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We consider a one-dimensional directional array of diffusively coupled oscillators. They are perturbed by the
injection of small additive noise, typically orders of magnitude smaller than the oscillation amplitude, and the
system is studied in a region of the parameters that would yield deterministic synchronization. Non-normal
directed couplings seed a coherent amplification of the perturbation: this latter manifests as a modulation,
transversal to the limit cycle, which gains in potency node after node. If the lattice extends long enough,
the initial synchrony gets eventually lost, and the system moves toward a nontrivial attractor, which can be
analytically characterized as an asymptotic splay state. The noise assisted instability, ultimately vehiculated and
amplified by the non-normal nature of the imposed couplings, eventually destabilizes also this second attractor.
This phenomenon yields spatiotemporal patterns, which cannot be anticipated by a conventional linear stability
analysis.
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I. INTRODUCTION

Understanding the origin and functional significance of
self-organized patterns of activity, is a challenging question
of broad applied and fundamental importance [1,2]. In many
realms of investigation, the system under inspection is com-
posed by individual excitable units, which execute periodic
oscillations [3]. Often, coupling together an ensemble made of
identical oscillators can eventually yield a fully synchronized
solution [4]. This amounts to operate the system in unison,
the oscillations displayed on different sites of the collection
being perfectly coordinated, with no phase delay. For many
applications of interest, such as the study of collective os-
cillations in neuroscience, distinct deterministic oscillators
occupy the nodes of a heterogeneous network, which defines
the embedding structural support [5,6]. Diffusive couplings
between adjacent mesoscopic units are customarily assumed,
a paradigmatic choice which proves adequate in many cases
[7], from modeling the electrical synapses to problems related
to the energy management in power plants. Moreover, also
feed-forward connectivity is believed to play a significant role
in a neuroscience context [8].

Instabilities may be triggered by the punctual injection of
a heterogeneous perturbation [9], a tiny source of stochastic
disturbance which, under specific conditions, amplifies and
eventually breaks the oscillators’ synchrony [10]. The insta-
bilities instigated by random fluctuations are often patterns
precursors [11,12]. The imposed perturbation materializes in
fact in patchy motifs of the concentration amount, character-
ized by a vast gallery of shapes and geometries. An archetypal
model of self-sustained oscillations is the celebrated complex
Ginzburg-Landau equation (CGLE), often evoked as a pillar
of nonlinear phenomena, from superconductivity to super-
fluidity and Bose-Einstein condensation, via strings in field

theory and neuroscience [13]. The CGLE, defined on ordinary
or graphlike supports, admits a time-dependent uniform syn-
chronized solution, of the limit cycle type. Deviations from a
periodic waveform, sustained by nonlinearities, yield a proto-
typical modulational instability characterized by spectral side-
bands and the breakup of the waveform into a train of pulses.
This is the so-called Benjamin-Feir (BF) instability, named
after the researchers who first identified the phenomenon
working with periodic surface gravity waves (Stokes waves)
on deep water [14]. Typically the condition for the onset of the
deterministic instability can be straightforwardly worked out
through a traditional linear stability analysis, which constrains
the reaction parameters involved in the formulation of the
problem [1,15–17].

Starting from these premises we are here interested in
studying the stochastic analog of the BF instability in an open
feed-forward topology. In the framework that we shall set
to explore, the complex state variable of the CGLE is dis-
turbed by a small exogenous perturbation, which configures
as additive white noise, possibly orders of magnitude smaller
than the unperturbed oscillation amplitude. More specifically,
we are interested in assessing the role played by the injected
stochastic drive, when the system is operated in a parameter
region for which the synchronous limit cycle proves stable
under deterministic evolution. As we shall argue, synchronous
solutions, deemed deterministically stable, can turn unstable
by agitating the system with an arbitrarily small perturbation.
In the case of the CGLE, here assumed as a reference model,
we will unfold, and thoroughly characterize, a generalized
class of convective instabilities reminiscent of the BF one.
To achieve the sought effect we shall accommodate for non-
normal [18], diffusive couplings between individual oscilla-
tors. In a recent series of papers [19,20], we showed that
giant stochastic oscillations, with tunable frequencies, can be
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FIG. 1. Schematic representation of our system. Each node car-
ries an oscillator and is unidirectionally coupled to its successive
neighbor. Parameter K modulates the coupling.

obtained, by replicating a minimal model for a quasicycle
along a directed chain of coupled oscillators. Here the directed
link between adjacent oscillators will fuel a self-consistent
amplification of the stochastic disturbance, always yielding—
for a sufficiently long chain—a loss of synchronicity. Taken
all together, our findings constitute a practical example of
convective instability [21], and point to the subtle interplay
between noise and topology, capable of changing qualita-
tively the system dynamics. This brings evidence of the
eventual failure of purely deterministic approaches to real-life
problems.

