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Synchronization phenomena are of broad interest across disciplines and increasingly of interest in a multiplex
network setting. For the multiplex network of coupled Rössler oscillators, here we show how the master
stability function, a celebrated framework for analyzing synchronization on a single network, can be extended
to certain classes of multiplex networks with different intralayer and interlayer coupling functions. We derive
three master stability equations that determine, respectively, the necessary regions of complete synchroniza-
tion, intralayer synchronization, and interlayer synchronization. We calculate these three regions explicitly
for the case of a two-layer network of Rössler oscillators and show that the overlap of the regions determines the
type of synchronization achieved. In particular, if the interlayer or intralayer coupling function is such that the
interlayer or intralayer synchronization region is empty, complete synchronization cannot be achieved regardless
of the coupling strength. Furthermore, for any network structure, the occurrence of intralayer and interlayer
synchronization depends mainly on the coupling functions of nodes within a layer and across layers, respectively.
Our mathematical analysis requires that the intralayer and interlayer supra-Laplacians commute. But, we show
this is only a sufficient, and not necessary, condition and that the results can be applied more generally.
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I. INTRODUCTION

Synchronization in a network of connected elements is
essential to the proper functioning of a wide variety of nat-
ural and engineered systems, from brain networks to electric
power grids. This has stimulated a large number of investi-
gations into synchronization properties of complex networks,
with small-world, scale-free, and other types of topologies
[1–15]. Yet, many synchronization phenomena, as in electrical
power grids, do not involve a single network in isolation but
rely on the complete synchronization of a collection of smaller
networks. And more generally, beyond single networks, we
are now understanding that interactions between networks
are increasingly important and that interactions can impact
the dynamical processes [16–21]. One paradigm that captures
many real-world interdependent networks is that of multiplex
networks. Here, the same set of nodes exist in multiple
layers of networks, where each layer represents a different
interaction type, the internal state of the corresponding nodes
in each layer can be distinct, and the connectivity pattern
between nodes in each layer can be distinct [22,23]. As an
example, consider the online social system of a set of indi-
viduals. They may interact on Twitter or on Facebook or on
Linked-in or on some combination of all three, and each layer
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can have its own connectivity pattern, yet there is typically
influence propagated between them [24]. Given the need to
study dynamical processes on layered complex networks, and
the broad applicability of synchronization, here we study
synchronization phenomena on multiplex networks, an area
that has attracted increasing attention in the past few years.

One of the most important methods to study network
synchronization on single networks is the master stability
function (MSF) method proposed by Pecora and Carroll [25].
As established via the MSF approach, whether or not a
network can achieve synchronization is determined not only
by the network structure, but also by the nodal dynamics and
by the inner coupling function which describes the interac-
tions among the different components of the state vectors of
connected nodes [26–28]. In other words, the nodal dynamics,
the network topology, and the inner coupling function are
three basic elements in studying network synchronization.
The latter two are paid most main attention, and the former
is generally set as some specific chaotic system, such as
Lorenz, Chen’s, Chua circuit, and Rössler systems, and so on.
Here, Rössler chaotic system is selected as the network nodal
dynamics due to the fact that the system can be implemented
by circuits and applied to secure communication. More im-
portantly, we focus on the different inner coupling functions
within and across layers in the multiplex network setting, as
well as the different intralayer topologies.

Current studies of synchronization phenomena in multi-
plex networks analyze a multiplex network as a single large
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composite network with the topology being described by a
supra-Laplacian matrix. This requires that the inner coupling
function is the same regardless of whether the nodes are linked
by an intralayer or interlayer edge and the MSF framework
can thus be directly applied. The eigenvalues of this supra-
Laplacian are then used to analyze the stability of the state of
complete synchronization in multiplex networks. For exam-
ple, Solé-Ribalta et al. [29] investigated the spectral properties
of the Laplacian of multiplex networks, and discussed the
synchronizability via the eigenratio of the Laplacian matrix.
Aguirre et al. [30] studied the impact of the connector node
degree on the synchronizability of two star networks with one
interlayer link and showed that connecting the high-degree
(low-degree) nodes of each network is the most (least) effec-
tive strategy to achieve synchronization. Xu et al. [31] inves-
tigated the synchronizability of two-layer networks for three
specific coupling patterns, and determined that there exists an
optimal value of the interlayer coupling strength for maximiz-
ing complete synchronization in the two-layer networks they
analyze. Li et al. [32] investigated the sychronizability of a
duplex network composed of two star networks with two in-
terlayer links by giving an analytical expression containing the
largest and the smallest nonzero eigenvalues of the Laplacian
matrix, the link weight, as well as the network size.

In 2012, Sorrentino et al. [33,34] considered an innovative
“hypernetwork” model consisting of one set of N nodes that
interact via multiple types of coupling functions. Note the
contrast with a multiplex network, where a set of N nodes
exists on each one of M distinct layers (for a total of M × N

nodes), and each node can be in a different state in each
layer. (See, for instance, Fig. 1.) In the “hypernetwork” model
there are only N nodes in total and each node can be in only
one state at any given time. As such, the focus is on complete
synchronization and three situations are found where the
network topology is such that one can decouple the effects
of interaction functions from the structure of the networks
and apply the MSF approach [33,34]. Extremely recently,
del Genio et al. extended this analysis to a broader range
of scenarios, again using an MSF approach [35], and show
how the “hypernetwork” model of [33,34] is equivalent to a
network where nodes have many different interaction types
(or “layers” of interaction). Although these works consider
that nodes can interact with one another via different coupling
functions, they do not capture the richness of phenomena
that can occur in multiplex networks such as intralayer and
interlayer synchronization.

(a) (b)

c c

d d

FIG. 1. Schematic representation of (a) intralayer synchroniza-
tion and (b) interlayer synchronization, in a multiplex network of
two layers.

Only limited studies thus far have focused on intralayer and
interlayer synchronization. For example, Gambuzza et al. [36]
analyzed synchronization of a population of oscillators in-
directly coupled through an inhomogeneous medium. The
system is formalized in terms of a two-layer network, where
the top layer is composed of disconnected oscillators, and
the bottom layer consists of oscillators coupled according
to a given topology, and each node in the top layer is con-
nected to its counterpart in the bottom layer. By numerical
simulations, they have shown the onset of intralayer syn-
chronization without interlayer coherence, that is, a state in
which the nodes of a layer are synchronized between them
without being synchronized with those of the other layer.
Shortly afterwards, Sevilla-Escoboza et al. [37] investigated
the interlayer synchronization in a duplex network of identical
layers, and showed that there are instances where each node
in a given layer can synchronize with its replica in the other
layer irrespective of whether or not intralayer synchronization
occurs. These findings into specific systems provide useful
foundations for elucidating a more fundamental approach to
analyzing synchronization phenomena in multiplex networks.
In fact, as we will show herein, master stability equations
can be derived to systematically predict when intralayer and
interlayer synchronization are simultaneously supported and
when they are not simultaneously supported for certain classes
of multiplex networks.

Based on the above motivations, here we develop a master
stability function method which captures an essential feature
of multiplex networks, that the interlayer coupling function
can be distinct from the intralayer coupling function. Thus,
distinct from previous approaches, we can analyze different
kinds of coherent behaviors, including complete synchroniza-
tion, intralayer synchronization, and interlayer synchroniza-
tion in multiplex networks, however, we are restricted to cer-
tain classes of topologies. In particular, we derive the master
stability equation for a multiplex network where the supra-
Laplacian of intralayer connections and that of interlayer
connections commute, as defined in detail below. We further
derive two reduced forms of the master stability equation
corresponding to only interlayer or intralayer interactions. We
then show how three different necessary regions for synchro-
nization can be calculated from the MSF of the three master
stability equations. Finally, we show how to explicitly apply
the multiplex MSF by analyzing a specific example of two-
layer network of Rössler oscillators with identical intralayer
topological structures and one-to-one interlayer connections.
For broader applicability of this multiplex MSF approach,
we further illustrate that the three master stability equations
can still be used to predict the area of synchronization for
some classes of multiplex networks with noncommutative
supra-Laplacians.

