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The area of networks is very interdisciplinary and exhibits many applications in several fields of science.
Nevertheless, there are few studies focusing on geographically located d-dimensional networks. In this paper, we
study the scaling properties of a wide class of d-dimensional geographically located networks which grow with
preferential attachment involving Euclidean distances through r

−αA

ij (αA � 0). We have numerically analyzed
the time evolution of the connectivity of sites, the average shortest path, the degree distribution entropy, and the
average clustering coefficient for d = 1, 2, 3, 4 and typical values of αA. Remarkably enough, virtually all the
curves can be made to collapse as functions of the scaled variable αA/d . These observations confirm the exist-
ence of three regimes. The first one occurs in the interval αA/d ∈ [0, 1]; it is non-Boltzmannian with very-long-
range interactions in the sense that the degree distribution is a q exponential with q constant and above unity. The
critical value αA/d = 1 that emerges in many of these properties is replaced by αA/d = 1/2 for the β exponent
which characterizes the time evolution of the connectivity of sites. The second regime is still non-Boltzmannian,
now with moderately-long-range interactions, and reflects in an index q monotonically decreasing with αA/d

increasing from its critical value to a characteristic value αA/d � 5. Finally, the third regime is Boltzmannian-
like (with q � 1) and corresponds to short-range interactions.

DOI: 10.1103/PhysRevE.99.012305

I. INTRODUCTION

Networks are everywhere, from the Internet to social net-
works. We are living in the network age and the emergence
of more and more related research is natural. The theory of
networks has applications in a diversity of scientific fields,
such as medicine [1], cosmology [2], quantum information
theory [3], and social networks [4]. For a long time, it was dif-
fusely believed that the statistics governing complex networks
was only the Boltzmann–Gibbs (BG) one. However, in 2005
the connection between networks and nonextensive statistical
mechanics started to be explored [5–7], and it is presently very
active [8–14].

In the literature, systems with long-range interactions are
characterized by paired potentials that decay slowly with the
distance. A potential of the form 1/rα is typically said to be
long-range if 0 � α � d, where d is the spatial dimension
of the system. Some examples of such potentials are grav-
itational systems, two-dimensional hydrodynamic systems,
two-dimensional elastic systems, charged systems, and dipole
systems. Unlike the case of classical systems with short-
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range interactions (usually described within BG statistics),
where many results are well understood, there is a lack
of complete knowledge about the dynamic and statistical
properties of systems with long-range interactions (for which
BG statistics fails). In this sense, many theories have been
proposed to understand the systems that interact at long-
range, and q statistics has shown satisfactory results for this
regime [15–20].

In 2016, we studied a d-dimensional network model where
the interactions are short- or long-ranged depending on the
choice of the parameter αA � 0. The results that were ob-
tained reinforced the connection between nonextensive statis-
tical mechanics and the networks theory [13]. In that work,
we found some quantities which present a universal behavior
with respect to the particular variable αA/d and observed
the existence of three regimes. In the first one; namely, 0 �
αA/d � 1, q is constant and larger than unity, characterizing a
non-Boltzmannian regime with very-long-range interactions.
In the second one, q monotonically decreases as αA/d in-
creased from its critical value αA/d = 1 to a characteristic
value αA/d � 5. The third regime, above this characteristic
value [21], is Boltzmannian-like (q � 1) and corresponds to
short-range interactions. For the β exponent (defined here
below) the behavior is somewhat different: a first regime
is exhibited for 0 � αA/d � 1/2, a second regime appears
between αA/d = 1/2 and a characteristic value once again
close to 5, and a third regime, Boltzmannian-like with q � 1,
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between this value and infinity; it cannot be excluded that the
purely Boltzmannian behavior only occurs for αA/d → ∞.

