left column of
Fig. 8), IJ decreases with increasing τ and converges to a
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negative value, suggesting the prevalence of strong redundant
influence in the immediate causal history. Meanwhile, ID
flattens out to zero as τ becomes larger than around 20. The
convergence of ID to zero implies a balanced synergistic and
redundant effects from the self- and cross-dependencies in
the distant causal history. Moreover, in the network without
the influence of flow rate (the right column of Fig. 8), IJ
also converges to zero, indicating a balance of synergistic and
redundant contribution.

Also, notice that there exist oscillations in different
information-theoretic measures shown in both Figs. 7 and 8
even when the values converge for large τ . This is possibly
due to the bias induced by the estimation of the proposed high-
dimensional information-theoretic measures [12,18,32] with a
limited amount of data points, which are around 1000 ∼ 2000
for the estimation of D for different time lags. A shuffle test
is also conducted for the computation of D, to ensure that
most of the values are statistically significant at α = 0.05
significance level (see Appendix B for details).

IV. CONCLUSION

We have developed information-theoretic measures to par-
tition the influence of total causal history (T ) into two compo-
nents, immediate (J ) and distant (D) causal history. While the
information from the immediate causal history quantifies the
impact on the state of a specific variable from trajectories of
recent dynamics, its complement, the distant causal history,
illustrates such impact stemming from the remaining older
history.

By employing the Markov property for directed acyclic
graph, we reduce the dimensions of T , D, and J to make
the computations of the three measures feasible. The Markov
property based simplification further results in the information
aggregation property of the time-series-directed acyclic graph,
that is, the information transferred from earlier dynamics in
the causal history accumulate at the nodes directly influencing
the target node(s). Moreover, the dimension reduction also
enables further partitions of both the immediate and distant
causal histories into self- and cross-dependencies, and allows
us to quantify their interaction information contribution to a
target.

It is noted that while the dimension of T is now reduced
to only the parents of the target, the cardinalities of D and
J can still be high due to the inclusion of the parents of the
immediate causal history. For instance, in the stream chem-
istry example, the dimensions of D and J are around 30 and
40, respectively, as shown in Fig. 11. Such high dimensions
might result in biased information-theoretic estimation based
on limited datasets. Future research is required to further
reduce the dimensionality.

We take the opportunity to distinguish the causal history
formulation presented here with some relevant prior work.
These include transfer entropy [3], momentary information
transfer [5], causation entropy (CE) [7], and directed in-
formation (DI) [6,34]. These existing information-theoretic
measures quantify the coupling strength between two (lagged)
variables with or without the knowledge of other variable(s),
while the proposed causal history analysis investigates how
the entire evolutionary dynamics involving all variables in

a system influences a target variable. This uniqueness of
considering contribution from multiple variables enables anal-
yses that are not possible otherwise. The following is a brief
summary of the differences with these different information-
theoretic approaches.

Transfer entropy [3] quantifies the information trans-
ferred to a target, Zt , from a sequence of previous states
of another variable, Xt−1:t−τ = {Xt−1, Xt−2, ..., Xt−τ }, given
the knowledge of the past states of itself, Zt−1:t−τ =
{Zt−1, Zt−2, ..., Zt−τ }. It is computed through a conditional
mutual information, and is given by

ITE
X→Z (τ ) = I (Zt ; Xt−1:t−τ | Zt−1:t−τ ). (19)

Momentary information transfer [5], however, considers the
information transfer to Zt from a specific lagged variable
Xt−τ given the knowledge of the entire historical states, and
is obtained as the conditional mutual information given as

IMIT
X→Z (τ ) = I (Zt ; Xt−τ | PCXt−τ →Zt

\PZt
). (20)

The condition set PCXt−τ →Zt
\PZt

, anchored on the Markov
property, is a simplified set of all the dynamics preceding the
time t , �X−

t = { �Xt−1, �Xt−2, ...}.
The idea of conditioning, which prevents the influence

from the nodes in the condition set in influencing the quantifi-
cation of coupling strength, is also used in causation entropy
[7]. CE from a source variable with lag 1, Xt−1, to the a target,
Zt , conditioned on a third variable, Yt , with lag 1, and is given
by

ICE
X→Z|Y = I (Zt ; Xt−1 | Yt−1). (21)

Notice that causation entropy is a generalization of transfer
entropy in Eq. (19) with τ = 1, that is ICE

X→Z|Z = ITE
X→Z (1).