II. A MASTER STABILITY FUNCTION FRAMEWORK
FOR CLASSES OF MULTIPLEX NETWORKS

A. A multiplex network model

We consider a multiplex network consisting of M layers
each consisting of N nodes. The state of the ith node in
the kth layer is specified by x (k)

i = (x (k)
i1 , x

(k)
i2 , . . . , x

(k)
im )�, an
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m-dimensional state vector. The evolution of the full multiplex
system can be written as

ẋi
(k) = f

(
x (k)

i

) − c

N∑
j=1

l
(k)
ij H

(
xj

(k)
) − d

M∑
l=1

dkl�
(
x (l)

i

)
,

i = 1, 2, . . . , N ; k = 1, 2, . . . , M (1)

where ẋi
(k) = f (x (k)

i ) (i = 1, 2, . . . , N ; k = 1, 2, . . . , M )
describes the isolated dynamics for the ith node in the kth
layer, and f (·) : Rm → Rm is a well-defined vector function,
H (·) : Rm → Rm and c are the inner coupling function and
coupling strength for nodes within each layer, respectively,
and �(·) : Rm → Rm and d are the inner coupling function
and coupling strength for nodes across layers, respectively.
For simplicity and clarity, here we let H (x) = H x and
�(x) = �x, namely, the coupling functions between nodes
are linear (thus we can also call H and � inner coupling
matrices). Furthermore, the inner coupling matrix for nodes
within one layer H is identical for all layers and the inner
coupling matrix for nodes across two layers � is the same for
all pairs of layers.

Elements l
(k)
ij describe the Laplacian matrix of nodes within

the kth layer. Explicitly, if the ith node is connected with
the j th node within the kth layer, l

(k)
ij = −1, otherwise l

(k)
ij =

0, and l
(k)
ii = −∑N

j=1 l
(k)
ij , for i, j = 1, 2, . . . , N and k =

1, 2, . . . , M . Similarly, if a node in the kth layer is connected
with its replica in the lth layer, dkl = −1, otherwise dkl = 0,
and dkk = −∑M

l=1 dkl , for k, l = 1, 2, . . . , M .
For simplicity, denote

x (k) =

⎛
⎜⎜⎜⎜⎝

x (k)
1

x (k)
2
...

x (k)
N

⎞
⎟⎟⎟⎟⎠, f̃ (x (k) ) =

⎛
⎜⎜⎜⎜⎝

f
(
x (k)

1

)
f

(
x (k)

2

)
...

f
(
x (k)

N

)

⎞
⎟⎟⎟⎟⎠,

x =

⎛
⎜⎜⎜⎝

x (1)

x (2)

...
x (M )

⎞
⎟⎟⎟⎠, F (x) =

⎛
⎜⎜⎜⎝

f̃ (x (1) )
f̃ (x (2) )

...
f̃ (x (M ) )

⎞
⎟⎟⎟⎠,

then the evolution of the multiplex network [Eq. (1)] can be
rewritten as

ẋ = F (x) − c(LL ⊗ H )x − d(LI ⊗ �)x, (2)

where LL stands for the supra-Laplacian of intralayer connec-
tions and LI for the supra-Laplacian of interlayer connections.
In detail,

LL =
M⊕
l=1

L(k) =

⎛
⎜⎜⎜⎝

L(1)

L(2)

. . .
L(M )

⎞
⎟⎟⎟⎠

and LI = LI ⊗ IN . Here,
⊕

is the direct sum operation,
IN is the N × N identity matrix, ⊗ is the Kronecker prod-
uct operation, L(k) = (l(k)

ij )N×N is the Laplacian matrix of
nodes within the kth layer, and LI = (dkl )M×M represents

the interlayer Laplacian matrix. More details about supra-
Laplacians and multiplex network models can be found in
Refs. [18,23,29,31,32] and references therein.

B. Three master stability equations

The master stability function method [25] is one of the
most important methods to study stability of synchronized
coupled identical systems. It simplifies a large-scale net-
worked system to a node-size system via diagonalization and
decoupling, as long as the inner coupling functions for all
node pairs are identical. Thus, determining whether a network
can reach synchronization can be turned into determining
whether all the network characteristic modes fall into the
corresponding synchronized regions. In the following, we will
establish a master stability framework for multiplex networks
with nonidentical interlayer and intralayer inner coupling
functions.

According to the idea of the master stability framework
[25], to investigate network synchronization, we can linearize
the dynamical equation (2) at 1M ⊗ 1N ⊗ s, where s is a
synchronous state of the network satisfying ṡ = f (s) and 1M

denotes an M-dimensional vector with all entries being 1. We
thus obtain the following variational equation:

ξ̇ = [IM×N ⊗ Df (s) − c(LL ⊗ H ) − d(LI ⊗ �)]ξ , (3)

where ξ = x − 1M ⊗ 1N ⊗ s and IM×N is the identity matrix
of order M × N .

Suppose that LL and LI are symmetric matrices, and
satisfy LLLI = LILL. After diagonalization and decoupling
(see Appendix B for details), we get the multiplex master
stability equation for a system described by Eq. (1):

ẏ = [Df (s) − αH − β�] y, (4)

where α = cλ, β = dμ, λ and μ are the eigenvalues of LL

and LI , respectively, and satisfy λ2 + μ2 �= 0.
Since this equation may be a time-varying system, partic-

ularly if s(t ) is a function of time, its eigenvalues may not
be useful for determining the stability. Therefore, the largest
Lyapunov exponent (LLE) of Eq. (4) is used instead, which
is a function of α and β, denoted σ (α, β ) and called the
multiplex master stability function for Eq. (1). Please see
Appendix A for more information about Lyaponuv exponents.

When λ �= 0 and μ = 0, there are no interlayer couplings
regardless of d, for d arbitrarily chosen in [0, +∞), and
Eq. (4) reduces to

ẏ = [Df (s) − αH ] y. (5)

It is clear that Eq. (5) becomes exactly the master stability
equation of each independent intralayer network (no interlayer
couplings).

Similarly, when λ = 0 and μ �= 0, we can obtain the fol-
lowing equation:

ẏ = [Df (s) − β�] y, (6)

regardless of coupling strength c, for c arbitrarily chosen
in [0, +∞). Equation (6) becomes exactly the master sta-
bility equation for each independent interlayer network (no
intralayer couplings).
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For a single-layer network, a necessary condition for the
synchronization manifold to be stable is that the largest Lya-
punov exponent σ (α) of Eq. (5) is less than zero [38]. In
analogy to a single layer, for the multiplex master stability
equation (4), σ (α, β ) < 0 is a necessary condition for stability
of the synchronization manifold in a multiplex network.

It is worth noting in particular the case when the intralayer
and interlayer coupling functions are identical. Here, H = �,
and Eq. (4) turns into ẏ = [Df (s) − γH ] y (with γ = α +
β). This is the master stability equation for the corresponding
single composite network where the inner coupling pattern
(function) between any two nodes is identical, and a single
supra-Laplacian can describe its topology. That is to say, the
master stability equation of the single composite network is a
special case of Eq. (4).

The assumption that LL and LI are symmetric and satisfy
the commutativity condition is an important condition for de-
coupling the system and restricts our approach from applying
to the full class of multiplex networks. But, this assumption
can be relaxed, as it is only a sufficient but not a necessary
condition. First, we consider the case when LL and LI are
commutative but are nonsymmetric. As shown in Appendix E,
the same master stability equations (4)–(6) [which correspond
to Eqs. (E10), (E9), and (E6), respectively] can be derived
provided that the multiplex network has intralayer topology
that is identical on each layer and that both the intralayer
Laplacian matrix LL and the interlayer Laplacian matrix LI

can be diagonalizable and have real eigenvalues. There are im-
portant classes of real-world networks that fit this paradigm,
such as the continuously operating reference stations (CORS)
geospatial information infrastructure [39–41] discussed in
detail in Appendix F.

