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Three-dimensional classical and quantum stable structures of dissipative systems
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We study the properties of classical and quantum stable structures in a three-dimensional (3D) parameter space
corresponding to the dissipative kicked top. This is a model system in quantum and classical chaos that gives a
starting point for many body examples. We are able to identify the influence of these structures in the spectra
and eigenstates of the corresponding (super)operators. This provides a complementary view with respect to the
typical two-dimensional parameter space systems found in the literature. Many properties of the eigenstates,
like its localization behavior, can be generalized to this higher-dimensional parameter space and spherical phase
space topology. Moreover, we find a 3D phenomenon—generalizable to more dimensions—that we call the
coalescence-separation of (q)ISSs, whose main consequence is a marked enhancement of quantum localization.
This could be of relevance for systems that have attracted a lot of attention very recently.
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I. INTRODUCTION

Dissipative systems play a central role in many areas of
physics. From the classical side the discovery of the so-called
isoperiodic stable structures (ISSs) in the two-dimensional
(2D) parameter space of the Hénon map [1] provided a new
perspective for bifurcation phenomena and stability proper-
ties. This important advance led to a vast amount of work.
One of the many possible applications is on directed transport,
where quantum dissipative ratchets have been proposed [2].
This suggested the exploration of the quantum counterparts
of the ISSs (qISSs) [3] and revealed many general quantum
to classical correspondence properties. These results have a
wide range of applicability like for example in recent aspects
of superconducting qubits [4], cold atoms [5], and Bose-
Einstein condensates [6] experiments. In particular, it would
be very interesting to see the consequences of quantization
of classically regular structures when dissipation is added to
the system of three superconducting qubits studied in Ref. [4].
Experimental investigation of the details of thermalization in
this case could be very rewarding.

However, open many body systems have received a lot of
attention very recently. The case of the rocked open Bose-
Hubbard dimer has shown the correspondence between the
interactions and bifurcations in the mean-field dynamics [7].
An important derivation of this is the study of quantum
bifurcation diagrams [8,9]. Also, there is a renewed interest
in the parameter space properties of classical dissipative maps
whose complexity increases due to coupling [10]. This has
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direct consequences in optimizing ratchet currents that can be
affected by temperature effects [11]. Finally, the study of dis-
crete time crystals poses new questions that could be answered
by means of an open quantum systems perspective [12]. All
these developments motivate the study of more complicated
parameter and phase spaces to verify the validity of previous
results in this context and to discover new properties.

By means of analyzing paradigmatic classical and quantum
chaos models like the (modified) kicked rotator map, the dissi-
pative standard map, and a periodically driven flux there have
been many recent advances in our knowledge about the prop-
erties of the corresponding superoperators [3,13,14]. We have
elucidated the fundamental role played by ISSs and qISSs. In
fact, the invariant states that belong to qISSs have the simple
shape of the limit cycles of ISSs only for exceptionally large
regular structures. In the majority of the cases these invariants
look approximately the same as the quantum chaotic attractors
that are at the vicinity of the corresponding ISS in the classical
parameter space. Moreover, we have proven that the sharp
classical borders of these latter become blurred at the quantum
level, and neighboring areas influence each other through
quantum fluctuations (parametric tunneling). Also, the leading
eigenstates which rule the transitory behavior have a phase
space structure dominated by limit cycles of neighboring ISSs,
and their eigenvalues have the same periodicity. This leads
to scarring (localization) [15] on the corresponding unstable
periodic orbits [16].

In this work we study the properties of the quantum and
classical 3D parameter space of the dissipative kicked top,
which also allows us to investigate a spherical phase space.
This is a paradigmatic model that has recently been used to
study quantum correlations as probes of chaos [17], quantum
to classical correspondence in the vicinity of periodic orbits
[18] (which could be extended to the dissipative case), and that
has also served as a starting point for many body models [19].
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By using some of the tools developed for 2 parameter systems
we are able to characterize the morphology of the 3D (q)ISSs.
We find that some properties of the eigenvalues and eigen-
states of the quantum superoperator are still valid in this case,
giving them a more generic nature. The most prominent exam-
ple is the localization behavior of the eigenstates. Moreover,
we study the coalescence-separation phenomenon present
when having more than two parameters. The main quantum
consequence is an enhancement of localization that could
be of relevance for the many areas of research previously
mentioned. At this point we should underline that the focus
of our work is on the quantum to classical correspondence
properties of the attractors of dissipative quantum chaotic
systems (which are stable states). The terminology used (i.e.,
ISS and qISS) is inherited from previous publications and
does not imply quantum isoperiodicity.