The paper is organized as follows: in the next section,
we will introduce the model to be probed. In particular, we
will discuss its synchronized and splay states, the latter being
solutions that display a constant phase difference between
adjacent network sites. We shall then turn to analyze the effect
of stochasticity, with reference to the amplification mecha-
nism, as alluded to above. Stochastic non-normal patterns are
consequently reported to occur, notwithstanding the stability
of the homogeneous solution under traditional linear analysis.
Finally, we will sum up and draw our conclusions.

II. DETERMINISTIC GINZBURG-LANDAU
OSCILLATORS: SYNCHRONIZED AND SPLAY STATES

Our model consists of � diffusively and unidirectionally
coupled Ginzburg-Landau oscillators. Each oscillator is de-
scribed by the complex variable Wj (1 � j � �). The oscil-
lators in this directionally coupled chain (see Fig. 1) obey the
following ordinary differential equations:

dW1

dt
= W1 − (1 + ic2)|W1|2W1 (1a)

and, for j > 1,

dWj

dt
= Wj − (1 + ic2)|Wj |2Wj + (1 + ic1)

×K (Wj−1 − Wj ), (1b)

where c1, c2 are real parameters and K denotes the coupling
strength. It is obvious that changing the sign of K and at
the same time inverting the boundary conditions is equivalent
to reversing the information flow along the chain: therefore
in the rest of this paper K is assumed to be positive. The
system is also symmetric under the following transformation:
Wj → W ∗

j , (c1, c2) → −(c1, c2), which allows us to restrict
our focus on half of the (c1, c2) parameter plane. Two types of
solution are of interest: the synchronized and the splay ones.
The synchronized state (usually denoted as homogeneous
state, in the vast literature of spatially coupled oscillators)
corresponds to the solution

Wj = exp(−ic2t ), j = 1, . . . ,�. (2)

0

1

2

3

4

5

6

2 4 6 8 10 12 14

ρ
j
,φ

j

j

FIG. 2. Splay state representation: The radius of the limit cycles
over the chain ρj is depicted by the red solid line (circles), and the
blue line (squares) stands for the phase difference (mod 2π ) between
two successive nodes. As expected, they converge to the asymptotic
values ρ∞, φ∞ (dashed black lines). The parameters here are c1 =
−5, c2 = 4, and K = 4.

By direct inspection of Eqs. (1a) and (1b) one can check
that any dependence on the spatial coupling K and on the
parameter c1 disappears, and that this solution exists for any
value of c2.

The splay states are a family of uniformly rotating solu-
tions with finite constant-in-time phase differences between
consecutive nodes. These states can be characterized making
use of the general polar representation Wj = ρj exp(iθj ) and
first imposing the stationarity condition ρ̇j = 0 for j > 1.
Moreover, by introducing the constant-in-time phase differ-
ences φj = θj − θj−1, the stationary conditions applied to
Eq. (1b) yield the recurrence equations

ρj =
√{

1 + K

[
ρj−1

ρj

f (φj ) − 1

]}
, (3a)

0 = c2
(
1 − ρ2

j

) + K

[
ρj−1

ρj

g(φj ) − c1

]
, (3b)

where

f (φj ) = cos φj + c1 sin φj , (4a)

g(φj ) = c1 cos φj − sin φj . (4b)

The initial condition for this recurrence equations stems
from Eq. (1a), i.e., ρ1 = 1 and θ1 = −c2t . Notice that the sta-
tionary solution on the first node coincides with the synchro-
nized state. We avoid reporting explicit calculations, but it can
be easily shown that for the set of parameters considered in
this paper (see Fig. 2) the recurrence equations equipped with
this initial condition admit a unique stable nonhomogeneous
solution, which spatially converges to the splay state

ρ∞ =
√

1 + K (f (φ∞) − 1), (5a)

φ∞ = 2 Atan

[
1 + c1c2

c2 − c1

]
. (5b)
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FIG. 3. Splay state existence: the color represents the value of
ρ∞ [see Eq. (5a)], and the black zone refers to the region where the
splay state does not exist. The solid lines correspond to the isocurves
of ρ∞. Here K = 4.