Next, we consider the case when LL and LI do not
commute. As shown in the simulation results (Figs. 9–12)
with two-layer Rössler network with noncommutative supra-
Laplacians, the three master stabilty equations (4)–(6) can
be still used to predict network synchronization behaviors.
In particular, for duplex networks, if the network topology
is different on each layer, but there is one-to-one identical
weighted coupling of nodes between layers, we can predict
complete synchronization and intralayer synchronization. If
the topology on each layer is identical, but the one-to-one
weighted coupling is not identical, we can predict complete
synchronization and interlayer synchronization. (See Figs. 11
and 12 for full details.)

C. Synchronized regions

Using the multiplex master stability equations developed
above, we can analyze three types of synchronization behav-
iors: complete synchronization, intralayer synchronization,
and interlayer synchronization. Here, we define the regions
that support each behavior and in the subsequent sections and
Appendices we show that it is the overlap of these regions that
determines the type of sychronization pattern displayed by a
multiplex network.

For the full multiplex network, from the multiplex master
stability equation (4) we can calculate the region

Rα,β = {(α, β )|σ (α, β ) < 0},

which is called the joint synchronized region (which sup-
ports complete synchronization of the network). Whenever
σ (α, β ) < 0, perturbations transverse to the synchronization
manifold die out, and the network is said to be synchronizable.

From Eq. (5), we can get the region for intralayer syn-
chronization. The region depends only on the value of the
parameter α, but to later allow comparison across the full
parameter space we explicitly include the parameter β in the
definition of the region,

RIntra
α,β = {(α, β )| σ (α) < 0},

where σ (α) is the largest Lyapunov exponent for master
stability equation (5). Similarly, from Eq. (6), we obtain the
region for interlayer synchronization

RInter
α,β = {(α, β )|σ (β ) < 0}.

We call these regions in the parameter space of (α�0, β�0)
the corresponding synchronized regions with respect to α

and β.
When the network topological structures are specified,

we can determine λ and μ (the eigenvalues of LL and LI )
directly, and then the regions Rα,β , RIntra

α,β , and RInter
α,β can be

parametrized simply in terms of coupling strengths c and d,
denoted by Rc,d , RIntra

c,d , and RInter
c,d . We call these regions the

corresponding synchronized regions with respect to couplings
c and d.

III. TWO-LAYER NETWORK OF
RÖSSLER OSCILLATORS

With the multiplex MSF framework developed, we now
analyze in more depth a specific example of a two-layer
network of Rössler oscillators and calculate the different types
of synchronized regions.

The famous Rössler chaotic oscillator is described as

ẋ = − y − z, ẏ = x + ay, ż = z(x − c) + b, (7)

where a = b = 0.2 and c = 9. This is the function f in the
multiplex network Eq. (1). That is, the state of each node in the
network is a three-dimensional vector with each component
evolving by Eq. (7). For inner coupling matrices H and �,
we consider the family of choices that fit the simplest form
Iij ∈ R3×3 (where i, j = 1, 2, 3), which represents a matrix
whose (i, j ) element is one and other elements are zero. The
interlayer topology is set to be one-to-one connection, that is
to say, each node in one layer is connected to a counterpart
node in the other layer.

Next, we first give an outline of the intralayer and inter-
layer synchronization, and then calculate the parametrized re-
gions of synchronization for the general (unknown) intralayer
topologies and demonstrate how to determine synchronized
regions after specifying the intralayer topologies in the final
subsection.

A. Intralayer and interlayer synchronization

It is well known that complete synchronization means
all the nodes in a network come to an identical state. But,
for multiplex networks, it is also very significant to study
intralayer synchronization and interlayer synchronization. As
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FIG. 2. The synchronized regions with respect to α and β, Rα,β

painted with green (gray) color, RIntra
α,β enclosed by the dashed-dotted

blue lines, and RInter
α,β enclosed by the dashed red lines. Here the

Rössler oscillator is taken as nodal dynamics, and the intralayer
coupling matrix H and the interlayer coupling matrix � are chosen
as follows: (a) H = I11, � = I11, (b) H = I11, � = I13, (c) H = I11,
� = I22, (d) H = I13, � = I22.

shown in Fig. 1, intralayer synchronization means all the
nodes within each layer reach an identical state, while inter-
layer synchronization means each node in a layer reaches the
same state as its counterparts in other layers.

B. Synchronized regions for unknown intralayer topologies

The regions of synchronization calculated from the mul-
tiplex MSF are parametrized by α and β, and thus do not
require that the interlayer and intralayer topology are speci-
fied. Figure 2 shows the synchronized regions as parametrized
by (α, β) for a two-layer multiplex network of Rössler oscil-
lators with arbitrary topology for different combinations of
interlayer and intralayer coupling matrices H and �. Here, the
green (gray) shading represents the regions Rα,β as obtained
from the master stability equation (4). The regions RIntra

α,β as
obtained from Eq. (5) are enclosed by the dashed-dotted blue
lines, and the regions RInter

α,β as obtained from Eq. (6) enclosed
by the dashed red lines.

Synchronization occurs in the region when the MSF cri-
terion is negative, in other words, when σ (α, β ) < 0. Thus,
from Fig. 2, we can easily obtain the joint synchronized
region:

Rα,β ≈ {(α, β )| 0.2 < α + β < 4.6}
for H = I11 and � = I11,

Rα,β ≈ {(α, β )| 0.23 < α < 4.3, β � 0}
for H = I11 and � = I13,

Rα,β ≈
{

(α, β )| α

0.2
+ β

0.18
> 1, β > h(α)

}
for H = I11 and � = I22,

Rα,β ≈ {(α, β )| β > 0.2, α � 0}
for H = I13 and � = I22,

where h(α) = −10−5α4 + 0.000 57α3 − 0.012α2 + 0.12α −
0.35.

In particular, letting β = 0 in Rα,β , we have the interval
Rα = (0.2, 4.6) for H = I11, Rα = ∅ for H = I13, and Rα =
(0.18, ∞) for H = I22. Similarly, letting α = 0 in Rα,β ,
we have Rβ = (0.2, 4.6) for � = I11, Rβ = ∅ for � = I13,
and Rβ = (0.18, ∞) for � = I22. Here, the intervals Rα �
{α| σ (α) < 0} and Rβ � {β| σ (β ) < 0} can also be obtained
from Eqs. (5) and (6), respectively.

Consequently, for three types of coupling patterns, i.e.,
H = I11 and any �, H = I13 and any �, and H = I22 and any
�, we get the following region for intralayer synchronization,
respectively:

RIntra
α, β = {(α, β )| 0.2 < α < 4.6, β � 0}, RIntra

α, β = ∅
and

RIntra
α, β = {(α, β )| 0.18 < α < +∞, β � 0}.

Analogously, we can obtain RInter
α, β by replacing α with β, and

H with � in the above RIntra
α, β .

As shown in Fig. 2, for H = I11 and � = I11, the regions

RIntra
α, β = {(α, β )| 0.2 < α < 4.6, β � 0}

and RInter
α, β = {(α, β )| 0.2 < β < 4.6, α � 0},

which are enclosed by the dashed-dotted blue and dashed red
lines, respectively.

For H = I11 and � = I13,

RIntra
α, β = {(α, β )| 0.2 < α < 4.6, β � 0}, and RInter

α, β = ∅,

where RIntra
α, β is enclosed by the dashed-dotted blue lines.

For H = I11 and � = I22, RIntra
α, β is the part enclosed by

the dashed-dotted blue lines, and RInter
α, β is the one above the

dashed red line. To be exact,

RIntra
α, β = {(α, β )| 0.2 < α < 4.6, β � 0}

and RInter
α, β = {(α, β )| 0.18 < β < +∞, α � 0}.

For H = I13 and � = I22, RIntra
α, β = ∅, and RInter

α, β =
{(α, β )| 0.18 < β < +∞, α � 0}, which is above the dashed
red line.

Generally speaking, a multiplex network with a specified
topology can achieve complete synchronization when all the
nonzero network characteristic modes, including those of the
intralayer and interlayer Laplacians, fall into the synchronized
region. For a two-layer network with identical intralayer
topologies, our theoretical analysis (see Appendix E) further
shows that a duplex network can achieve complete synchro-
nization when all the nonzero characteristic modes fall into
the intersection of Rα,β , RIntra

α, β , and RInter
α, β . Therefore, accord-

ing to the overlapping region, one can determine whether
the network achieves complete synchronization or not after
specifying the topology. However, what happens when all the
nonzero characteristic modes do not fall into the intersec-
tion? Further simulations show that in this case the network
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could support other coherent dynamical behaviors, such as
intralayer or interlayer synchronization.

