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Stable and unstable vortex knots in excitable media
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We study the dynamics of knotted vortices in a bulk excitable medium using the FitzHugh-Nagumo model.
From a systematic survey of all knots of at most eight crossings we establish that the generic behavior is of
unsteady, irregular dynamics, with prolonged periods of expansion of parts of the vortex. The mechanism for the
length expansion is a long-range “wave-slapping” interaction, analogous to that responsible for the annihilation
of small vortex rings by larger ones. We also show that there are stable vortex geometries for certain knots; in
addition to the unknot, trefoil, and figure-eight knots reported previously, we have found stable examples of the
Whitehead link and 62 knot. We give a thorough characterization of their geometry and steady-state motion. For
the unknot, trefoil, and figure-eight knots we greatly expand previous evidence that FitzHugh-Nagumo dynamics
untangles initially complex geometries while preserving topology.
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I. INTRODUCTION

Models of excitable media support spiral wave vortices in
two dimensions. In a three-dimensional medium the analo-
gous structure is a vortex filament [1]. Such a filament may
close on itself to form, in the simplest case, an unknotted loop,
and more generally a knotted vortex [2]. As well as being or-
ganizing centers for waves of excitable activity, early numeri-
cal experiments and theoretical work showed that these knot-
ted filaments have their own dynamics [3–9]. Remarkably,
in a simple example of an excitable medium, the FitzHugh-
Nagumo model, simulations suggested that these dynamics
were topology preserving, and further that they were capable
of “simplifying” a knot, reducing an initially complicated
filament geometry to a simpler stationary state [3–5]. Such
a scenario stands in stark contrast to the knot untying via
reconnection events seen in other examples of knotted fields
such as fluids and superfluids [10–12].

So far, the striking knot simplification has been reported
only for the unknot [13]—reducing three examples of tangled,
but unknotted, curves to a geometric circle of fixed average
radius—and, in two examples, the trefoil [13,14]. At higher
crossing number the behavior appears to be more complicated.
Nevertheless, with the exception of two examples discussed
below, reported knot and link evolutions are still consistent
with preservation of topology [3–5,13–16]. Stationary states
have been reported for all torus knots and links up to N =
12 [15,16], where N denotes the crossing number of the knot
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or link, although only in the case where they are stabilized
by proximity to a planar surface with Neumann (no-flux)
boundary conditions and the vortex filaments are initialized
to have the idealized geometry of torus curves. Both of these
features are believed to be important for the stability of these
examples [15,16]. If the vortex is initialized with idealized
torus geometry but not sufficiently close to the boundary, it
is prone to poorly understood instabilities which cause it to
deviate from the initially symmetric form. Similarly, torus
knots initialized without the idealized geometry do not evolve
to the observed stationary states and instead follow irregular
dynamics, typically ending with the filament breaking upon
contact with the no-flux surface. It is not known how close to
the idealized torus geometry the initial curve needs to be to
attain the stationary state. A cautionary example is provided
by early bulk (not close to a no-flux boundary) simulations of
a variety of knots and links, including torus knots, started from
exactly symmetric configurations, which appeared stable over
the times initially simulated [4]. As we shall demonstrate in
the case of torus knots, over longer timescales such geometries
in fact destabilize. The recent no-flux simulations are over
much longer timescales; however, in the absence of theoretical
results it is not clear exactly how long a simulation is “long
enough.”