This paper is organized as follows. In Sec. II we explain
the details of the dissipative kicked top, together with some
of the techniques used to study it. In Sec. III the results that
allow to characterize the 3D (q)ISSs are presented. In Sec. IV
we give our conclusions.

II. THE DISSIPATIVE KICKED TOP

The quantum map for the dissipative kicked top has the
form

ρ ′ = Dτ FJ ρF
†
J ≡ $ρ, (1)

where FJ generates the unitary dynamics and Dτ is the dis-
sipation propagator obtained from the integration of a master
equation for the density matrix. The Floquet operator FJ is
given by

FJ = exp
[−i(k/2J )J 2

z

]
exp[−iβJy], (2)

where Ji are the components of the angular momentum J,
k is the torsion parameter, and β is the rotation parameter
associated with the periodic kicking of the angular momentum
(h̄ = 1) [20]. Dissipation is modeled by the following Lind-
blad equation:

d

dt
ρ(t ) = γ {[J−, ρ(t )J+] + [J−ρ(t ), J+]} ≡ �ρ(t ), (3)

where J± are the usual raising and lowering operators and
γ the dissipation rate. A dimensionless parameter τ = 2Jγ t ,
which gives the relaxation time between two actions of the
unitary operator and thus fixes the strength of the dissipa-
tion can be introduced [21]. In Ref. [22], Eq. (3) has been
integrated in the semiclassical limit. The detailed form of the
matrix elements of Dτ = exp(�τ ) is given in Eq. (4.6) of
Ref. [22]. The approximation based on a saddle-point evalua-
tion of the inverse Laplace transformation is valid in a wide
range of quantum numbers and propagation times, with an
error of order 1/J 2. The superoperator $ in Eq. (1) conserves
J 2 = j (j + 1) and has dimension (2j + 1)2 × (2j + 1)2. It
will be diagonalized in the basis |jm〉 of eigenstates of Jz

with m = −j, ...., j . The diagonalization of the quantum e�

is worked out by using the Arnoldi method [23].
In the classical limit corresponding to j → ∞ the phase

space is the surface of the unit sphere, with μ = cos θ and
φ as canonical variables, defining the orientation of angular

momentum J. The detailed expressions defining the classical
map taking (μ, φ) → (μ′, φ′) are given in Appendix A of
Ref. [24]. It consists of a rotation of the angular momentum
by an angle β around the y axis:

μ′ = μ cos β −
√

1 − μ2 sin β cos φ,

φ′ =
⎡
⎣arcsin

⎛
⎝

√
1 − μ2

1 − μ′2 sin φ

⎞
⎠θ (x ′) + sin(φ)π

− arcsin

⎛
⎝

√
1 − μ2

1 − μ′2 sin φ

⎞
⎠θ (−x ′)

⎤
⎦ mod 2π,

x ′ =
√

1 − μ2 cos φ cos β + μ sin β, (4)

followed by a torsion around the z axis:

μ′ = μ, φ′ = (φ + kμ) mod 2π. (5)

In Eq. (4) x ′ is the x component of the angular momentum
after rotation, θ (x) is the Heaviside theta-function and sign(x)
denotes the sign function. Finally, the dissipative part is given
by

μ′ = μ − tanh τ

1 − μ tanh τ
, φ′ = φ. (6)

To perform the classical evolution we directly use this map
and obtain the asymptotic distributions which we use to
compare with some properties of the quantum ones.