Further, another measure called directed information [6]
quantifies how a limited historical dynamics of a source
variable, Xt−τ :t , affects the dynamical trajectory of the target
variables, Zt−τ :t . This is given as

IDI
X→Z (τ ) =

τ∑
i=1

I (Zt−i ; Xt−1:t−i | Zt−1:t−i+1). (22)

When the knowledge of the dynamical trajectory of the third
variables, Yt−τ :t is given, it is converted into a conditional
directed information (CDI) [6], given by

ICDI
X→Z|Y (τ ) =

τ∑
i=1

I (Zt−i ; Xt−1:t−i | Zt−1:t−i+1, Yt−1:t−i ).

(23)

Different from ITE, IMIT, and ICE, which quantify the influ-
ence to a target from a lagged source variable, IDI and ICDI

consider the influence from the past dynamics preceding time
t as well as the instantaneous dynamics at time t .

In addition to pairwise interactions, a variation of Eq. (21),
temporal causation entropy (TCE) [35] is used for inferring
the Markov order of a process, which is given by

ITCE(τ ) = I (Zt ; �Z−
t \Zt−1:t−τ | Zt−1:t−τ ), (24)

which is the conditional mutual information between Zt and
its earlier dynamics, �Z−

t \Zt−1:t−τ , given the immediate dy-
namics Zt−1:t−τ . The calculation of ITCE in Eq. (24) involves
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(a) (b)

FIG. 9. Illustration of the estimated lag functions (y axis: the coupling strength [nats] computed based on momentary information transfer
(MIT) [32]; x axis: the time lag τ ) of the catchment chemistry data by using Tigramite algorithm for: (a) the logarithm of flow rate and six
chemistry variable; and (b) the six chemistry variables with the variation of the logarithm of flow rate excluded.

the division of the entire history of a process into two parts
based on a time lag τ , which looks similar to the partition
of immediate and distant causal histories at a first glance.
However, they differ in both the purposes and the technical
details. While ITCE is used to infer the Markov order of a
process based on the smallest τ when ITCE equals to zero
in Eq. (24), the causal history analysis investigates the con-
tribution from both immediate and distant causal histories.
The different orientation in the causal history analysis, along
with its multivariate nature of the analysis, indicate that this
work adds significantly to the discourse associated with such
studies.

All these existing information-theoretic measures (i.e., ITE,
IMIT, ICE, IDI, and ICDI), except ITCE, quantify the coupling
strengths between two (lagged) variables from different per-
spectives. However, the proposed approach for causal history
analysis presented in our work is initiated from a different
perspective. It aims at analyzing how the target is driven by
the entire evolutionary dynamics, which involves multivariate
interactions in a complex system. By analyzing the whole
history of the system, it allows the partition of the causal
history into an immediate and distant components as well as
quantification of these quantities. Furthermore, the instanta-
neous influence, which is explored in IDI and ICDI, is not
considered as cause-effect relationship in this study. This is
because the directionality of such causal influence between
two contemporaneous nodes is unclear and the contempora-
neous dynamics is not considered as causal “history”.