C. Synchronized regions with given intralayer topologies

To push the analysis further, we must specify the topology
of the two-layer Rössler oscillator network. For simplicity,
assume that the two layers have the same intralayer topology,
and each node in one layer is connected with its replica in
the other layer. Consider that each layer is a star network
consisting of five nodes. Then, the intralayer Laplacian matrix
is

L =

⎛
⎜⎜⎜⎝

4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

⎞
⎟⎟⎟⎠,

and the intralayer supra-Laplacian matrix is LL = (L 0
0 L).

The interlayer Laplacian matrix LI = ( 1 −1
−1 1), and the

interlayer supra-Laplacian matrix LI = LI ⊗ I5. It is easy
to verify that LLLI = LILL, and the characteristic values
of LL and LI are λ = 0, 0, 1, 1, 1, 1, 1, 1, 5, 5 and μ =
0, 0, 0, 0, 0, 2, 2, 2, 2, 2, respectively.

We can calculate the eigenvalues λ and μ directly
and parametrize the synchronized regimes by the coupling
strengths c and d (rather than the more general α and β) for all
the different combinations of the inner coupling matrices H

and �. (See Appendix B for more details on transforming Rα,β

to Rc.d .) Consequently, for H = I11 and � = I11, the region
with respect to parameters c and d is

Rc,d ≈ {(c, d )| 0.2 < c + 2d, c + 0.4d < 0.92}.
Similarly, for H = I11 and � = I13, then

Rc,d ≈ {(c, d )| 0.23 < c < 0.86, d � 0};
for H = I11 and � = I22, then

Rc,d ≈
{

(c, d )| c

0.2
+ d

0.09
> 1, d > h(c)

}
,

where h(c) = 1
2 (−625 × 10−5c4 + 0.07125c3 − 0.2c2 +

0.6c − 0.35); and for H = I13 and � = I22, then
Rc,d ≈ {(c, d )| d > 0.1, c � 0}. These regions Rc,d are
shown in Figs. 3–6 by the solid lines in panels (c) for the
different choices of H and � considered.

To test our theoretical predictions, we next numerically
solve the duplex Rössler networked system, and identify the
parameter regions that support the three different coherent
behaviors: complete synchronization, intralayer synchroniza-
tion, and interlayer synchronization. We quantify that the
system has reached the specific type of behavior via the syn-
chronization errors as defined in Appendix D. By bounding
the values of these errors, we develop three different indicator
functions, which identify that the system has achieved macro-
scopic order of the form Id = 3 when the network reaches
complete synchronization, Id = 2 for intralayer synchroniza-
tion, Id = 1 for interlayer synchronization, and Id = 0 for
none of the above cases. See Appendix D for full details.
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FIG. 3. Network synchronized regions for H = I11 and � = I11.
(a) The synchronized interval of the independent intralayer and inter-
layer Rössler network with respect to α and β; (b) the synchronized
region with respect to α and β for Rössler networks; (c) the synchro-
nized region with respect to couplings c and d for a Rössler duplex
consisting of two star layers with one-to-one inter-layer connections;
(d) numerical synchronization areas with respect to couplings c and
d , in which the maroon (deep gray) region represents complete
synchronization area, the yellow (medium gray) is for intralayer syn-
chronization, and the cyan (light gray) is interlayer synchronization,
and the white region represents nonsynchronization.

Figure 3 shows network synchronized regions for the two-
layer star network of Rössler oscillators for the scenario H =
I11 and � = I11. In detail, Fig. 3(a) displays the synchronized
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FIG. 4. Network synchronized regions for H = I11 and � = I13.
(a) The synchronized interval of the independent intralayer and inter-
layer Rössler network with respect to α and β; (b) the synchronized
region with respect to α and β for Rössler networks; (c) the synchro-
nized region with respect to couplings c and d for a Rössler duplex
consisting of two star layers with one-to-one inter-layer connections;
(d) numerical synchronization areas with respect to couplings c and
d , in which the maroon (deep gray) region represents complete
synchronization area, the yellow (medium gray) is for intralayer syn-
chronization, and the cyan (light gray) is interlayer synchronization,
and the white region represents nonsynchronization.
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FIG. 5. Network synchronized regions for H = I11 and � = I22.
(a) The synchronized interval of the independent intralayer and inter-
layer Rössler network with respect to α and β; (b) the synchronized
region with respect to α and β for Rössler networks; (c) the synchro-
nized region with respect to couplings c and d for a Rössler duplex
consisting of two star layers with one-to-one inter-layer connections;
(d) numerical synchronization areas with respect to couplings c and
d , in which the maroon (deep gray) region represents complete
synchronization area, the yellow (medium gray) is for intralayer syn-
chronization, and the cyan (light gray) is interlayer synchronization,
and the white region represents nonsynchronization.

intervals of the independent intralayer and interlayer Rössler
networks with respect to α or β, which can be calculated
from the master stability equations (5) and (6) (without con-
sideration of d or c), respectively. Since H = �, the two
intervals overlap. Figure 3(b) gives the synchronized region
with respect to α and β for this Rössler network calculated
from the master stability equation (4). Figure 3(c) shows the
synchronized region as a function of intralayer and interlayer
coupling strength c and d. Figure 3(d) shows the numerically
calculated indicator function [i.e., the numerically calculated
values of synchronization error as classified in Eq. (D4) given
in Appendix D] with respect to couplings c and d for this
duplex Rössler network. Here, the maroon (deep gray) area
labeled with “3” represents complete synchronization, the
yellow (medium gray) area labeled with “2” is for intralayer
synchronization, the cyan (light gray) label with “1” is for
interlayer synchronization, and the white region represents
cases otherwise.

Other choices for the coupling functions H and � are
shown in Figures 4–6 for this same two-layer star network
of Rössler oscillators. The results are analogous to those
in Fig. 3. It is worth noting that in panels (c) of all of
these figures the regions of complete, intralayer and interlayer
synchronization predicted by the multiplex MSF equations
(4)–(6), shown as the maroon (deep gray), yellow (medium
gray), and cyan (light gray) regions, respectively, can capture
all of the behaviors exhibited by direct numerical simulations
shown in panels (d).

Next, we show how these distinct areas can be determined
from the three regions: Rc,d , RIntra

c,d , and RInter
c,d derived from
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FIG. 6. Network synchronized regions for H = I13 and � = I22.
(a) The synchronized interval of the independent intralayer and inter-
layer Rössler network with respect to α and β; (b) the synchronized
region with respect to α and β for Rössler networks; (c) the synchro-
nized region with respect to couplings c and d for a Rössler duplex
consisting of two star layers with one-to-one inter-layer connections;
(d) numerical synchronization areas with respect to couplings c and
d , in which the maroon (deep gray) region represents complete
synchronization area, the yellow (medium gray) is for intralayer syn-
chronization, and the cyan (light gray) is interlayer synchronization,
and the white region represents nonsynchronization.

Eqs. (4), (5), and (6). As a matter of fact, the intersec-
tions of the regions determine the type of coherent behavior
that is stable. Specifically, the intersection of all the three
regions determines complete synchronization, the intersec-
tion of Rc,d and RIntra

c,d determines intralayer synchronization,
and the intersection of Rc,d and RInter

c,d determines interlayer
synchronization.