As indicated above, in contrast to the topology preserving
dynamics seen in the unknot some apparently exceptional ex-
amples of topological nonpreservation have been reported, the
first being the already discussed example of a single filament
breaking at a no-flux boundary, effectively interacting with its
mirrored neighbor. In the bulk, a small vortex loop (stable in
isolation) may be annihilated by a larger coaxial one [17,18].
The mechanism behind this annihilation is thought to be
“wave slapping” by a train of high-frequency wavefronts
coming from the larger loop impacting upon the smaller one
(which has a vortex rotation frequency below that seen for an
isolated filament) causing it to destabilize.
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Underlying all of the above observations are general ques-
tions as to the driving factors behind knot dynamics, which
can be expected to involve both the topology of the vortex
and its geometry. Theoretical work has focused on local
geometric models of filament motion in which an isolated
straight filament is perturbed to have slight curvature and
longitudinal twist in the phase of its cross-sectional spiral
waves [6–9,19,20]. To lowest order these deformations lead
to filament motion with both normal and binormal compo-
nents, as well as a modification of vortex rotation frequency
away from the intrinsic (straight filament) frequency of the
excitable medium [6,8,9]. A “sproing” instability, in which an
initially straight filament twisted above some critical thresh-
old destabilizes and adopts a helical conformation, has also
been predicted and observed [4,6,8,19,20], which has been
proposed [15] to account for the deformations seen in torus
knot simulations.

These considerations are all local and do not capture
the global topology of the vortex or nonlocal wave-vortex
interactions, which are essential to the process of simplifi-
cation without reconnection observed for unknotted loops.
The nonlinear waves of excitation propagating from the vor-
tex filament mutually annihilate when they meet, creating
a complex “collision interface” [3–5,14,21] depending not
only on the filament geometry but also on the synchrony of
wave emission from distant parts of the vortex (Ref. [21]
shows an example of this interface for a trefoil knot with
a different kinetics to that considered here). The analogous
structure in a two-dimensional medium, sometimes known
as a “shock structure” [22], is well studied in a variety of
excitable media [23–28]. If a two-dimensional spiral vortex
interacts with a wave field of frequency higher than its own (as
generated either by other vortices or externally) this interface
moves toward the low-frequency vortex until directly upon
it, at which point the high-frequency wave field directly
slaps the vortex. This slapping may then induce motion in
the vortex, commonly referred to as “spiral wave drift” or
“high-frequency induced drift.” The same scenario may occur
in three dimensions—a more general instance of the wave-
slapping mechanism described above for a pair of coaxial
rings—and has been proposed as an important driver of fil-
ament dynamics, a conjecture for which there is some indirect
evidence [5,14,16]. However, in the three-dimensional case
the factors that determine the collision interface are poorly
understood—as discussed above, local filament geometry may
in principle affect vortex rotation period, but the observed
frequency shift and annihilation of a small unknot suggests
that interfilament interactions and Doppler shift due to relative
filament motion are also important.

We present here the results of a systematic survey of the
dynamics of all prime knots up to crossing number N = 8
and focus on behavior in the bulk, using periodic bound-
ary conditions, so as to further complement recent work by
Maucher and Sutcliffe [13,15,16,18], who have studied no-
flux boundary conditions. We find generically that knotted
vortices do not stabilise into simplified stationary states, al-
though some do. The predominant behavior is of unsteady
dynamics and instability through the expansion of some por-
tion of the knot into a large loop; we present evidence that
this instability occurs through the wave-slapping mechanism

alluded to previously. In a substantial fraction of cases (eight
of thirty-six), the instability eventually leads to strand recon-
nections in the bulk, demonstrating that such events are in
fact not exceptional as one increases crossing number and
do not occur solely at a boundary or in a highly symmetric
geometry. The reconnections are of antiparallel strands, driven
together through wave slapping in a manner analogous to
the annihilation of the unknot discussed above, and result
in links. For both a generic knot and the specific case of
idealized torus knots we additionally investigate the role of
the sproing instability in knot destabilization, finding it to
be unimportant in explaining generic knot instability and not
directly responsible for torus knot destabilization, although
correlated with torus knots attaining a temporarily stable knot
length.

Our survey also shows that for N � 4 (unknot, trefoil,
figure eight) knots do exhibit topology preserving dynamics
toward stationary states. We strengthen these results, and for
the unknot those of Ref. [13], by testing the bulk untangling
dynamics of all of these knots with a wide variety of initial
conditions—in the case of the unknot, a far greater variety
than has been used previously. We find that in the bulk a
generic unknot, trefoil, or figure eight simplifies to a canonical
form, but that the wave-slapping mechanism at play for large
N can cause rates of convergence to vary dramatically. We
then characterize the geometry and long-term dynamics of
these stationary states and two further examples that we have
found, a Whitehead link and a 62 knot, both of which appear
to belong to the same “family” as the figure-eight knot,
sharing with it many dynamical properties. This commonality
does not cleave across preexisting knot types, for example,
torus knots, but rather is a property of the FitzHugh-Nagumo
dynamics.