The quantification of the information from the immediate
and distant causal histories sketches the memory dependency
of the system, which are illustrated with four examples with
varying memories. Further, in addition to characterizing the
memory dependency of a complex system, the proposed ap-
proach also delineates some key features of the complexity
associated with its dynamics, which are not captured by other

traditional method such as lagged mutual information. First,
for the Lorenz model and the OU process, while lagged
mutual information slowly goes to zero with increasing time
lag τ , the information from distant causal history D converges
to a nonzero value with large lags. It implies a persistent
information influence over long timescale in the system’s
evolutionary dynamics. Second, we observe that the ana-
lyzed models have different characteristics of information
transfer. For instance, while the interaction information of
distant causal history, ID, flattens out in both the Lorenz
model and the logistic map, the convergence of ID to zero in
the Lorenz model suggests that there is a balanced synergy
and redundancy jointly contributed by the self- and cross-
dependencies. However, in the OU process, which also has
long memory but no strange attractor, there turns out to be a
net synergy effect in the distant causal history as ID converges
to a positive value. Further, the differences in the interaction
information of the immediate causal history, IJ , also illustrate
the various dynamics in different systems. The comparison
between the stream chemistry system with and without the
influence of flow rate shows that the existence of the flow
rate is able to enhance the redundant effect from self- and
cross-dependencies in immediate causal history.

By involving multiple components as well as the causal
influences among them, the proposed measures address an
unresolved problem, that of quantifying the causal influence
on the current state of a variable from the evolutionary dy-
namics of the entire system. It is different from what has been
addressed so far by existing information-theoretic measures,
which is usually anchored on pairwise interactions or multi-
variate analysis associated with specific parts of the system
[3,5,7,12]. This uniqueness, therefore, facilitates addressing
the questions of how the complexity of a system is sustained
over time, which is reflected in varying memory dependency.
With the increasing availability of observations in various
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FIG. 10. Number of data points for computing D in Eq. (4) in
terms of the time lag τ for each variable in the two time-series graphs
constructed in Fig. 9.

domains, this work can open up avenues for new data-driven
approaches for the study of complex system dynamics.
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APPENDIX A: DERIVATIONS FOR INFORMATION
FROM IMMEDIATE CAUSAL HISTORY, J

This section provides the derivations of Eqs. (6). We sep-
arate the immediate causal history C �V ⇒Zt

into two sets: (1)

those belonging to the parents of Zt , P
C �V ⇒Zt

Zt
= PZt

∩ C �V ⇒Zt
,

and (2) the remaining nodes, C �V ⇒Zt
\P C �V ⇒Zt

Zt
. Then, using the

chain rule, J defined in Eq. (5) can be written as

J = I
(
Zt ; P

C �V ⇒Zt

Zt
, C �V ⇒Zt

\P C �V ⇒Zt

Zt
| �Wτ

)
(A1)

= I
(
Zt ; P

C �V ⇒Zt

Zt
| �Wτ

)
(A2)

+ I
(
Zt ; C �V ⇒Zt

\P C �V ⇒Zt

Zt
| �Wτ, P

C �V ⇒Zt

Zt

)
︸ ︷︷ ︸

=0

(A3)

= I
(
Zt ; P

C �V ⇒Zt

Zt
| �Wτ

)
, (A4)

yielding Eq. (6). The chain rule of the conditional mutual
information (CMI) facilitates the transition from Eq. (A1)
to Eq. (A2). Moreover, in the second term of Eq. (A2),

I (Zt ; C �V ⇒Zt
\P C �V ⇒Zt

Zt
| �Wτ, P

C �V ⇒Zt

Zt
), the parents of Zt are

contained in the condition set, which is the union of P
C �V ⇒Zt

Zt

and �Wτ , including the parents of Zt in C �V ⇒Zt
and the re-

maining parents not in the subgraph, respectively. Therefore,

FIG. 11. The cardinality of the estimated T , D, and J in
Eqs. (3), (4), and (6), respectively, in terms of the time lag τ for
each variable in the two time-series graphs constructed in Fig. 9.

due to the Markov property, given PZt
(included in the union

of �Wτ and P
C �V ⇒Zt

Zt
), Zt is independent of its nondescen-

dants, which contains both C �V ⇒Zt
\P C �V ⇒Zt

Zt
and the remaining

FIG. 12. The estimated D in Eq. (4) from the two networks
constructed in Fig. 9 as well as the corresponding threshold for
shuffle test with significance level α = 0.05.
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nodes in the condition set { �Wτ, P
C �V ⇒Zt

Zt
}, thus leading to

I (Zt ; C �V ⇒Zt
\P C �V ⇒Zt

Zt
| �Wτ, P

C �V ⇒Zt

Zt
) = 0.