We have chosen to measure the chaoticity or simplicity
of the eigenstates by means of the participation ratio η =
[
∑

i P (m)2]−1, where P (m) is the probability of m. This
gives the number of basis elements that expand the quantum
state. We generalize this concept for the classical distributions
by calculating η, with P (m) replaced by P (μ), which is a
discretized limiting angular momentum (z component) distri-
bution. This distribution is obtained after evolving 1 000 time
steps a bunch of 10 000 uniformly distributed random initial
conditions on (μ, φ). We have taken a number of 1 000 bins,
which will give enough resolution compared to the quantum
cases considered.

III. PROPERTIES OF 3D STABLE STRUCTURES IN
PARAMETER SPACE

We begin our study of the dissipative kicked top by ex-
ploring the classical parameter space. The results for a cut
of this 3D space (given by k, β, andτ ) at β = 2 are shown
in Fig. 1. We use the participation ratio η defined in Sec. II.
The first thing we notice is that this system has the same
richness as the two-parameter dissipative kicked rotor [16];
i.e., we find a big regular region together with large ISSs
intertwined with smaller shrimplike ones, and all of them are
embedded in a chaotic background. We observe the largest
regular domain (black) at low k and large τ . The second
largest regular domain is a much smaller ISS and lies at lower
τ values. From now on we focus our attention in the region
of the parameter space where these two domains are in close
proximity, which we have highlighted by means of a green
(light gray) rectangle.
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FIG. 1. Participation ratio η in parameter space (k, τ ) for β = 2.
The (green) light-gray rectangle represents the window of parameters
we focus in [see Fig. 2(d) for a better resolution].

This is precisely the range of k and τ shown in Fig. 2 for
different values of β. Each panel corresponds to a screenshot
of the video (linear color scale) included in the Supplemental
Material [25], which gives a better feeling of the involved
3D ISSs that build up the dissipative kicked top parameter
space. We also show the logarithmic version of this video
which provides more details regarding the internal structure
of the ISSs. In Fig. 2(a) the case β = 1.25 presents just one
large regular region. At β = 1.5, shown in Fig. 2(b), the large
ISSs corresponding to the second largest regular domain is
separated from the largest one. In Fig. 2(c) we display the
situation for β = 1.75 where the separation is larger but this
latter ISS looks approximately the same as in the previous
case, just slightly more curved and displaced towards a larger
k range. Finally, in Fig. 2(d) new interactions with other

FIG. 2. Participation ratio η in parameter space (k, τ ) for β =
1.25 and β = 1.5 in the (a) and (b) panels, respectively, and β = 1.75
and β = 2 in the (c) and (d) panels, respectively.

FIG. 3. Quantum participation ratio η in parameter space (k, τ )
corresponding to β = 1.5 and β = 1.75, for j = 100 in the (a) and
(b) panels, respectively, and for j = 160 in the (c) and (d) panels,
respectively.

ISSs become evident giving rise to what we will call other
coalescence-separation smaller events, a phenomenon that
can only be present for parameter spaces of dimension higher
than 2.

Now, we turn to analyze what is the quantum counterpart of
this dynamics in the parameter space. For that purpose we se-
lect the cases β = 1.5 and β = 1.75 for which the separation
is small and well developed, respectively. We have calculated
the η landscape for two different values of j to also show
the dependence on its size, an indicator of the semiclassical
behavior. Comparing Fig. 3(a) for β = 1.5 with Fig. 3(b)
for β = 1.75 (both for j = 100) we can see that the qISS
reproduces the regular behavior much better in the first case,
though there is no significant difference at the classical level.
This different behavior persists as we go to the semiclassical
limit, as is evident from Figs. 3(c) and 3(d). However, the
overall quantum-to-classical agreement is better as expected.
Then, why is there such a striking difference between the
quantum behavior at these two β values for which the classical
ISS is essentially the same? In the following we will answer
this question by using some tools of our previously developed
theory for quantum 2D dissipative systems [13,16].