II. METHODOLOGY

A. The FitzHugh-Nagumo model

The FitzHugh-Nagumo model is given by the pair of
nonlinear reaction-diffusion equations

∂u

∂t
= 1

ε

(
u − 1

3
u3 − v

)
+ ∇2u,

∂v

∂t
= ε(u + β − γ v),

(1)

with u(x, t ), v(x, t ) real valued scalar fields. The remaining
symbols are model parameters set to ε = 0.3, β = 0.7, and
γ = 0.5. These values were originally chosen in Ref. [4] and
belong to a parameter regime in which two-dimensional spiral
waves rotate rigidly and a simple vortex ring shrinks to a sta-
ble finite radius [17]. As such, they are particularly well suited
to the search for stable knots and have been used extensively
in the literature [4,5,13–16,18]. With these parameter choices
characteristic spatial and timescales are given in arbitrary
units (fixed by setting the diffusion constant to one above)
by a spiral wavelength, λ0 = 21.3, and a rotation period for
which we find a value of T0 = 11.14 ± 0.03, giving a rotation
frequency f0 = 0.0898; this period has been previously been
reported as between T0 = 11.1 [4] and T0 = 11.2 [14]. One
may also define an effective vortex radius λ0/2π ≈ 3.4, a
naive estimate of the radius of the stable unknot mentioned
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above; the actual radius found in Ref. [17] is 4.8. Over such a
length scale, one expects short-range intervortex repulsion in
a generic knotted filament.

B. Simulating bulk FitzHugh-Nagumo dynamics

We simulate Eq. (1) with periodic boundary conditions
using the pseudospectral method of Ref. [29], in which the
linear part of Eq. (1) is solved exactly in Fourier space via
an integrating factor, and nonlinear terms are computed via
fast Fourier transform. Thereafter, a fourth-order Runge-Kutta
timestepping is used. When such a method is employed for
diffusive systems, high wave numbers are damped by an expo-
nential integrating factor, and the system remains numerically
stable for time steps beyond those allowed by the Neumann
stability criterion [29]. To test the effects of altering gridspac-
ing and timestep we calibrate against the rotation period of
a two-dimensional spiral, a quantity known to be sensitive to
such choices [30]. We have found that for grid spacings of
�x = 0.2, 0.4, 0.6, observing two-dimensional spirals over a
time of T = 5000 one is able to alter the chosen timestep
between �t = 0.01 and �t = 0.14 with no measurable effect
on spiral period. In practice, with the exception of simulations
to be discussed in Sec. III A, we perform simulations using
gridspacing �x = 0.5, timestep �t = 0.1.

Our use of periodic boundaries complements existing re-
sults by removing the effects of no-flux boundary interactions
on vortex evolution, allowing us to study long time bulk dy-
namics without vortex knots breaking at (or nestling into) the
boundary. One might worry that although we have removed
boundary interactions they have been replaced by the effects
of periodic neighbors. Figure 1(a) shows a snapshot of a
typical periodic simulation. The structure of the wave field,
shown in orange, is tracked by plotting the level set u = 1.6.
It has a complex topology at length scales comparable to
that of the vortex filament, shown in red. However, further
from the filament the shells of wave activity simplify to a
series of concentric spheres propagating outward from the
location of the filament. This is a consequence of the nonlinear
nature of the waves—when two wavefronts meet they fuse,
creating a single cusped front, which is then smoothed by the
curvature dependence of front propagation velocity. Provided
the simulation domain size remains large in comparison to
the dimensions of the vortex filament (and noting that, as we
shall see, filament dynamics are typically orders of magnitude
slower than wave dynamics), these shells shield the vor-
tex from its periodic neighbors—the outermost shell passes
across the periodic boundary and annihilates itself, leaving the
bulk of the simulation untouched. As an example, in Figs. 1(b)
and 1(c) we compare snapshots from two simulations of the
same knot evolution, in this case the 72 knot, but run in boxes
of different sizes. Figure 1(b) is identical to Fig. 1(a) except
that we only show a cross section through the wave field.
Figure 1(c) shows the corresponding knot and cross section
taken from the larger simulation. Considering discrepancies
between the two wave fields where they overlap (in other
words only in the smaller box) we see that differences are
localized to a region on the boundary of the smaller box, with
the bulk of the two simulations in agreement on this smaller
box. As expected, the knot loci themselves are identical. The