For example, for the case with H = I11 and � = I11,
the synchronized region Rc,d = {(c, d )| c + 2d > 0.2, c +
0.4d < 0.92}, the intralayer synchronized region RIntra

c,d =
{(c, d )| 0.2 < c < 0.92, d � 0}, and the interlayer synchro-
nized region RInter

c,d = {(c, d )|c � 0, 0.1 < d < 2.3 }. The in-
tersection of these three parts is {(c, d )| c > 0.2, d >

0.1, c + 0.4d < 0.92}, as labeled by number “3” in Fig. 3(c),
which essentially coincides with the numerically calculated
complete synchronization area in maroon (deep gray) color
in Fig. 3(d). Furthermore, the mere intralayer synchronization
(without interlayer synchronization) area in yellow (medium
gray) in Fig. 3(d) coincides with the region labeled as
“2” in Fig. 3(c): Rc,d ∩ RIntra

c,d − RInter
c,d = {(c, d )| c > 0.2, 0 �

d < 0.1, c + 0.4d < 0.92}, and the mere interlayer synchro-
nization (without intralayer synchronization) area in cyan
(light gray) agrees well with the region labeled as “1” in
Fig. 3(c): Rc,d ∩ RInter

c,d − RIntra
c,d = {(c, d )| 0 � c < 0.2, d >

0.1, c + 0.4d < 0.92}. Similar observations can be obtained
in panels (c) and (d) of Figs. 4–6.

In other words, the actual area for complete synchroniza-
tion is determined by the intersection of Rc,d , RIntra

c,d , and
RInter

c,d , that is, Rc,d ∩ RIntra
c,d ∩ RInter

c,d . Moreover, the mere in-
tralayer synchronization area is determined by the intersection
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FIG. 7. Network synchronized regions for Rössler networks
composed of two single-layer fully connected networks with differ-
ent H and �, H = I11, � = I11 for (a) and (b), and H = I11, � =
I22 (c) and (d). Panels (a) and (c) are the synchronized regions
about c and d; (b) and (d) are, respectively, corresponding numerical
synchronization areas, in which the maroon (deep gray) region repre-
sents complete synchronization area, the yellow (medium gray) is for
intralayer synchronization, and the cyan (light gray) is interlayer syn-
chronization, and the white region represents nonsynchronization.

of synchronized region and intralayer synchronized region
subtracting the interlayer synchronized part, that is, Rc,d ∩
RIntra

c,d − RInter
c,d . The mere interlayer synchronization area is

determined by Rc,d ∩ RInter
c,d − RIntra

c,d .
Furthermore, when nodal dynamics and network structures

are given, RIntra
c,d and RInter

c,d are mainly determined by the
inner coupling matrices of the intralayer nodes (H ) and the
interlayer nodes (�), respectively, and Rc,d is determined by
both. Particularly, if the interlayer coupling matrix � makes
the interlayer synchronized region RInter

c,d empty, then the mul-
tiplex network cannot achieve interlayer synchronization, re-
sulting in the failure of complete synchronization, as shown in
Fig. 4. If the intralayer coupling matrix H makes the intralayer
synchronized region RIntra

c,d empty, then the multiplex network
cannot achieve intralayer synchronization, which also leads to
failure of complete synchronization, as shown in Fig. 6.

In order to verify the previous results on a different mul-
tiplex topology, we consider a duplex network composed of
two fully connected network layers with one-to-one interlayer
connections. The results shown in Figs. 7 and 8 again illustrate
the above observations.

IV. TWO-LAYER RÖSSLER NETWORK WITH
NONCOMMUTATIVE SUPRA-LAPLACIANS

So far, we have analyzed the case of commutative supra-
Laplacians with which we derive the three master stability
equations (4)–(6). However, the commutativity condition re-
stricts our approach from applying to the full class of mul-
tiplex networks, it is only a sufficient but not a necessary
condition, and can be relaxed.
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FIG. 8. Network synchronized regions for Rössler networks
composed of two single-layer fully connected networks with differ-
ent H and �, H = I11, � = I13 for (a) and (b), and H = I13, � =
I22 (c) and (d). Panels (a) and (c) are the synchronized regions
about c and d; (b) and (d) are respectively corresponding numerical
synchronization areas, in which the maroon (deep gray) region
means mere complete synchronization, the yellow (medium gray)
region means mere intralayer synchronization, the cyan (light gray)
region means interlayer synchronization, and the blue region means
nonsynchronization.

Here, we consider two cases of noncommutative supra-
Laplacians for showing that the three master stability equa-
tions can be still used to predict network synchronization
behaviors. one is a duplex network that has different topology
on each layer and one-to-one identical weighted coupling of
nodes between layers. The other is a duplex network that has
identical topology on each layer and one-to-one nonidentical
weighted coupling of nodes between layers.

For the first case, consider specific duplex networks with
five nodes on each layer and one-to-one coupling of nodes
between layers, where one layer is the star type, and the other
is the star type with one, two, or three additional edges. In this
case, it is easy to verify that the intralayer and interlayer supra-
Laplacian matrices LL = (L1 0

0 L2
) and LI = LI ⊗ IN do not

commute. Here, LI = ( 1 −1
−1 1), and the smallest nonzero

eigenvalues of the two intralayer Lapacian matrices L1 and
L2 are equal and their largest eigenvalues are also equal, i.e.,
λ2 = 1 and λN = 5.

For the second case, consider specific duplex networks that
have identical star type or fully connected topology on each
layer, and nonidentical weighted one-to-one coupling between
layers, with the interlayer supra-Lapalacian matrix being
LI = LI ⊗ diag{2, 1, 1, 1, 1}, where here LI = ( 1 −1

−1 1). In

this case, LI ’s smallest nonzero eigenvalue μ2 = 2 and its
largest eigenvalue μN = 4. It is easy to verify that LL and
LI do not commute.

Figures 9–12 show results for the above two different
classes of duplex networks with different combinations of H

and �. We still find that the overlapping regions obtained from
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FIG. 9. The case of noncommutative supra-Laplacian matrices
with different intralayer topologies and identical interlayer coupling
weights. Network synchronized regions calculated from master sta-
bility equations (a) and the numerical synchronization areas (b)–(d)
for H = I11 and � = I11. The first layer of the duplex network is the
star type, the second layer is the one generated from the star type with
1 (b), 2 (c), and 3 (d) additional edges, respectively. The one-to-one
coupling between layers is identical.

the three master stability equations closely coincide with the
numerically calculated areas for the three different types of
synchronous behaviors. Specifically, the actual area for com-
plete synchronization is determined by Rc,d ∩ RIntra

c,d ∩ RInter
c,d

for both classes of noncommutative supra-Laplacians. For
duplex networks with different intralayer topologies (the first
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FIG. 10. The case of noncommutative supra-Laplacian matrices
with different intralayer topologies and identical interlayer coupling
weights. Network synchronized regions calculated from master sta-
bility equations (a) and the numerical synchronization areas (b)–(d)
for H = I11 and � = I22. The first layer of the duplex network is the
star type, the second layer is the one generated from the star type with
1 (b), 2 (c), and 3 (d) additional edges, respectively. The one-to-one
coupling between layers is identical.
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FIG. 11. The case of noncommutative supra-Laplacian matrices.
Network synchronized regions from master stability equations (left)
and numerical synchronization areas (right) for Rössler networks
with identical star-type intralayer topologies and nonidentical one-
to-one coupling weights between layers. Here, the interlayer supra-
Laplacian matrix LI = [1 − 1; −1 1] ⊗ diag{2, 1, 1, 1, 1}, H = I11

and � = I11 for (a), (b), and H = I11 and � = I22 for (c), (d).

class), the intralayer synchronization area is determined by
Rc,d ∩ RIntra

c,d . For duplex networks with nonidentical weighted
one-to-one coupling (the second class), the interlayer synchro-
nization area is determined by Rc,d ∩ RInter

c,d . These findings
shed light on the significant facts that the difference of the
intralayer topologies can lead to the change of the actual
interlayer synchronized regions, and nonidentical interlayer
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FIG. 12. The case of noncommutative supra-Laplacian matri-
ces. Network synchronized regions from master stability equa-
tions (left) and numerical synchronization areas (right) for Rössler
networks with identical fully connected intralayer topologies
and nonidentical one-to-one coupling weights between layers.
Here, the interlayer supra-Laplacian matrix LI = [1 − 1; −1 1] ⊗
diag{2, 1, 1, 1, 1}, H = I11 and � = I11 for (a), (b), and H = I11 and
� = I22 for (c), (d).
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one-to-one coupling weights can lead to the change of the
actual intralayer synchronized regions.