The special case φ∞ = ±π occurs in the limit c2 → c1.
In practice, one finds that the spatially asymptotic splay state
is rapidly approached along the chain (see Fig. 2). The rate
of convergence depends on the parameters K, c1, and c2,
however, for the sake of space, we do not report any detailed
investigation on this point.

It is important to point out that the existence condition for
the splay state is that ρ∞ is real, i.e., that the argument of
the square root in Eq. (5a) is non-negative. As an example, in
Fig. 3 we show the region in the (c1, c2) plane where the splay
state exists for K = 4: the color code corresponds to different
positive values of ρ∞, and the black region indicates where
the splay state does not exist.

As a final remark, we want to point out that there exist an
entire family of solutions asymptotically approaching along
the chain the splay state [see Eq. (3)]. In these solutions the
synchronous state extends to an arbitrary large initial portion
of the chain, namely, ρj = 1 and φj = 0 for j = 2, . . . , j̄ .
For j > j̄ constant-in-time phase differences become finite
and the solution converges to the asymptotic splay state
(5) for large j . As we shall discuss later, the existence of
this entire family of splay states impacts on the way noise
destabilizes the homogeneous synchronized state determining
a typical spatiotemporal pattern organization for the stochastic
system.

Stability of synchronized and splay states

In order to investigate the stability of the synchronous and
of the splay states we can perform a standard linear stability
analysis. We first introduce small perturbations δρj , δθj of
the limit cycles, Wj = (ρj + δρj ) exp[i(θj + δθj )] for 1�
j ��. Linearizing and retaining the first order in the per-
turbations leads to an equation that can be put in the gen-
eral matrix form δv̇ = J(ρ, θ )δv [we adopt the shorthand
notation (ρ, φ) = (ρ1, φ1, ρ2, φ2, . . . , ρ�, φ�)], where δv =
δ(ρ, φ) is the vector of perturbations and J is the Jacobian
matrix associated to dynamics (1). Due to the unidirectional
nature of the coupling K, J exhibits a lower tridiagonal block
structure. Hence, to assess the stability of any state it is enough
to compute the eigenvalues λρj

and λθj
for 1 � j � � of the

diagonal 2 × 2 blocks:
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FIG. 4. Synchronized state stability: We display the value of
KH

min [see Eq. (7)] beyond which the synchronized state is stable. In
the black region 1 + c1c2 � 0, and the synchronized state is always
stable. The solid lines correspond to the isocurves of the heat map.

A1 =
(−2 0

−2c2 0

)
(6a)

and

Aj =
((

1 − 3ρ2
j − K

)
Kρj−1g(φj )

−[
2c2ρj + K

ρj−1

ρj
g(φj )

] −K
ρj−1

ρj
f (φj )

)
(6b)

for 2 � j � �.
The eigenvalues of the first block A1 are λρ1 = −2 and

λθ1 = 0, the latter reflecting marginal stability towards global
phase rotations. A given limit cycle solution is stable only if
the complex eigenvalues of all the other blocks have a negative
real part, i.e., Re(λρj

) < 0 and Re(λθj
) < 0 for 2 � j � �.

The synchronized state, where ρj = 1, φj = 0 ∀j > 1,
is stable independently of K for 1 + c1c2 � 0, while for 1 +
c1c2 < 0 only if the following condition holds:

K > KH
min = −2(1 + c1c2)

1 + c2
1

. (7)

Therefore, for each couple (c1, c2) we can find a minimum
coupling value KH

min such that the synchronized state is stable.
The resulting stability map is shown in Fig. 4. Notice that
the condition 1 + c1c2 < 0 is sufficient for the onset of the
instability, when the CGLE is defined on a continuous spatial
support [16]. In fact, this is known as the condition of the BF
instability for the CGLE [14,16].