Side length: 174

Side length: 225

(a)

(b)

(c)

FIG. 1. (a) A snapshot of a typical simulation, here of the 72 knot
T = 2420 after initialization, demonstrating the structure of the wave
field in a periodic simulation box. The level set |B| = 0.4 (red tube)
marks the vortex filament, and contours of u = 1.6 mark the location
of propagating wavefronts (orange paired surfaces). The near quarter
of the wavefronts are clipped to reveal their inner structure. The
wavefronts have a complex topology at lengths comparable to that
of the vortex, but away from it take the form of simple concentric
shells. (b, c) Snapshots of the same 72 knot evolution simulated
in boxes of different sizes. Panel (b) replicates (a), with a cross
section through the u wave field shown (wavefronts in red). Panel
(c) shows the corresponding knotted vortex and wave field from the
larger box (dark gray simulation box corresponds to cross section
shown). Differences in the wave fields are localized to the boundary
of the smaller simulation box, ensuring we are indeed capturing bulk
dynamics. As expected, the knot loci themselves are identical.
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data shown is taken at time T = 2420 after initialization,
O(200) vortex rotation periods into the simulation (why we
select this particular knot and simulation snapshot for display
will be discussed further in Sec. III), during which time (and
throughout the remainder of the simulation) the knots from the
smaller and larger simulations track one another perfectly. We
may thus be confident that our periodic simulation is indeed
capturing bulk behavior. In practice, how large a simulation
box one needs to ensure this behavior will vary depending on
knot dynamics and the timescale of simulation. For the results
presented here, we find a box size of 174 to be sufficient.

C. Defining and tracking the vortex filament

Stacking two-dimensional spiral vortices one obtains the
simplest example of a vortex filament, one with a straight ge-
ometry from which emanates a quasi-two-dimensional “scroll
wave” [1]. More generally, the vortex filament is a tubular
structure with arbitrary geometry, normal cross sections of
which resemble spiral vortices whose phase is allowed to vary
longitudinally. (In fact even this picture is an idealisation;
waves emanating from other sections of the filament can
disrupt this local spiral wave structure.) Various operational
definitions to extract a one-dimensional curve from this tubu-
lar structure have been proposed [3,4,30]. Here we follow
Refs. [13–16,18] and first compute the intermediate quantity

B = ∇u × ∇v. (2)

|B| measures the deviation of u and v contours from
colinearity—it is zero for a planar wave and only attains
substantial nonzero value along the vortex filament. Contours
of |B| thus take the form of tubes. For example, Fig. 1 tracks
the vortex filament by showing the level set |B| = 0.4 in red.
To extract a one-dimensional curve from such a tube, we
first note that B orients the tube. Stepping along the tube in
the direction given by this orientation, we connect maximal
values of |B| in cross sections taken through it, resampling if
necessary to give equidistant steps; a similar extraction proce-
dure is detailed in Ref. [3]. This raw curve is then smoothed
to remove modes of frequencies comparable to λ, giving a
smoothed curve from which we may compute curvatures and
torsions via finite difference. (The choice of length scale for
filtering is motivated by the observation that the most highly
curved stable filament observed, a stable round unknot [17],
has a circumference comparable to λ.) Typically we will use
the term “filament” to emphasize the one-dimensional curve
defined above, and “vortex” when we wish to discuss the
full tubular stack of spiral waves surrounding this curve. This
definition (and indeed other “instantaneous” definitions [30])
gives rise to small amplitude oscillations in the geometry of
the filament at period ∼T0 which carry through to derived
quantities such as knot length. We shall examine the spectrum
of these oscillations in detail in Sec. IV, but in subsequent
plots showing length evolution we filter them out for clarity.