In other words, even though here the interlayer and in-
tralayer supra-Laplacian matrices do not commute, the three
synchronized regions still predict the actual areas for complete
synchronization and intralayer synchronization, or for com-
plete synchronization and interlayer synchronization. There-
fore, the commutation condition is not necessary for our
findings, it is only sufficient for our theoretical analysis.
Particularly for the case of different intralayer topologies,
one can apply these three synchronized regions to predict the
actual areas for complete synchronization and intralayer syn-
chronization. How generally the observation applies remains
an open question.

V. A THREE-LAYER NETWORK
OF RÖSSLER OSCILLATORS

Here, consider a three-layer network of Rössler oscillators
with identical internal topology (such as the fully connected
structure) and chain-type coupling between layers. That is, the
intralayer supra-Laplacian matrix LL = I3 ⊗ L, and the in-
terlayer supra-Laplacian matrix LL = LI ⊗ IN , where LI =(

1 −1 0
−1 2 −1
0 −1 1

)
.

As shown in Figs. 13 and 14, the three synchronized
regions calculated from the three master stability equations
can also predict the actual areas for the three synchronous be-
haviors, further verifying that our findings can apply beyond
duplex networks.

VI. DISCUSSION

In summary, we develop a master stability function
framework which captures an essential feature of multiplex
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FIG. 13. The case of a three-layer fully connected network, the
interlayer linking is a link (layer I–layer II–layer III). Network
synchronized regions from master stability equations (left) and
numerical synchronization areas (right) for Rössler networks with
different combinations of H and �. (a), (c) H = I11 and � = I11,
(b), (d) H = I11 and � = I22.
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FIG. 14. The case of a three-layer fully connected network, the
interlayer linking is a link (layer I–layer II–layer III). Network
synchronized regions from master stability equations (left) and
numerical synchronization areas (right) for Rössler networks with
different combinations of H and �. (a), (c) H = I11 and � = I13,
(b), (d) H = I13 and � = I22.

networks, that the intralayer and interlayer coupling functions
can be distinct. Here, we define a distinct supra-Laplacian
matrix for intralayer connections, denoted LL, and one for
interlayer connections, denoted LI . If LL and LI commute,
the multiplex network can be easily decoupled and thus the
characteristic modes of the intralayer Laplacian are separated
from those of the interlayer one. (Note this commutation
condition is a sufficient but not a necessary condition for our
theoretical analysis. See Sec. IV for details.) We can then
develop a multiplex master stability equation (4) to establish
the necessary region for complete synchronization. In the
limit of no interlayer coupling the multiplex MSF reduces
to a master stability equation (5) for each independent layer
allowing us to calculate the necessary region for intralayer
synchronization. In the limit of no intralayer coupling, the
multiplex MSF reduces to a master stability equation (6) for
each independent interlayer network allowing us to calculate
the necessary region for interlayer synchronization.

To explicitly use the multiplex MSF framework requires
specifying f (·) (i.e., the internal nodal dynamics), and the
interlayer and intralayer coupling functions (i.e., H and �,
respectively). We consider specifically a two-layer network
of Rössler oscillators and various forms of H and �. We
find that the different types of coherent behaviors observed
in the network are determined by the intersections of the
three necessary regions describing complete synchronization,
intralayer synchronization, and interlayer synchronization.
Given a specified network topology, these regions can then
be parametrized by the intralayer and interlayer coupling
strengths (i.e., c and d, respectively). Complete synchroniza-
tion is stable when both c and d fall into the overlap of the
three regions. Intralayer synchronization is stable when both c

and d fall into the overlap of the joint synchronized region and
the intralayer synchronized region. Interlayer synchronization
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is stable when both c and d fall into the overlap of the joint
synchronized region and the interlayer synchronized region.

For a given network nodal dynamics, the joint synchro-
nized region is mainly determined by both inner coupling
matrices H and �. Similarly, the intralayer synchronized
region is mainly determined by the intralayer coupling matrix
H , and the interlayer synchronized region by the interlayer
coupling matrix �. Therefore, in addition to nodal dynamics,
the inner coupling function is an essential factor to determine
which kind of synchronization the network will arrive at. If
H is in such a form that the intralayer synchronized region
is empty, intralayer synchronization is unstable regardless of
however large the intralayer coupling strength is. Similarly,
if � is in such a form that the interlayer synchronized region
is empty, interlayer synchronization is unstable regardless of
however large the interlayer coupling strength is. In either
case, complete synchronization will not occur regardless of
the coupling strength.

Here, we have theoretically and numerically investigated
specific duplex networks of Rössler oscillators where the two
layers have the same topological structure. Our approach can
be applied to multiplex networks with different choices for
the internal nodal dynamics, different interlayer and intralayer
coupling functions, and more layers.

As this work introduces a systematic approach for analyz-
ing synchronization patterns in multiplex networks, the focus
here is on the simplest case of multiplex networks where
the supra-Laplacian matrix of the intralayer connections is
commutative with that of the interlayer connections. Our
framework further holds provided that the multiplex network
has intralayer topology that is identical on each layer and that
both the intralayer Laplacian matrix LL and the interlayer
Laplacian matrix LI can be diagonalizable and have real
eigenvalues. We verify numerically in Sec. IV that the master
stability equations derived herein can apply to a broader
class of multiplex networks with noncommutative supra-
Laplacians, but we can predict only the region of complete
synchronization and intralayer synchronization, or the region
of complete synchronization and interlayer synchronization,
and we cannot simultaneously predict the overlap of these
three synchronization behaviors. Establishing the exact min-
imal conditions under which our framework can be applied
remains an important open question.
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APPENDIX A: LYAPUNOV EXPONENTS

The Lyapunov exponent measures the exponential con-
traction or expansion rate of infinitesimal perturbations. For
n-dimensional continuous-time dynamical system

ẋ = G(x). (A1)

Lyapunov exponents are determined by the linearized equa-
tion with respect to the reference trajectory s(t ):

U̇ = J (s(t ))U

with initial condition U (0), where J is the Jacobian matrix of
G, and s(t ) satisfies Eq. (A1). Let vi (0) (i = 1, 2, . . . , n) is
the orthonormal vector of U (0). The Lyapunov exponents are
defined as follows:

σi = lim
t→∞

1

t
ln ||U (t )vi (0)||,

and the largest one is called the largest Lyapunov exponent
(which is greater than zero for chaotic systems). It plays a
key role in the stability analysis of controlled systems. One
can adjust the parameter (here the coupling strength) such that
the largest Lyapunov exponent is less than zero, and thus the
system is controlled to the desired trajectory.

APPENDIX B: DECOUPLING THE MULTIPLEX
NETWORK SYSTEM

Suppose that supra-Laplacian matrices LL and LI are
symmetric matrices, and satisfy LLLI = LILL, then there
exists an invertible matrix P such that

P −1LLP = diag{λ1, . . . , λM, λM+1, . . . , λM×N },
P −1LIP = diag{μ1, . . . , μM,μM+1, . . . , μM×N },

where 0 = λ1 = · · · = λM < λM+1 � · · · � λM×N , μk � 0
(k = 1, 2, . . . , M × N ), and diag{υ1, . . . , υM} denotes a di-
agonal matrix whose j th diagonal element is υj (j =
1, 2, . . . , M ).

By denoting a new vector η = [η�
1 , η�

2 , . . . , η�
M×N ]� =

(P ⊗ Im)−1ξ , we can turn the variational equation (3) into

η̇ = [IM×N ⊗ Df (s) − c(diag{λ1, . . . , λM×N } ⊗ H )

− d(diag{μ1, . . . , μM×N } ⊗ �)]η. (B1)

It further yields

η̇k = [Df (s) − cλkH − dμk�]ηk, k = 1, 2, . . . , M × N.