Our model was constructed through two stages: the number
of the sites increases at time and the connections between the
sites follow a preferential attachment rule, given by

�i ∝ kiri
−αA . (1)

Each newly created site can connect to m others. In the
present work, all results were obtained for m = 1. The growth
of the network starts with one site at the origin, and then,
we stochastically locate a second site (and then a third, a
fourth, and so on up to N ) through the d-dimensional isotropic
distribution

p(r ) ∝ 1

rd+αG
(αG > 0; d = 1, 2, 3, 4), (2)

where r � 1 is the Euclidean distance from the newly arrived
site to the center of mass of the pre-existing system. For more
details see Ref. [13]. This network is characterized by three
parameters αA, αG, and d, where αA controls the importance
of the distance in the preferential attachment rule, αG is
associated with the geographical distribution of the sites, and
d is the dimension of the system.

The connectivity distribution was the only property stud-
ied in the previous work. Our results showed that the de-
gree distribution of this model is very well described by
the q-exponential functions that emerge from nonexten-
sive statistical mechanics [22–24]; more precisely, P (k) ∼
eq

−k/κ ∀ (αA, αG, d ), with ez
q ≡ [1 + (1 − q )z]

1
1−q . The rela-

tion between q and γ (the exponent of the asymptotic power
law) is given by γ ≡ 1/(q − 1) (see Ref. [5] for more details).
When αA = 0 we recover the Barabási-Albert (BA) model
[25] with q = 4/3 (γ = 3). Remarkably enough, our previ-
ous results showed that the index q and κ exhibit universal
behavior with respect to the scaled variable αA/d (∀ d).

Motivated by the results in Ref. [13], in the present work
we are interested in investigating, for the same network
model, other possible universal behavior with respect to
the same scaled variable αA/d. Besides that, we also are
interested in verifying the existence of the same three regimes
that we have previously observed. We have analyzed the
exponent β, which is associated with the time evolution of the
connectivity of sites, the average shortest path 〈l〉, the degree
distribution entropy Sq , and the average clustering coefficient
〈C〉. Along the lines of Ref. [13], in order to analyze these
properties, we choose the typical value αG = 2 and vary the
parameters (αA, d ).

II. RESULTS

A. Time evolution of the connectivity of sites

One of the most common analyses that are done in net-
works theory is to verify how the degree of a site changes in
time. This property is usually referred to as connectivity time
evolution and it usually follows the behavior

ki (t ) ∝
(

t

ti

)β

, where ti � t. (3)

We analyzed the time evolution of the connectivity of sites for
typical values of αA and d = 1, 2, 3, 4 (see Fig. 1). To do that,
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FIG. 1. Time evolution of the connectivity of the site i = 10
in a log-log plot for different values of αA and d = 1, 2, 3, 4.
The figure sublabels refer to (a) αA = 0, (b) αA = 2, (c) αA = 3,
(d) αA = 5, (e) αA = 6, and (f) αA = 8. We can see that ki ∝
(t/ti )β(αA,d ) where β(αA, d ) is the asymptotic slope of the curves.
For αA = 0, independent of the dimension, we recover the BA model
with β = 1/2, and when αA → ∞ the dimension does not matter
either.

we choose the site i = 10 (the result is independent of i), and
then we compute the time evolution of its connectivity. All
simulations were made for 105 sites and 103 samples.

We observe that the dynamic exponent β is not constant, in
discrepancy with its value for the BA model: β decreases with
αA and increases with d [see Fig. 2(a)]. Moreover, we notice
that β exhibits universal curves with respect to the scaled vari-
able αA/d. When αA/d � 0 up to the critical value αA/d =
1/2, the system is in the same universality class of the BA
model with β = 1/2 and it is in the non-Boltzmannian very-
long-range interactions regime (q is constant above unity).
From αA/d > 1/2 on, β < 1/2 and decreases nearly expo-
nentially with αA/d down to the value 0.11 for αA/d ≈ 5.
For αA/d above this value up to infinity, β remains practically
constant, indicating a Boltzmannian-like regime (with q � 1).
It cannot be excluded that the terminal value of β is achieved
only at the limit αA/d → ∞ [see Fig. 2(b)].