APPENDIX B: CONSTRUCTION OF THE TIME-SERIES
GRAPHS FOR WATER CHEMISTRY DATA

The catchment chemistry data in the Upper Hafren in
Wales, sampled and analyzed every 7 h from March 2007
to Jan 2009, are available as the supporting information of
Ref. [17]. In this study, we use the logarithmic flow rate (ln Q)
and six water quality variables (i.e., Na+, Cl−, Al3+, Ca2+,
SO42−, and pH), as well as the data with flow-dependent
variations corrected [17]. We construct two time series graphs
for the raw data and the flow rate-corrected one, separately,
with the total number 2375 data points including gaps for each
graph. The existence of the gaps in the data would reduce the
lengths of samples in computing CMI or MI, thus potentially
worsening the estimation. To minimize this effect, we use the
whole dataset to get the sample data points for estimating MI
or CMI and then remove the data points containing gaps in the
samples [9].

The time-series graph is constructed by using Tigramite
algorithm [5,18,30,31], which is a modified PC algorithm
[22] and anchored on the conditional independence test to
remove any spurious relationship between two nodes. We
employ the k-nearest-neighbor (kNN) CMI-based conditional
independence test, with the number of nearest-neighbor
k = 100 (high k facilitates a low variance of the estimated
CMI [4]). Each test is conducted based on 100 samples with a
significance level α = 95%. The graphs are constructed with
a maximum time lag τmax = 5. The resulting dependencies
for the two networks are shown in Fig. 9, sketching the lag
function in terms of the momentary information transfer
[32] between each pair of lagged components. Based on
the two time-series graphs, D and T for each variable are
computed based on Eqs. (4) and (3), respectively, by using
kNN approach with k = 5. Figure 10 illustrates that more than
more 1000 data points in each case are used for computing
D with high dimensions. The dimensions of T , D, and J
are shown in Fig. 11. Further, to check the significance of
D, shuffle test is conducted for D with a significance level
of 95% based on 100 shuffles. The result of shuffle tests in
Fig. 12 shows most D are statistically significant.

[1] H. Haken, Information and Self-Organization (Springer-Verlag,
Berlin/Heidelberg, 2006).

[2] F. Rosas, P. A. M. Mediano, M. Ugarte, and H. J. Jensen,
Entropy 20, 793 (2018).

[3] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
[4] S. Frenzel and B. Pompe, Phys. Rev. Lett. 99, 204101 (2007).
[5] J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, Phys. Rev.

Lett. 108, 258701 (2012).
[6] P.-O. Amblard and O. J. J. Michel, Entropy 15, 113 (2013).
[7] J. Sun and E. M. Bollt, Physica D: Nonlin. Phenom. 267, 49

(2014).
[8] P. L. Williams and R. D. Beer, arXiv:1004.2515 (2010).
[9] A. E. Goodwell and P. Kumar, Water Resour. Res. 53, 5920

(2017).
[10] A. E. Goodwell and P. Kumar, Water Resour. Res. 53, 5899

(2017).
[11] A. E. Goodwell, P. Kumar, A. W. Fellows, and G. N.

Flerchinger, Proc. Natl. Acad. Sci. U.S.A. 115, E8604 (2018).
[12] P. Jiang and P. Kumar, Phys. Rev. E 97, 042310 (2018).
[13] C. W. J. Granger, Econometrica 37, 424 (1969).
[14] P. Kumar and B. L. Ruddell, Entropy 12, 2085 (2010).
[15] J. T. Lizier, J. Heinzle, A. Horstmann, J.-D. Haynes, and M.