(B2)
Here, ηk represents the mode of perturbation in the general-
ized eigenspace associated with λk and μk . A criterion for
the synchronization manifold to be (asymptotically) stable is
that all the transversal Lyapunov exponents of the variational
equation (B2) are strictly negative. Clearly, these Lyapunov
exponents depend on the node dynamics f (·), the network
intralayer and interlayer coupling strengths c and d, and the
coupling matrices H and �. Consequently, we can get the
three master stability equations: Eqs. (4), (5), and (6).
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APPENDIX C: CALCULATING
SYNCHRONIZED REGIONS R c,d

We can calculate three synchronized regions with regard
to parameters α and β: Rα,β , RIntra

α,β , and RInter
α,β from Eqs. (4),

(5), and (6), respectively. Furthermore, when the network
topologies are given, we can directly calculate the characteris-
tic values of supra-Laplacian matrices and parametrize those
regions in terms of c and d since α = cλ and β = dμ.

For example, when H = I11 and � = I11, the nonzero
characteristic modes α = cλ and β = cμ should lie in Rα,β =
{(α, β )| 0.2 < α + β < 4.6}, and consequently the region
with respect to parameters c and d is

Rc,d = {(c, d )| 0.2 < c + 2d, c + 0.4d < 0.92}.
For other combinations of H and �, the synchronized regions
with respect to parameters c and d can be similarly obtained.

APPENDIX D: SYNCHRONIZATION ERRORS
AND INDICATOR FUNCTION

To measure the extent of intralayer, interlayer, and com-
plete synchronization, we introduce the following indices:

E
(k)
Intra (t ) = 1

N

N∑
i=1

∥∥x
(k)
i (t ) − x (k)(t )

∥∥, k = 1, 2, . . . , M

(D1)

where ‖ · ‖ is a norm operator, and x (k)(t ) is the average state
of all the nodes in the kth layer at time t . Thus, E

(k)
Intra (t ) is

the synchronization error of nodes in the kth layer at time t ,
namely, the intralayer synchronization error.

Similarly, the interlayer synchronization error is defined as

EInter (t ) = 1

MN

N∑
i=1

M∑
k=1

∥∥x
(k)
i (t ) − xi (t )

∥∥, (D2)

and the complete synchronization error is defined as

E(t ) = 1

NM

M∑
k=1

N∑
i=1

∥∥x
(k)
i (t ) − x(t )

∥∥, (D3)

where xi (t ) is the average state of the node i in each layer and
its counterparts in other layers, and x(t ) is that of all the nodes
in the multiplex network.

With these definitions, we use the following indicator
function to represent complete synchronization, intralayer
synchronization, and interlayer synchronization:

Id =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3, EInter (t ) < ε and E
(k)
Intra (t ) < ε for all t > T0,

2, EInter (t ) � ε and E
(k)
Intra (t ) < ε for all t > T0,

1, EInter (t ) < ε and E
(k)
Intra (t ) � ε for all t > T0,

0, other.

(D4)

Here, T0 is a time threshold value and ε is a given threshold for
synchronization errors. In the simulations, ε = 1.0 × 10−2,
and T0 = 0.8Ttotal (Ttotal is the total evolution time). It is obvi-
ous that the network reaches complete synchronization when
Id = 3, intralayer synchronization when Id = 2, interlayer
synchronization when Id = 1, and none of the above when
Id = 0.

APPENDIX E: THEORETICAL ANALYSIS FOR THE CASE OF COMPLETE SYNCHRONIZATION

Consider a duplex network composed of two subnetworks with the same internal topology and one-to-one interlayer
connectivity between nodes. The dynamical evolution can be written as

ẋi = f (xi ) − c
∑N

j=1 lijH xj − d �(axi − a yi ),

ẏi = f ( yi ) − c
∑N

j=1 lijH yj − d �(b yi − bxi ),
i = 1, 2, . . . , N. (E1)

Here, the interlayer Laplacian matrix LI = ( a −a

−b b ) (a and b are non-negative real constants satisfying a2 + b2 �= 0), indicating
that the information exchange between layers is asymmetric and weighted when a �= b. Note, the duplex network (E1) with
a = b = 1 has been discussed in the main text. The intralayer and interlayer supra-Laplacian matrices LL = I2 ⊗ L and LI =
LI ⊗ IN satisfy the commutative condition, where L = (lij )N×N is the intralayer Laplacian matrix and Im is an identity matrix
of order m.

Next, we will theoretically explain how the observed synchronization patterns require the overlap of the different regions of
synchronization from two aspects: the intralayer synchronization stability equations and the interlayer synchronization stability
equations.

1. Intralayer synchronization stability equations

Let sx (t ) and sy (t ) denote the intralayer synchronous states of the x layer and y layer, respectively, which are dominated by
the following equations:

ṡx = f (sx ) − ad �(sx − sy ), ṡy = f (sy ) − bd �(sy − sx ). (E2)

Linearizing the duplex network (E1) at the intralayer synchronous states sx and sy yields

˙δxi = Df (sx )δxi − ad �(δxi − δ yi ) − c
∑N

j=1 lijHδxj ,

˙δ yi = Df (sy )δ yi − bd �(δ yi − δxi ) − c
∑N

j=1 lijHδ yj ,
i = 1, 2, . . . , N. (E3)
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Denote δzi = (δxT
i , δ yT

i )T , D̃f (sx, sy ) = (Df (sx ) 0
0 Df (sy )),

δz = (δzT
1 , δzT

2 , . . . , δzT
N )T , then Eq. (E3) can be rewritten as

δ̇z = IN ⊗ [D̃f (sx, sy ) − d (LI ⊗ �)]δz

− c(L ⊗ (I2 ⊗ H ))δz. (E4)

Since the Laplacian matrix L = (lij ) is symmetric (assuming
links within each layer are undirected), there exists an invert-
ible matrix P such that

P −1LP =

⎛
⎜⎜⎝

λ1

λ2

. . .
λN

⎞
⎟⎟⎠,

here 0 = λ1 < λ2 � λ3 � · · · � λN . Letting ξ = (P ⊗
I2m)−1δz, and ξ = (ξT

1 , ξT
2 , . . . , ξT

N )T , we have

ξ̇ j = [D̃f (sx, sy ) − d (LI ⊗ �)]ξ j − cλk (I2 ⊗ H )ξ j ,

j = 1, 2, . . . , N.

Neglecting the subscript j , we can obtain the general form
of the master stability equation for intralayer synchronization:

η̇ = [D̃f (sx, sy ) − d (LI ⊗ �)]η − α(I2 ⊗ H )η, (E5)

where α = cλ, and λ is any nonzero eigenvalue of Laplacian
matrix L.

If the duplex network (E1) reaches complete synchroniza-
tion, it means that the two intralayer synchronous states sx

and sy converge to the same state s dominated by the isolated
nodal system: ṡ = f (s). Then, the variational equation of (E2)
at s

δ̇s = [Df (s) − (a + b)d�]δs

should be stable. Since the eigenvalues of LI = ( a −a

−b b) are
μ = 0, a + b, and β = μd where μ is the nonzero eigenvalue,
the above variational equation can be accordingly transformed
into the general form as follows:

δ̇s = [Df (s) − β�]δs, (E6)

which is stable for β ∈ RInter
β and any value of coupling

strength α. This yields

RInter
β = {β |σ (β ) < 0},

where σ (β ) is the largest Lyapunov exponent of Eq. (E6).
For convenience, we include the parameter α into RInter

β , and
obtain

RInter
α,β = {(α, β ) |σ (β ) < 0, α � 0}. (E7)

We call RInter
α,β the interlayer synchronized region with respect

to α and β.

Simultaneously, when the duplex network arrives at com-
plete synchronization, Eq. (E5) is stable at s, meaning that the
following equation is stable at the origin:

η̇ = [I2 ⊗ Df (s) − d (LI ⊗ �)]η − α(I2 ⊗ H )η. (E8)

Diagonalizing the matrix LI = ( a −a

−b b), and making a sim-
ple linear transformation, we can get the decoupled equations
from (E4):

ζ̇ 1 = [Df (s) − αH ]ζ 1 (E9)

and

ζ̇ 2 = [Df (s) − αH − (a + b)d�]ζ 2.