As discussed above, vortex phase varies along the filament,
framing our one-dimensional curve, and the twist of this
framing may in principle affect both filament motion and
vortex rotation period. We track it by computing ∇u

|∇u| along
the filament and then smoothing as above.

D. Initializing a knotted vortex field

To initialize an arbitrary knotted vortex for simulation we
adopt the basic strategy of Refs. [13,14] in which a phase
field φ(x) ∈ S1, x ∈ R3 \ K , is constructed which contains a
phase singularity with the geometry of some desired vortex
knot K . Thereafter, the winding of φ around the specified
knotted phase singularity is translated into the winding of
(u, v) around the excitation-recovery loop of the FitzHugh-
Nagumo model as one encircles the vortex filament via the
map (u, v) = (2 cos φ − 0.4, sin φ − 0.4).

To construct a phase field φ containing a singularity along
a given curve K , we first compute the solid angle function ω

about K using the formula [31]

ω(x) =
∫

K

n∞ × n · dn
1 + n · n∞

mod 4π, (3)

where for y ∈ K , n := y−x
|y−x| is the projection of K onto a

unit sphere centered on x and n∞ is an arbitrary unit vector.
For a discussion of this integral and its numerical properties,
including its singular behavior about points x such that n ·
n∞ = −1, we refer the reader to Ref. [31].

The solid angle contains the necessary phase singularity
along K , and for the simulations discussed in this paper we
use it for initialization directly by setting φ = ω/2. We briefly
note, however, that the structure of ω about K does not mirror
that of a typical (u, v) wave field, which consists of a series
of approximately equispaced wavefronts radiating outwards
from the vortex filament (Fig. 1). Further, this methodology
does not give control over the initial twist distribution along
the filament, which is set by the intersection of the level set
ω = 0 with K , the “solid angle” framing of K [31]. We may
control both of these features by modifying φ as

φ(x) = k0d(x) + 1
2ω(x), (4)

where k0 := 2π/λ0 is the spiral wave number and d(x) :=
miny∈K |y − x| is the minimal distance from x to K . k0d(x)
increases linearly with distance from the curve, giving a
periodic modulation of φ and hence (u, v) with distance. As
an example, Fig. 2(a) shows the wave field generated using
Eq. (4) when K is a trefoil knot. The intersection of the level
set φ = 0 with K , and hence the initial twist distribution, may
be controlled by including an offset in the definition of d(x)
which varies along K . An example of such a modulation, and
how it alters the wave field, is shown in Fig. 2(b). Given, for
example, the importance of twist distribution on both rotation
frequency and the sproing instability as discussed above (and
further explored in this paper), such control is desirable for
future work.

Initialization geometries for the knots considered here were
constructed from those found in KnotPlot [32], which in turn
are based on Rolfsen’s knot table. In the absence of exist-
ing work on high-crossing-number knots in the FitzHugh-
Nagumo model, there is no compelling reason to choose one
set of initialization geometries over another; for example, an
alternative choice would be to use configurations of ideal rope
length [12,15,33]. We use Rolfsen’s configurations as, with
the exception of the torus knots (whose evolutions we will
compare to existing results [15]) the geometries do not possess
any symmetries. If strands of the knot are initialized closer
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(b)

(a)

FIG. 2. Wave-field initialization about a trefoil knot vortex fil-
ament (red curve) using Eq. (4), with the level set φ = 0 shown
in orange. The near half of the level set is clipped to reveal its
inner structure. In (a) the definition of d (x) in Eq. (4) is simply
minimal distance to the filament. In (b) it is modified by a threefold
symmetric sinusoid along the trefoil, effectively adjusting the solid
angle framing and local twist rate of the vortex filament.

to one another than the vortex radius λ0/2π , reconnections
may occur in the first �T ≈ T0 of simulation, before the
wave field about the knot is established [13]. To ensure this
does not occur, given an initialization geometry K we scale
isotropically such that the longest side of K’s bounding box
occupies 80% of the simulation box size. As the simulation
box is O(50) times the size of the vortex radius, this ensures
reconnections do not occur during initialization.