Stability analysis is more complicated for the splay state.
Making use of the recurrence relations (3) we can first
compute ρj and θj to evaluate the Jacobian blocks Aj [see
Eq. (6b)]. Then we can assess the stability of the splay
state in the plane (c1, c2) by computing the Jacobian matrix
eigenvalues. An example of the outcome of this procedure
is shown in Fig. 5, where the parameters have been set to
the values c1 = −5, c2 = 4 and K = 4. Here all eigenvalues
for j > 1 have a negative real part so that the splay state is
linearly stable. Notice the fast convergence of the eigenvalues
to their asymptotic state values.

The analysis of the synchronized and splay states of the
directed chain of coupled CGL oscillators is summarized
in Fig. 6 for the case K = 4. The different regions of this
diagram are described in the caption; the red cross locates
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FIG. 5. Splay state linear stability analysis The green curve
(triangles) represents the real part of the largest eigenvalue for each
node j , and the yellow line (diamonds) the corresponding imaginary
part. The parameters here are c1 = −5, c2 = 4, and K = 4. In this
example, the splay state is characterized by j̄ = 1.

the point in the diagram which defines our working condition
as selected in the forthcoming sections when investigating
the stochastic version of the directed chain of coupled CGL
oscillators. More details on linear stability analysis are given
in Appendix A.

III. EFFECTS OF STOCHASTICITY

A. Linear amplification mechanism

The stochastic version of the deterministic model (1) reads

dWj

dt
= Wj − (1 + ic2)|Wj |2Wj + (1 + ic1)K (Wj−1 − Wj )

+ σηj (t ), (8)

where σ is the noise amplitude, and ηj = Re(ηj ) +
iIm(ηj ) is a complex additive noise with zero mean and
correlators 〈Re(ηj )(t )Re(ηl )(t ′)〉 = 〈Im(ηj )(t )Im(ηl )(t ′)〉 =

FIG. 6. Diagram of the existence and stability of the synchro-
nized and of the splay states for K = 4: in region A, whose bound-
aries are fixed by the condition ρ∞ = 0, only the synchronized state
exists and is stable; in region B both states exist, but only the
synchronized one is stable; in region C both states are stable; and
in region D the splay state only is stable.

δjlδ(t − t ′). In what follows the numerical investigations of
the stochastic dynamics (8) has been performed for the pa-
rameter values (c1, c2,K ) = (−5, 4, 4) (see the red cross in
Fig. 6), where both the synchronized and the splay state of
the deterministic dynamics are linearly stable. We want to
investigate the effects of a small additive noise on the deter-
ministic evolution (1) [22–24]. In practice, we have always
taken σ = 10−5, a value which is five orders of magnitude
smaller than the oscillations amplitude of the synchronized
state. As shown in Appendix B, Eq. (8) can be rewritten
for the polar components of the complex variable Wj , while
the corresponding noise components remain delta-correlated
and—at least near the limit cycle solutions—additive. In
practice, we have studied the effects of the noise-induced
fluctuations around these states. We know from the previous
section that both deterministic states are indeed stable limit
cycles with a complex eigenvalues Jacobian. This guarantees
the presence of stochastic oscillations, also called quasicycles
[25,26], on the top of the deterministic stable states. Then we
can proceed to the Fourier analysis of our system linearized
around each limit cycle. We denote by δṽ and ξ̃ the Fourier
transforms of the perturbations vector δv and of the polar
white noise ξ ≡ (ξρ, ξθ ), respectively. We can readily obtain
δṽj = ∑2�

l=1 �−1
j l (ω)ξ̃l , where �j l = −Jjl − iωδjl . To pursue

the analysis of the oscillations we compute the power spec-
trum density matrix of the fluctuations in the vicinity of the
attractor [27]

〈δṽl (ω)δṽj (ω)〉 = Plj (ω) =
2�∑
k=1

�−1
lk (ω)(�†

kj )−1(ω). (9)