Similar to the argument above, replace (a + b)d with β, and
the second of the decoupled equations turns into

ζ̇ 2 = [Df (s) − αH − β�]ζ 2. (E10)

Equation (E9) is stable when α ∈ RIntra
α,β � {α |σ (α) < 0, β �

0}, here σ (α) is the largest Lyapunov exponent of Eq. (E9)
with parameter α. Similarly, Eq. (E10) is stable when (α, β ) ∈
Rα,β � {(α, β ) |σ (α, β ) < 0}, where σ (α, β ) is the largest
Lyapunov exponent of Eq. (E10). For convenience, we call
RIntra

α,β , RInter
α,β , and Rα,β the intralayer, interlayer, and joint syn-

chronized regions, respectively. Given a specified intralayer
network topology, RIntra

α,β , RInter
α,β , and Rα,β can be parametrized

by c (the intralayer coupling strength) and d (the interlayer
coupling strength), denoted by RIntra

c,d , RInter
c,d , and Rc,d , respec-

tively.
In summary, to reach complete synchronization in the

duplex network (E1), it is necessary that three synchronization
stability equations (E6), (E9), and (E10) are simultaneously
stable. Thus, the intralayer characteristic modes α = λc and
the interlayer characteristic modes β = μd have to fall into
the the overlap of RIntra

α,β , RInter
α,β , and Rα,β , i.e., RIntra

α,β ∩ RInter
α,β ∩

Rα,β . It indicates that the intralayer and interlayer coupling
strengths have to fall into the overlap of RIntra

c,d , RInter
c,d , and

Rc,d , i.e., RIntra
c,d ∩ RInter

c,d ∩ Rc,d , when the intralayer network
topology L and the interlayer linking way LI are specified.

2. Interlayer synchronization stability equations

In Sec. E 1 we started from the intralayer synchronization
stability equations; we can also analyze this problem from
the interlayer synchronization approach. Denote si (t ) (i =
1, 2, . . . , N ) as the interlayer synchronous states, which are
dominated by the following equations:

ṡi = f (si ) − c

N∑
j=1

lijH sj , i = 1, 2, . . . , N. (E11)

Linearizing the duplex network (E1) at interlayer synchronous
states si , then we obtain

˙δxi = Df (si )δxi − c
∑N

j=1 lijHδxj − ad �(δxi − δ yi ),

˙δ yi = Df (si )δ yi − c
∑N

j=1 lijHδ yj − bd �(δ yi − δxi ),
i = 1, 2, . . . , N. (E12)
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Denoting δzi = δxi − δ yi , we get from Eq. (E12) that

˙δzi = Df (si )δzi − c

N∑
j=1

lijHδzj − (a + b)d �δzi ,

i = 1, 2, . . . , N.

Let δZ = (δzT
1 , δzT

2 , . . . , δzT
N )T , we thus obtain the following

master stability equation for interlayer synchronization:

˙δZ = DF (s1, s2, . . . , sN )δZ − c(L ⊗ H )δZ

− (a + b)d(IN ⊗ �)δZ, (E13)

where

DF (s1, s2, . . . , sN )

=

⎛
⎜⎜⎝

Df (s1)
Df (s2)

. . .
Df (sN )

⎞
⎟⎟⎠.

It is worth noting that Eq. (E11) dominating the interlayer
synchronous state si (t ) can be linearized at s(t ) as

˙δsi = Df (s)δsi − c

N∑
j=1

lijHδsj , i = 1, 2, . . . , N (E14)

and can thus be rewritten as

˙δS = [IN ⊗ Df (s) − c(L ⊗ H )]δS, (E15)

where δS = (δsT , δsT , . . . , δsT )T . Diagonalize the Laplacian
matrix L = (lij ), and we can get the decoupled equations

ξ̇ k = [Df (s) − cλkH ]ξ k, k = 2, 3, . . . , N (E16)

where 0 = λ1 < λ2 � λ3 � λN are the eigenvalues of L, and
the general form of (E16) is

η̇ = [Df (s) − αH ]η. (E17)

Now, if the duplex network (E1) achieves complete syn-
chronization, which means that si (i = 1, 2, . . . , N ) con-
verges to a synchronous state s. It is thus necessary to require
that Eq. (E17) is stable. Obviously, Eq. (E17) is stable at origin
when α ∈ RIntra

α,β � {α |σ (α) < 0, β � 0} [σ (α) is the largest
Lyapunov exponent of Eq. (E17)]. Given the intralayer struc-
ture and interlayer linking way, RIntra

α,β can be parametrized by
the coupling strengths c and d, denoted by RIntra

c,d .
Simultaneously, let s substitute si (i = 1, 2, . . . , N ) in

Eq. (E13), there is

˙δZ = [IN ⊗ Df (s) − c(L ⊗ H )]δZ − (a + b)d(IN ⊗ �)δZ.

(E18)

Diagonalizing the matrix L, and performing a simple linear
transformation, one can get the following decoupled equa-
tions:

ζ̇ 1 = [Df (s) − (a + b)d�]ζ 1,

ζ̇ 2 = [Df (s) − αH − (a + b)d�]ζ 2.

Similar to the handling way in the previous subsection, replace
(a + b)d with β, the above decoupled equations can be turned
into

ζ̇ 1 = [Df (s) − β�]ζ 1, (E19)

ζ̇ 2 = [Df (s) − αH − β�]ζ 2. (E20)

Equation (E19) is stable when β ∈ RInter
α,β � {β |σ (β ) <

0, α � 0}, here σ (β ) is the largest Lyapunov exponent of
Eq. (E19). Similarly, Eq. (E20) is stable when (α, β ) ∈
Rα,β � {(α, β ) |σ (α, β ) < 0}, and σ (α, β ) is the largest Lya-
punov exponent of Eq. (E20). For convenience, we call RIntra

α,β ,
RInter

α,β , and Rα,β the intralayer, interlayer, and joint synchro-
nized regions, respectively. Given a specified intralayer net-
work topology, RIntra

α,β , RInter
α,β , and Rα,β can be parametrized

by c (the intralayer coupling strength) and d (the interlayer
coupling strength), denoted by RIntra

c,d , RInter
c,d , and Rc,d , respec-

tively.
In summary, to obtain complete synchronization in duplex

network (E1), it is necessary that Eqs. (E17), (E19), and (E20)
are simultaneously stable. This works when (α, β ) ∈ RIntra

α,β ∩
RInter

α,β ∩ Rα,β , or when (c, d ) ∈ RIntra
c,d ∩ RInter

c,d ∩ Rc,d after the
intralayer topology and interlayer linking way are definitely
given. It again verifies that complete synchronization occurs
in the overlap of RIntra

α,β , RInter
α,β , and Rα,β .

APPENDIX F: A REAL-WORLD EXAMPLE,
THE CORS SYSTEM

The network of continuously operating reference stations
(CORS) [39] system consists of continuously operating global
navigation satellite system (GNSS) reference stations, a com-
munication network, and data centers. Through continuous
observation by GNSS satellites and GNSS measurement pro-
cessing, the CORS system is widely applied to various fields
such as three-dimensional positioning, navigation, and tim-
ing at different accuracy levels, satellite orbit tracking and
determination, maintaining the reference framework of the
earth, geodynamics research such as earthquake and plate
movements, and sea level, ionospheric, and water vapor mon-
itoring. The CORS system is an essential geospatial infor-
mation infrastructure with many countries and regions of the
world, such as China, America, Europe, and Australia having
established CORS systems.

The CORS system can be regarded as a multilayer network
composed of a physical layer and a data layer, as shown in
Fig. 15. The physical layer consists of N receivers, tracking
the same m satellites, to receive the positioning data. Because
there exist biased clocks between receivers, these receivers
have to adjust their clocks and obtain time synchronization
to improve the precision of positioning [41,42]. That is to say,
intra-layer synchronization with respect to time is required in
the physical layer. However, the processing of the data is not
done by the receivers, but instead by data-processing units in
data centers [40]. These data-processing units, respectively,
link their receivers forming a virtual data layer (top layer in
Fig. 15), and a synchronous digital hierarchy (SDH) network.
Each unit in the data layer needs to achieve data synchro-
nization for accurate positioning, implying that the data layer
needs to achieve intralayer synchronization.
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FIG. 15. A diagram of CORS systems in China’s BeiDou Navigation Satellite System. The below layer is the physical layer composed of
some GNSS receivers, and the top layer is the corresponding data-processing layer.
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