Prokopenko, J. Comput. Neurosci. 30, 85 (2011).
[16] P. Jizba, H. Kleinert, and M. Shefaat, Physica A: Stat. Mech.

Appl. 391, 2971 (2012).
[17] J. W. Kirchner and C. Neal, Proc. Natl. Acad. Sci. U.S.A. 110,

12213 (2013).
[18] J. Runge, Phys. Rev. E 92, 062829 (2015).
[19] M. Eichler, Probab. Theory Relat. Fields 153, 233 (2012).
[20] T. M. Cover and J. A. Thomas, Elements of Information Theory,

Wiley Series in Telecommunications and Signal Processing
(Wiley-Interscience, Hoboken, NJ, 2006).

[21] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. Leimer,
Networks 20, 491 (1990).

[22] P. Spirtes, C. Glymour, and R. Scheines, Causation, Pre-
diction, and Search (MIT Press, Cambridge, MA, 2000),
Vol. 81.

[23] C. E. Shannon and W. Weaver, A Mathematical Theory of
Communication (University of Illinois Press, Urbana, IL, 1949).

[24] A. Kraskov, H. Stögbauer, and P. Grassberger, Phys. Rev. E 69,
066138 (2004).

[25] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Lett. 78, 4193 (1997).

[26] F. M. Atay, J. Jost, and A. Wende, Phys. Rev. Lett. 92, 144101
(2004).

[27] G. Paredes, O. Alvarez-Llamoza, and M. G. Cosenza, Phys.
Rev. E 88, 042920 (2013).

[28] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[29] J. W. Kirchner, X. Feng, and C. Neal, Nature 403, 524

(2000).
[30] J. Runge, V. Petoukhov, J. F. Donges, J. Hlinka, N. Jajcay, M.

Vejmelka, D. Hartman, N. Marwan, M. Paluš, and J. Kurths,
Nat. Commun. 6, 8502 (2015).

[31] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D.
Sejdinovic, arXiv:1702.07007 [stat.ME] (2017).

[32] J. Runge, J. Heitzig, N. Marwan, and J. Kurths, Phys. Rev. E
86, 061121 (2012).

[33] X. Feng, J. W. Kirchner, and C. Neal, J. Hydrol. 292, 296
(2004).

[34] G. Kramer, Directed information for channels with feedback,
Ph.D. thesis, Swiss Federal Institute of Technology, Zurich,
1998.

[35] C. Cafaro, W. M. Lord, J. Sun, and E. M. Bollt, Chaos: Interdisc.
J. Nonlin. Sci. 25, 043106 (2015).