Its diagonal entries are the power spectrum of transversal
(j odd) and longitudinal (j even) oscillations around both
solutions. We first focus on the transversal, radial, fluctua-
tions around the synchronized state. In Fig. 7(a) we depict
the power spectrum of several nodes. The solid line stands
for the analytical power spectrum computed from Eq. (9),
and symbols correspond to direct numerical simulations of
Eq. (8), using the Euler-Maruyama algorithm (dt = 0.001).
The power spectrum of the first node peaked at zero frequency
(circle, black line) is the one of white noise. As we proceed
along the chain, the peak of the power spectrum progres-
sively shifts towards higher frequencies. The profiles around
the peak become narrower (thus singling out a well-defined
oscillation frequency), while fluctuations are amplified along
the chain. This amplification can be well appreciated by direct
inspection of Fig. 7(b). Such amplification and modulation
proceed along the chain as long as the linear approximations
hold. Out of this approximation, nonlinear effects should take
over and stop the amplification process. Note that an analo-
gous phenomenon was already discussed in Ref. [20] for noisy
fluctuations around a single fixed point. Since the structure
of the Jacobian remains essentially the same for the splay
state, here we face a qualitatively identical situation. A similar
amplification mechanism takes place for longitudinal fluctu-
ations around both stable states, as exemplified in the inset
of Fig. 7(a). However, longitudinal oscillations are typically
characterized by a broader spectrum, possibly due to the softer
nature of the phase direction with respect to the radial one
for Ginzburg-Landau potentials. To summarize our findings,
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FIG. 7. (a) Normalized power spectra of different nodes along
the chain: the solid lines stands for the theoretical calculation, and the
symbols correspond to numerically computed power spectra using
the Euler-Maruyama algorithm. The displayed agreement confirms
the validity of the analytic calculations. In the inset: normalized
power spectra for longitudinal fluctuations. (b) Trajectories of ρj .
The amplification phenomenon can be clearly appreciated. (c) Phase
portrait of (Xj (t ), Yj (t )) where Xj and Yj , respectively, stand for
the real and the imaginary part of the complex variable Wj . Oscil-
lations extend along the radial direction and progressively alter the
unperturbed limit cycle profile. The parameters here are c1 = −5,

c2 = 4, σ = 10−5, and K = 4. Each color designs a specfic node:
one black (circles), two blue (squares), three green (up-pointing tri-
angles), eight red (diamonds), nine violet (down-pointing triangles).

noisy fluctuations around both attractors are amplified and
modulated as one proceeds along the chain to yield sharper
and stronger oscillations. While nonlinear effects would even-
tually arrest this amplification process, the linear mechanism
is typically enough to overcome the attractor linear stability
itself. These features are mainly due to the unidirectional
structure of the Jacobian, which is highly non-normal. It is
well known that non-normality amplifies transient dynamics
[28–30] and may lead to convective instability [21]. Here the
presence of noise makes this amplification perpetual [19].

B. Pattern formation

Why is this so important? Let’s imagine the following
scenario where both solutions exist and are stable. We then
seed the following initial conditions ρj (t = 0) = 1 for j � 1
and φj (t = 0) = 0 for j > 1. What we expect from a naive
linear stability analysis is that, for small noise amplitudes,
the system will remain in the vicinity of the synchronized
state, with fluctuations of the order the noise amplitude σ .
On the contrary, our analysis reveals that the amplification
mechanism here discussed will drive the system to explore
larger portions of the available phase space progressively,
until it eventually reaches the splay state. This is illustrated
in Fig. 8, where we show the radial time series of successive
nodes. The time series of the first nodes are plotted in red:
they remain settled on the synchronized state, the amplifica-
tion on these first nodes not being strong enough to escape
from its basin of attraction. On the 11th node (blue line)
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FIG. 8. Time evolution for selected amplitude ρj (t ). Each solid
line refers to the time series of ρj (t ). Each color defines a specific
group; in red are depicted all the nodes that remain on the synchro-
nized attractor (from the first to the 10th node (circles)). The 11th
node (blue line (squares)) is the leftmost able to escape from the ho-
mogenous attractor. The successive nodes (12th green (up-pointing
triangles) and 13th violet (diamonds)) converge progressively to
the asymptotic value ρ∞ of the splay state. The horizontal black
dashed lines correspond to the nonhomogeneous attractor displayed
in Fig. 2. The parameters here are c1 = −5, c2 = 4, σ = 10−5, and
K = 4.

fluctuations are now strong enough to escape and reach the
second attractor, settling on the splay state radius ρj̄+1. Nodes
to the right converge to successive radii ρj with j > j̄ + 1.
The attractor values ρj , each represented by a dashed line, is
found thanks to the recurrence relations (3). They are in good
agreement with the time series simulations performed by a
Euler-Maruyama algorithm. This could not be expected from
a traditional linear stability analysis.