We first determine if the separation of the ISS from the
main regular region is actually there at β = 1.5. For that we
show the quantum and classical normalized participation ratio
along three lines in the direction of the axes of the parameter
space, intersecting at (k, β, τ ) = (4.5, 1.5, 0.18). In the top
panel of Fig. 4 we see that at approximately k = 3 there is a
small (but significant in terms of regular structures) rise of the
classical participation ratio that clearly signals the separation
of the ISS from the main regular region. At the quantum level
just the ISS is resolved and there is some internal structure
also. In the middle panel we notice that although the quantum
participation ratio is generally lower inside the boundaries of
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FIG. 4. Normalized participation ratio η/N , with N = 1000 for
the classical case (black lines), and N = 2j + 1 for the quantum ones
[j = 100 ((red) gray dashed lines) and j = 160 ((blue) gray lines)],
as a function of k (top panel), β (middle panel), and τ (bottom panel).
Parameter other than the axis one, takes the fixed value k = 4.5, β =
1.5 or τ = 0.18 [dashed (green) gray vertical lines].

the classical ISS the localization is not as strong as for the
approximate interval k ∈ [3.5; 4] (see top panel). However,
some internal features are also present, in agreement with
the previous results. Finally, in the bottom panel we see that
localization monotonously increases as a function of τ , which
is something to be expected given the greater dissipation. In
all cases the differences due to the size of j are negligible
indicating an extremely slow convergence to the classical limit
without any further ingredients [13].

We now characterize the qISS at these two β values by
comparing the spectral and eigenstates behaviour at them. It
is worth noticing that for the eigenstates representation we
use the Wigner function on the sphere. For a system of total
angular momentum j , the density matrix ρ̂ can be expressed
in the Dicke representation as ρmm′ = 〈jm|ρ̂|jm′〉. Alterna-
tively, we can consider the coupled total angular momentum
representation, where

ρkq =
j∑

m=−j

j∑
m′=−j

ρmm′ t
jmm′
kq , (7)

with

ρmm′ = 〈jm|ρ̂|jm′〉 =
2j∑

k=0

k∑
q=−k

ρkq t
jmm′
kq , (8)

and the Clebsch-Gordan transformation coefficients [26]
given by

t
jmm′
kq = (−1)j−m−q〈j,m; j,m′|k, q〉. (9)

FIG. 5. Quantum superoperator spectra in the complex plane.
Eigenvalues with largest moduli for β = 1.5 and β = 1.75 are shown
in the left and right columns, respectively. From top to bottom k =
4.5, k = 5, and k = 5.5 on the left; k = 4.5, k = 5.5, and k = 6.5 on
the right. We fix j = 160 and τ = 0.18 in all cases.

These latter are nonzero only if q = m − m′. Both representa-
tions contain the same information and are completely inter-
changeable. While the Dicke representation is more common,
the coupled total angular momentum representation allows
expressing the Wigner function on the Bloch sphere. The
Wigner function [27] is a function on a sphere of radius√

j (j + 1), represented in terms of orthonormal Laplace
spherical harmonics as [26]

W (θ, φ) =
2j∑

k=0

k∑
q=−k

ρkqYkq (θ, φ), (10)

where θ is the polar angle measured from the z axis, and φ is
the azimuthal angle around the z axis. This Wigner function
contains the same information as the density matrix for any
spin-j system. The marginals of the spherical Wigner function
are the projection quantum number distributions along all
quantization axes [28]. In the following we will take the
previously mentioned rescaled variable μ = cos θ instead of
just θ .

The spectra are displayed in Fig. 5, in the left column for
β = 1.5, and in the right one for β = 1.75. Three different k

values have been considered in each case (always with j =
160 and τ = 0.18). The corresponding invariant and leading
eigenstates are shown in Figs. 6 and 7, respectively (again, the
left columns correspond to the lower β value, and the rows
respect the k ordering of Fig. 5). The top panels of Fig. 5 both
show a leading real eigenvalue extremely close to the invariant
one. This is a typical feature of large qISS whose invariant and
leading eigenstates are localized around the corresponding
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FIG. 6. Wigner function of the invariant eigenstates, correspond-
ing to eigenvalue λ1 = 1 with the same parameter values of Fig. 5.
k = 4.5 (a), k = 5 (c), and k = 5.5 (e) for β = 1.5, and k = 4.5 (b),
k = 5.5 (d), and k = 6.5 (f) for β = 1.75. Classical corresponding
limit cycles are marked with crosses.