B. Average shortest path length

The average shortest path length is a concept, in network
theory, defined as the average number of steps along the
shortest paths for all possible pairs of sites of the network.
In real networks, a short path makes it easier to transfer
information and can reduce costs. Mathematically, the average
shortest path length is defined by

〈l〉 = 2

N (N − 1)

∑
i<j

dij , (4)

where dij is the shortest path (smaller number of edges)
between the sites i and j . We have computed the average
shortest path length 〈l〉 for typical values of αA and ∀ d.
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FIG. 2. (a) β decreases with αA and increases with d . (b) As we
can see, from the rescaling αA → αA/d , all the curves of β collapse,
and three regions clearly emerge. The first one is from αA/d = 0
up to the critical value αA/d = 1/2, β = 1/2. The second regime,
from the critical value αA/d = 1/2 up to the characteristic value
αA/d � 5, β decreases nearly exponentially. When αA/d � 5, β

reaches a terminal value β � 0.11, and the Bolzmannian-like regime
is achieved. The simulations have been run for 103 samples and
N = 105.

When αA = 0 the results are the same as the BA model where
〈l〉 ∼ ln N (for m = 1), independent of the dimension of
the system. We have numerically verified that 〈l〉 depends
on (αA, d), increasing with αA and decreasing with d [see
Fig. 3(a)]. Remarkably enough, all the curves can be made to
collapse through the scalings αA → αA/d and 〈l〉 → 〈l〉(1 +
αA/d )−1 [see Fig. 3(b)]. Again, we can see the existence of
three regimes. The non-Boltzmannian very-long-range inter-
actions go up to the critical value αA/d = 1, as we can see
in the inset plot [Fig. 3(b)]. The non-Boltzmannian moderate
long-range interactions go to up to the characteristic value
αA/d � 5, as can be seen from the derivative of the collapse
curve. And finally, from αA/d � 5 on, the Boltzmannian-like
limit is reached.

C. Degree distribution entropy

The computation of the entropy in complex networks is
important to verify the heterogeneity and structure of the
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FIG. 3. Shortest path length. (a) We can see that the chemical
distance 〈l〉 increases with αA and decreases with d . (b) We can
observe that the curves exhibit universality when we rescale the axis
replacing αA → αA/d and 〈l〉 → 〈l〉(1 + αA/d )−1. In the inset plot
we show the derivative collapsed curve in order to see more precisely
the existence of the three regimes. The critical value αA/d = 1, show
us the end of the non-Boltzmanninan very-long-range interactions.
The second regime, the non-Boltzmannian moderate long-range
interactions, go to up the characteristic value αA/d � 5. Finally,
the third regime, from the characteristic value up to αA/d → ∞,
we see the Boltzmannian-like behavior characterizing short-range
interactions. This results are for N = 104 and 103 samples.

network [26]. The degree distribution entropy measures the
quantity of randomness present in the connectivity distribu-
tion. In our simulations, it is possible to realize the change
of the topology of the network. When αA = 0 the network
is scale-free with an asymptotically power-law connectivity
distribution. As we increase the value of αA the randomness of
the degree distribution also increases. For αA → ∞ (q → 1)
the network is not scale-free anymore since it presents an ex-
ponential degree distribution, in agreement with some results
available in the literature [27].

We have computed the degree distribution entropy S for
each value of αA and d = 1, 2, 3, 4. We computed the q

entropy Sq from nonextensive statistical mechanics, and the
Boltzmann–Gibbs (BG) entropy SBG (alternatively referred
to as the Shannon entropy) for the same connectivity distri-
butions studied in Ref. [13] (see Fig. 4). The BG entropy
was calculated from SBG = ∑

k pk ln(1/pk ), where pk is the
probability to find sites with k degree and the sum is over k =
1 up to kmax under the constraint

∑
k pk = 1. Since we have
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FIG. 4. Measure of entropy in complex networks. Comparison
between q entropy Sq and the standard entropy SBG. The BG entropy
was calculated in the network by using SBG = −k

∑
k pk ln pk (we

used k = 1), whereas the q entropy was calculated by using Sq =
−∑

k p
q

k lnq pk , where pk is the probability of finding a site with
connectivity k and

∑
k pk = 1. In the region of long-range interac-

tions we can see that Sq is very different from SBG, exhibiting that
Sq is more sensitive for describing this model in this domain. When
αA → ∞ (q → 1) both entropies converge to the same asymptotic
behavior. The sublabels refer to (a) d = 1, (b) d = 2, (c) d = 3, and
(d) d = 4.