By direct inspection of Fig. 8 one can realize that the
transition for the splay to the synchronized state takes place as
a sort of zipping mechanism backward in time. The rightmost
nodes display larger oscillations and are the first to escape the
synchronized state (e.g., violet line in Fig. 8). Moreover, it
is worth stressing that this process, forward in time, can be
viewed as a series of synchronous jumps to consecutive values
of ρj (e.g., see the green and blue lines in Fig. 8). This zipping
process continues backward in time up to node j̄ .

A direct consequence of this mechanism is the formation
of spatiotemporal patterns [23,31,32] as shown in Fig. 9.
Our system is initially prepared on the synchronized state
and exposed to a noise of amplitude σ = 10−5. After some
time we see that the rightmost nodes easily reach the second
attractor. However, as we already discussed, the same ampli-
fication and modulation mechanism holds on the splay state.
The fluctuations, therefore, keep on being amplified along the
chain allowing the rightmost nodes of our system to travel
erratically in phase space. This is exemplified by the blurred
part of Fig. 9. Here the mechanism of desynchronization is
quite obvious, being the combination of two ingredients: noise
and non-normality. While noise is needed to inject some dy-
namics in the otherwise stable limit cycle, the non-normality
is essential to amplify these fluctuations. This is what makes
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FIG. 9. Typical spatiotemporal pattern of our system, the “space”
(nodes) is the y axis while time is in abscissa. One can easily
recognize the transient in which all the nodes are in the synchronized
state. The orange plateau stands for the splay state (node 10 →
30) and precedes the blurred region, where the system erratically
jumps from one state to another. The parameters here are c1 = −5,

c2 = 4, σ = 10−5, and K = 4.

the system deviate from the synchronized to the splay state
and then enter an erratic dynamics.

IV. CONCLUSION

Noise is often unavoidable and, as such, it should be
accommodated for in realistic models of complex natural phe-
nomena. A particularly interesting setting is faced when the
stochastic perturbation, being it of endogenous or exogenous
origin, resonates with the degree of inherent non-normality.
This situation, as displayed by the examined system, yields a
self-consistent amplification of the noise component at short
times. The resulting growth of the perturbation can drive a
symmetry-breaking instability, for a choice of the parameters
that would instead result in a stable deterministic evolution.
In order to dig into this question, we have here examined
a directed chain of diffusively coupled, Ginzburg-Landau
oscillators. Oscillators are shaken by a fluctuating external
drive, of arbitrarily small strength. The system is initiated in
a region of parameters where the synchronous solution proves
stable, under the deterministic scenario. Working in this set-
ting, we provided analytical and numerical evidence for a
noise-induced instability which follows the self-consistent
amplification of the imposed disturbance across the chain.
The limit cycles get modulated along the transversal direction:
almost regular, radial oscillations are displayed, which gain
in potency node after node. When the transversal modulation
gets large enough, oscillators escape the basin of attraction of
the synchronized solution, visiting a nontrivial attractor, that
we have analytically characterized. The interaction between
the two attractors yields complex emerging patterns reminis-
cent of the deterministic Benjamin-Feir instability. The com-
bination of noise and asymmetric couplings can radically alter
the limit cycle dynamics: bistability and associated patterns
rise, as the noisy signal is dynamically processed, along with
the unidirectionally coupled chain. It is worth mentioning
that an analogous behavior, due to the forward amplification
mechanism, is also expected when the (arbitrarily small) noise
is only injected in the leftmost node and not on all degrees of