012306-13

https://doi.org/10.3390/e20100793
https://doi.org/10.3390/e20100793
https://doi.org/10.3390/e20100793
https://doi.org/10.3390/e20100793
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.99.204101
https://doi.org/10.1103/PhysRevLett.99.204101
https://doi.org/10.1103/PhysRevLett.99.204101
https://doi.org/10.1103/PhysRevLett.99.204101
https://doi.org/10.1103/PhysRevLett.108.258701
https://doi.org/10.1103/PhysRevLett.108.258701
https://doi.org/10.1103/PhysRevLett.108.258701
https://doi.org/10.1103/PhysRevLett.108.258701
https://doi.org/10.3390/e15010113
https://doi.org/10.3390/e15010113
https://doi.org/10.3390/e15010113
https://doi.org/10.3390/e15010113
https://doi.org/10.1016/j.physd.2013.07.001
https://doi.org/10.1016/j.physd.2013.07.001
https://doi.org/10.1016/j.physd.2013.07.001
https://doi.org/10.1016/j.physd.2013.07.001
http://arxiv.org/abs/arXiv:1004.2515
https://doi.org/10.1002/2016WR020216
https://doi.org/10.1002/2016WR020216
https://doi.org/10.1002/2016WR020216
https://doi.org/10.1002/2016WR020216
https://doi.org/10.1002/2016WR020218
https://doi.org/10.1002/2016WR020218
https://doi.org/10.1002/2016WR020218
https://doi.org/10.1002/2016WR020218
https://doi.org/10.1073/pnas.1800236115
https://doi.org/10.1073/pnas.1800236115
https://doi.org/10.1073/pnas.1800236115
https://doi.org/10.1073/pnas.1800236115
https://doi.org/10.1103/PhysRevE.97.042310
https://doi.org/10.1103/PhysRevE.97.042310
https://doi.org/10.1103/PhysRevE.97.042310
https://doi.org/10.1103/PhysRevE.97.042310
https://doi.org/10.2307/1912791
https://doi.org/10.2307/1912791
https://doi.org/10.2307/1912791
https://doi.org/10.2307/1912791
https://doi.org/10.3390/e12102085
https://doi.org/10.3390/e12102085
https://doi.org/10.3390/e12102085
https://doi.org/10.3390/e12102085
https://doi.org/10.1007/s10827-010-0271-2
https://doi.org/10.1007/s10827-010-0271-2
https://doi.org/10.1007/s10827-010-0271-2
https://doi.org/10.1007/s10827-010-0271-2
https://doi.org/10.1016/j.physa.2011.12.064
https://doi.org/10.1016/j.physa.2011.12.064
https://doi.org/10.1016/j.physa.2011.12.064
https://doi.org/10.1016/j.physa.2011.12.064
https://doi.org/10.1073/pnas.1304328110
https://doi.org/10.1073/pnas.1304328110
https://doi.org/10.1073/pnas.1304328110
https://doi.org/10.1073/pnas.1304328110
https://doi.org/10.1103/PhysRevE.92.062829
https://doi.org/10.1103/PhysRevE.92.062829
https://doi.org/10.1103/PhysRevE.92.062829
https://doi.org/10.1103/PhysRevE.92.062829
https://doi.org/10.1007/s00440-011-0345-8
https://doi.org/10.1007/s00440-011-0345-8
https://doi.org/10.1007/s00440-011-0345-8
https://doi.org/10.1007/s00440-011-0345-8
https://doi.org/10.1002/net.3230200503
https://doi.org/10.1002/net.3230200503
https://doi.org/10.1002/net.3230200503
https://doi.org/10.1002/net.3230200503
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevLett.78.4193
https://doi.org/10.1103/PhysRevLett.78.4193
https://doi.org/10.1103/PhysRevLett.78.4193
https://doi.org/10.1103/PhysRevLett.78.4193
https://doi.org/10.1103/PhysRevLett.92.144101
https://doi.org/10.1103/PhysRevLett.92.144101
https://doi.org/10.1103/PhysRevLett.92.144101
https://doi.org/10.1103/PhysRevLett.92.144101
https://doi.org/10.1103/PhysRevE.88.042920
https://doi.org/10.1103/PhysRevE.88.042920
https://doi.org/10.1103/PhysRevE.88.042920
https://doi.org/10.1103/PhysRevE.88.042920
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1038/35000537
https://doi.org/10.1038/35000537
https://doi.org/10.1038/35000537
https://doi.org/10.1038/35000537
https://doi.org/10.1038/ncomms9502
https://doi.org/10.1038/ncomms9502
https://doi.org/10.1038/ncomms9502
https://doi.org/10.1038/ncomms9502
http://arxiv.org/abs/arXiv:1702.07007
https://doi.org/10.1103/PhysRevE.86.061121
https://doi.org/10.1103/PhysRevE.86.061121
https://doi.org/10.1103/PhysRevE.86.061121
https://doi.org/10.1103/PhysRevE.86.061121
https://doi.org/10.1016/j.jhydrol.2004.01.012
https://doi.org/10.1016/j.jhydrol.2004.01.012
https://doi.org/10.1016/j.jhydrol.2004.01.012
https://doi.org/10.1016/j.jhydrol.2004.01.012
https://doi.org/10.1063/1.4916902
https://doi.org/10.1063/1.4916902
https://doi.org/10.1063/1.4916902
https://doi.org/10.1063/1.4916902