P (k) ∼ e
−k/κ
q , to each value αA/d, a pair of parameters (q, κ )

is associated. This enables, in particular, the computation of
the q entropy Sq ≡ ∑

k pk lnq (1/pk ) for the same data, where
lnq z ≡ z1−q−1

1−q
is the inverse of the q-exponential function.

When αA → ∞ (q → 1), both entropies converge to the same
asymptotic limit. This result was of course expected since, for
q = 1, the q entropy recovers the standard entropy SBG.

Our results show that there is a region where the two
entropies are different. It is known that the BG entropy is
not appropriate for systems where long-range interactions are
allowed. So, this result provides evidence that Sq is adequate
to describe the interactions in this nonextensive domain. Be-
sides this result, we also studied the dependence of Sq with
both (αA, d ) and αA/d. We verified that, although Sq depends
on αA and d separately [see Fig. 5(a)], the curves exhibit
universal behavior with regard to the scaled variable αA/d

[see Fig. 5(b)]. Once again, we clearly see the existence of
three regimes. In the first one, Sq has a constant value up to the
critical value αA/d = 1. From that value on, the characteristic
value αA/d � 5, Sq increases nearly exponentially and then,
from αA/d � 5 on, the Boltzmannian-like limit is achieved.

D. Average clustering coefficient

The average clustering coefficient is an important measure
in the theory of networks and is associated with how the
neighbors of a given node are connected to each other. This
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FIG. 5. Entropy dependence of αA and d = 1, 2, 3, 4. (a) Sq

increases with αA and decreases with d . (b) Once again, we obtain
the collapse of Sq when rescaling αA → αA/d . The entropy Sq

has a constant value up to the critical value αA = 1 and a nearly
exponential behavior emerges up to the characteristic value αA � 5.

coefficient is defined as follows:

〈C〉 = 1

N

∑
i

2ni

ki (ki − 1)
, (5)

where ki is the degree of the site i, ni is the number of con-
nections between the neighbors of the site i, and ki (k1 − 1)/2
is the total number of possible links between them.

To compute it, we run our network model for m = 2 (be-
cause 〈C〉 = 0 when m = 1) and analyzed how 〈C〉 changes
with both (αA, d ) and αA/d. We see that 〈C〉 increases with
αA and decreases with d [see Fig. 6(a)]. The larger αA the
more aggregated the network is. In the standard Barabási–
Albert model (αA = 0), the clustering coefficient is influenced
by the size N of the network, such that 〈C〉 can be numerically
approximated by 〈C〉 ∼ N−0.75 [in later works, Barabási an-
alytically claimed that 〈C〉 ∼ (log N )2/N ; for further details
see Ref. [28] ]. From this behavior we can see that, in the
thermodynamical limit (N → ∞), 〈C〉 → 0. Thus, we have
numerically verified that, when N → ∞, 〈C〉 → 0 not only
for αA/d = 0, but for 0 � αA/d � 1 [see the inset plot in
Fig. 6(b)]. We also analyzed how the clustering coefficient
changes with N and we found that 〈C〉 ∼ N−ε(αA,d ). This
power-law form was in fact expected since it agrees with
the numerical result previously found for the particular case
αA = 0. However, surprisingly enough, when αA � 2d the
clustering coefficient does not change with N anymore (see
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FIG. 6. Clustering coefficient for typical values of αA and d =
1, 2, 3, 4. (a) 〈C〉 increases with αA but it decreases with d . (b)
All curves collapse with the rescaling 〈C〉 → 〈C〉[(αA + 1)(d +
2)]/αA and αA → αA/d . In the thermodynamical limit 〈C〉 → 0
from αA = 0 up to the critical value αA/d = 1. In the inset plot we
show an example for d = 1 and αA = 0.75. From the characteristic
value αA/d � 5 on we reach the Boltzmannian-like regime.