classical limit cycle, within quantum uncertainty [16]. This
is clearly noticed by looking at the top panels of Figs. 6
and 7. The crosses mark the classical period 1 orbit that
characterizes the large ISS and dominates the dynamics in
this region of the parameter space. Moreover, when we move
to larger k values, but stay around the borders of the ISS
the behavior changes and the invariant eigenstates become
chaotic for both β values, as shown in the middle panels of
Fig. 6. However, the leading eigenstates are localized around
the same region of phase space corresponding to the limit
cycle that belongs to the ISS, as can be seen in the middle
panels of Fig. 7. The leading eigenvalues have moduli of
0.85 approximately, indicating a still long decay towards the
invariant. Finally, when moving farther away from the ISS
we find chaotic invariant and leading eigenstates as can be
verified by inspecting the bottom panels of Figs. 6 and 7.
It is worth noticing that the Wigner function of the leading
eigenstates in this case has real and imaginary part (we have
displayed the real part) with positive and negative regions (red
and blue colors respectively). The corresponding eigenvalues
are no more real and the spectral gap is large. This is a
generic behavior similar to what we have found in the 2D
case [16], and most importantly, it is a clear indication that
the morphology of the qISS is the same for both values of β.

Then, how can we explain the marked quantum localization
enhancement found for β = 1.5 with respect to β = 1.75

FIG. 7. Wigner function of the leading eigenstates, correspond-
ing to second largest eigenvalue |λ2| with the same parameter values
of Fig. 5. k = 4.5 (a), k = 5 (c), and k = 5.5 (e) for β = 1.5, and
k = 4.5 (b), k = 5.5 (d), and k = 6.5 (f) for β = 1.75. Classical
corresponding limit cycles are marked with crosses.

in Fig. 3? The explanation lies at the 3D nature of the
parameter space. For spaces with more than two parameters
the coalescence-separation phenomenon can take place, and
quantum mechanically this could induce an enhancement of
the region of localization. This can be better appreciated by
means of the left panel of Fig. 8, which shows a cut of the
parameter space in the plane τ = 0.18. From approximately
β = 1.5 to lower values the ISS merges with the big regular
region. This coalescence has no intermittencies and generates
a very big regular area that we know from our previous studies

FIG. 8. Participation ratio in parameter space (k, β ) for τ = 0.18
with linear and logarithmic (color) gray distribution in the left and
right panels, respectively.
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can be better reflected in the quantum realm [13]. In the
right panel the logarithmic scale reveals an internal classical
structure than explains the local minima found in the quantum
participation ratio of Fig. 4.

IV. CONCLUSIONS

We study the dissipative kicked top, a paradigmatic system
in quantum and classical chaos which is also the starting point
of many body models. It has a spherical phase space and a
3D parameter space. As a result we have extended the validity
of localization properties of qISSs to this case, giving them
a more generic nature. In fact, we identify the same effects
of parametric tunneling found in two-parameter systems that
induces a chaotic shape for the invariant eigenstates in pa-
rameter regions corresponding to an ISS but that are near the
chaotic background. Also, we have verified the localization on
the limit cycles of the ISS for the leading eigenstates [16].

However, we have found deep consequences of the
coalescence-separation phenomenon, only present for

systems with a parameter space with more than two
dimensions. In fact, 3D ISSs can merge and break up as one
of the parameters varies. Indeed, the quantum manifestations
of this dynamics can be very important, leading to a marked
enhancement of localization due to the enlargement of the
regular regions. This can have very important derivations in
many body dissipative systems where parameters proliferate.
Even for the mean-field approximation one can have several
of them [12].

In the future, we will study the generalization to more di-
mensions. The first step would be to characterize the measure
of this phenomenon at the classical level, which has not been
addressed in the literature to the best of our knowledge. The
next one would be to analyze the quantum counterparts and
direct application to many body problems.
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