freedom as in our current setup. Indeed the exponential nature
of the amplification phenomenon ensures that the leftmost
source of perturbation becomes largely predominant. Shifting
to the right the leftmost injection point along the chain only
changes the pattern layout, thus extending the synchronized
region at the expense of the splay state. Traditional (de-
terministic) linear stability analysis is unable to grasp the
essence of the phenomenon, an observation which we find
particularly relevant given the recent reports on the ubiquity
of non-normality in real systems, from communication net-
works to food webs [33]. More refined approaches, such as
convective Lyapunov exponents [34–37] should, however, be
able to predict a convective instability at the purely deter-
ministic level. Resilience to synchronization might prove a
valuable asset, exploited to oppose the onset of pathological
states, such as epileptic seizures in brain dynamics. Future
investigations are planned to shed light onto these families
of noise-instigated instabilities, assisted by the non-normal
topology of the underlying support, beyond the simplistic case
study here considered.
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APPENDIX A: LINEAR STABILITY ANALYSIS

We now give more details on the linear stability analysis.
Consider small perturbations δρj (t ) 
 1 and δθj (t ) 
 1 of
the limit cycle solutions, Wj = (ρj + δρj )ei(θj +δθj ). Lineariz-
ing we obtain to first order in the perturbations

δρ̇1 = −2δρ1, (A1)

δθ̇1 = −2c2δρ1, (A2)

and for j > 1

δρ̇j = δρj

[
1 − 3ρ2

j − K
] + δρj−1Kf (φj )

+ (δθj − δθj−1)Kρj−1g(φj ), (A3)

δθ̇j = δρj

[
−2c2ρj + K

ρj−1

ρj

g(φj )

]
+ δρj−1

K

ρj

g(φj )

− (δθj − δθj−1)K
ρj−1

ρj

f (φj ), (A4)

where the ρj and φj need to be evaluated on either the
synchronized or the splay state attractor. Obviously zeroth
order terms stemming from the linearization procedure vanish
by construction when evaluated on these two attractors.

Rewriting the linearized equations in a matrix form
highlights their simple block structure, due to the uni-
directional input from one node to the next. We in-
troduce the 2�-dimensional perturbation vector δv ≡
(δρ1, δθ1, δρ2, δθ2, . . . , δρ�, δθ�)T and write

δv̇ = J δv, (A5)

where the Jacobian J is a 2� × 2� lower tridiagonal block
matrix, composed of 2 × 2 blocks that describe the in-node
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linearized dynamics (A matrices in the following) or the
(linearized) interaction with the previous node (B matrices).

For instance, in the case of the synchronized state one has

JH =

⎛
⎜⎜⎜⎜⎝

A1 0 0 0 . . .

BH AH 0 0 . . .

0 BH AH 0 . . .

0 0 BH AH . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (A6)

where

A1 =
(−2 0

−2c2 0

)
(A7)

describes the stability of the first uncoupled Landau-Stuart
node, while

AH =
(−(2 + K ) Kc1

−(2c2 + Kc1) −K

)
,

BH =
(

K −Kc1

Kc1 K

)
(A8)

originate from the other nodes (j > 1).
Using simple block matrices results one can show that

det (JH − λI2�) = det (A1 − λI2) [det (AH − λI2)]�−1

(A9)
(where Ih is the h × h identity matrix) so that the eigenvalues
of JH are given by the ones of A1 and the ones of AH (with
multiplicity � − 1).

We easily verify that A1 has eigenvalues λρ = −2 and
λθ = 0 and consequently is stable. We are therefore interested
in the eigenvalues λH of AH that give

λ±
H = −1 − K ±

√
1 − 2Kc1c2 − K2c2

1. (A10)

The real part of the largest eigenvalue λ+
H has two zeros for

K = 0 and K = KH
min with

KH
min = −2(1 + c2c1)

1 + c2
1

. (A11)

We can determine the stability condition Re[λ+
H ] < 0 by the

sign of KH
min and of the small K expansion of Eq. (A10),

λ+
H ≈ −K (1 + c1c2) < 0 , (A12)

which gives the sign of the K derivative of Re[λ+
H ] near

K = 0. Note that they are both controlled by the sign of
1 + c1c2, so that one immediately obtains the homogeneous
state stability condition given in the main text.

The splay states give rise to slightly more complicated

Jacobian matrices J(j̄ )
S . The first j̄ blocks are identical to

the ones of JH , while the following ones are obtained by
evaluating the linearized equation along the splay state part
of the attractor. For instance, for j̄ = 1 we have

J(1)
S =

⎛
⎜⎜⎜⎜⎝

A1 0 0 0 . . .