Fig. 7). Analyzing how ε(αA, d ) changes with both (αA, d )
and αA/d, we see that this exponent decreases with αA,
but increases with d [see Fig. 8(a)]. Although we did not
get collapse for these curves, by rescaling αA → αA/d we
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FIG. 7. Clustering coefficient as a function of N for (a) d = 1,
(b) d = 2, (c) d = 3, and (d) d = 4. 〈C〉 decreases with N , but
increases with αA. Interestingly, from αA ∼ 2d on, 〈C〉 does not
change any more with N .
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FIG. 8. Analysis of the exponent ε(αA, d ). (a) This graph re-
minds us the behavior of the maximum Lyapunov exponent [29]. The
exponent ε(αA, d ) decreases with αA and does so faster for smaller
d . (b) Although we did not get collapse for these curves through
the rescaling αA → αA/d , we can clearly see that all curves appear
to perfectly intersect at αA/d = 1. This result strongly indicates a
change of regime, with something special occurring at the value
αA/d = 1. When αA/d � 2 we observe that ε → 0 agrees with the
result showed in Fig. 7.

clearly can see that all curves perfectly intersect in αA/d = 1,
strongly indicating a change of regime [see Fig. 8(b)]. The
results found for ε(αA, d ) are somewhat reminiscent of
the κ (αA, d ) exponent associated with the maximal Lya-
punov exponent for the generalized Fermi-Pasta-Ulam (FPU)
model [29].

III. CONCLUSION

Our present results reveal an intriguing ubiquity of
the variable αA/d for the class of networks focused on
here, where both topological and metric aspects exist.
Surprisingly, the use of this variable indeed provides collapses
or quasicollapses for all the properties studied here. Another
interesting point is the existence of three, and not only
two, regimes. The first one is a non-Boltzmannian regime
characterized by very-long-range interactions and it goes
from αA/d = 0 up to the critical value αA/d = 1, except for
β whose critical value turns out to be αA/d = 1/2, curiously
enough. The second one, from the critical value up to the
characteristic value αA/d � 5, is still non-Boltzmannian and
corresponds to moderate long-range interactions. The third
and last regime, from αA/d � 5 on, is Boltzmannian-like and
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is characterized by short-range interactions. The existence of
the intermediate regime has also been observed in classical
many-body Hamiltonians; namely, the α-generalized XY
[16,17] and Heisenberg [18] rotator models as well as the
Fermi-Pasta-Ulam model [19,20,29–31].

The present work neatly illustrates a fact which is not
always obvious to the community working with complex
networks; more precisely, those exhibiting asymptotic scale-
free behavior. Such networks frequently belong to the realm
of applicability of nonextensive statistical mechanics based
on nonadditive entropies, and to its superstatistical extensions
[32]. Such connections between thermal and geometrical
systems are by no means rare in statistical mechanics since
the pioneering and enlightening Kasteleyn and Fortuin theo-
rem [33]. In the present scenario, such a connection can be
naturally understood if we associate half of each two-body
interaction energy between any two sites of the Hamiltonian
to each of the connected sites, thus generating, for each node,
a degree (number of links) in the sense of networks. Through
this perspective, it is no surprise that the degree distribution
corresponds to the q-exponential function which generalizes

the Boltzmann–Gibbs weight within thermal statistics. The
fact that in both of these geometrical and thermal systems,
the scaled variable αA/d plays a preponderant role becomes
essentially one and the same feature. Mathematically based
contributions along such lines would be more than welcome.
Last but not least, it would surely be interesting to understand
how come the critical point of the β exponent differs from the
all the critical points that we studied here. This is somewhat
reminiscent of the two-dimensional XY ferromagnetic model
with short-range interactions for which nearly all properties
exhibit a singularity at the positive temperature of Kosterlitz
and Thouless [34,35], whereas the order-parameter critical
point occurs at zero temperature.
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