B2 A2 0 0 . . .

0 B3 A3 0 . . .

0 0 B4 A4 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ (A13)

with

Aj =
((

1 − 3ρ2
j − K

)
Kρj−1g(φj )

−[
2c2ρj + K

ρj−1

ρj
g(φj )

] −K
ρj−1

ρj
f (φj )

)

(A14)

and

Bj =
(

Kf (φj ) −Kρjg(φj )
K
ρj

g(φj ) K
ρj−1

ρj
f (φj )

)
, (A15)

where functions g and f are defined in the main text in
Eqs. (4). Obviously, for j � j̄ we have

Aj ≈ A∞ =
((

1 − 3ρ2
∞ − K

)
Kρ∞g(φ∞)

−[2c2ρ∞ + Kg(φ∞)] −Kf (φ∞)

)
(A16)

and

Bj ≈ B∞ =
(

Kf (φ∞) −Kρ∞g(φ∞)
K
ρ∞

g(φ∞) Kf (φ∞)

)
. (A17)

Once again we have

det
(
J(j̄ )

S − λI2�

) = det (A1 − λI2) [det (AH − λI2)]j̄−1

×
N∏

j=j̄+1

[det(Aj − λI2)] (A18)

so that to estimate the eigenvalues of J(j̄ )
S we also need to

compute the eigenvalues of the matrices Aj , evaluated on the
splay attractor values ρj and φj obtained from the recurrence
equations (3).

APPENDIX B: NATURE OF THE NOISE

In this appendix we shall demonstrate that the additive
stochastic corrections we introduced in our system [see
Eq. (8)] remains of the same kind in polar form. We first write
the ordinary differential equations for the real and imaginary
part of Wj = Xj + iYj . After few lines of algebra we end up
with

dXj

dt
= Xj + (

X2
j + Y 2

j

)
(−Xj + c2Yj )

+K[Xj−1 − Xj + c1(Yj − Yj−1)] + σηX
j , (B1)

dYj

dt
= Yj + (

X2
j + Y 2

j

)
(−c2Xj − Yj )

+K[Yj−1 − Yj + c1(Xj−1 − Xj )] + σηY
j . (B2)

Writing in polar form Wj = ρj exp(iθj ) implies that ρj =√
X2

j + Y 2
j and θj = Atan ( Yj

Xj
). In terms of ODEs it means

that

ρj

dρj

dt
= Xj

dXj

dt
+ Yj

dYj

dt
, (B3a)

ρ2
j

dθj

dt
= Xj

dYj

dt
− Yj

dXj

dt
. (B3b)
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We now want to obtain the Langevin equation for ρj and
θj , this leads to

ρj

dρj

dt
= ρ2

j − ρ4
j + K

[ − ρ2
j + ρjρj−1f (φj )

]
+ σ

(
Xjη

X
j + Yjη

Y
j

)
, (B4)

ρ2
j

dθj

dt
= −c2ρ

4
j + K

[−c1ρ
2
j + ρjρj−1g(φj )

]
+ σ

(
Xjη

Y
j − Yjη

X
j

)
, (B5)

where the auxiliary functions f and g have been introduced
in Eqs. (4). The sum of two Gaussian variables is itself a
Gaussian variable, whose average value is the sum of the two
previous average values while its variance is the quadratic
sum of the variances. Therefore we can introduce two new

Gaussian delta correlated and zero mean white noise variables
ξ

ρ

j and ξ θ
j such that their standard deviations are

�ρ,θ =
√

X2
j + Y 2

j = ρj . (B6)

This leads to the final Langevin equations in polar form

dρj

dt
= ρj − ρ3

j + K[−ρj + ρj−1f (φj )] + σξ
ρ

j , (B7)

dθj

dt
= −c2ρ

2
j + K

[
−c1 + ρj−1

ρj

g(φj )

]
+ σ

ρj

ξ θ
j , (B8)

which display a multiplicative but delta correlated zero-
average noisy term. In our power spectrum analysis, con-
ducted expanding near the limit cycle solutions, this multi-
plicative component can be safely approximated by its limit
cycle value, making the dominant noise component additive.
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