III. UNSTABLE KNOTS

Fascinating recent numerical experiments on the evolution
of unknots initialized in complex geometries showed that
the FitzHugh-Nagumo dynamics is capable of simplifying an
initially tangled unknot to a unique circular curve, without
strand crossings [13]. These intriguing examples, coupled
with two further instances of simplification in the case of the
trefoil [13,14], as well as some indirect evidence of the same
behavior for the Hopf link [16] (and a series of preliminary
results on various links in Ref. [4]), naturally invite the
speculation that such simplification is generic to any knot.
To investigate the dynamics of a generic knotted filament,
and establish whether this is indeed the case, in Fig. 3 we
show a survey of the length evolution of all knots up to and
including crossing number N = 8, with particular curves that
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FIG. 3. Length evolution of knotted vortices up to and includ-
ing crossing number N = 8, with reconnection events indicated by
curves which terminate early with a circular marker. Knots included
in the legend are further discussed in the text. Note the difference in
scale between the first and subsequent panels. (a) N � 5. (b) N = 6
(dotted lines) and N = 7 (solid lines). (c) N = 8. The unknot (01),
trefoil (31), and figure eight (41) settle to a stable length and fixed
geometry (see Sec. IV). However, beyond this, generic behavior is
an initial period of contraction, followed by length increase over
longer timescales. Insets show the geometries resulting from the
destabilization of the initially symmetric 51 and 71 torus knots.

we discuss further highlighted in the legend. Excluding chiral
variants, there are thirty-six such knots.

Initial behavior across all knots is contraction; this behav-
ior is purely a result of curve geometry, reflecting an effective
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T=2419

T=2423T=2421

T=2417

FIG. 4. Reconnection of the 72 knot at T = 2423 (orange curve,
then orange and green curves after reconnection event) shown in
�T = 2 increments. A pair of antiparallel strands (circled in black)
interact, generating a wave field locally similar to that of the stable
unknot; shown is the value of u in a cross section through the knot,
with high u value colored red. The wave field from the remainder
of the knotted filament, shown entering the circled region at T =
2417, impinges upon these strands causing them to destabilize and
reconnect. Note that the wave field at T = 2420 is also shown
in Fig. 1.

positive line tension for filaments well separated from any
interactions [9]. Our curves are initialized with their strands
separated by several vortex radii. Over the first few vortex
rotation periods the wave field establishes itself around the
vortex filament (over such a timescale the filament may be
considered stationary) with the resulting collision interface
disjoint from the filament itself. Thereafter each segment of
the filament initially moves effectively in isolation from its
neighbors.

Over longer timescales, however, we find that this initial
contraction does not generically lead filaments to settle to
a canonical form or a fixed length, and further that their
topology is not always preserved. We observe reconnection
events in eight of the thirty-six cases, indicated by those
curves terminating in circular markers in Fig. 3. The first of
these occurs at N = 7, with four of the seven N = 7 knots and
four of the twenty-one N = 8 knots exhibiting reconnections.

Figure 4 shows the reconnection event in the 72 knot
occurring at T = 2423 in �T = 2 increments, with the region
where the reconnection occurs circled in black. A pair of
neighboring antiparallel segments are directly impacted by
waves emanating from the rest of the knotted filament, causing
them to destabilize and reconnect—the same wave-slapping
mechanism responsible for the annihilation of a small unknot
by a larger one observed in Ref. [18]. In cross section, the
wave field generated by the antiparallel segments (that section

of the wave field ending at the circled antiparallel segments
in the T = 2417 panel of Fig. 4) locally resembles that of
a stable unknot, or indeed of a pair of oppositely signed
two-dimensional vortices [17]. However, this stable structure
is additionally impinged upon by the wave field of the rest of
the knot (shown entering the circled region at T = 2417). It
has previously been noted that the rotation period of a stable
unknot is 14% greater than T0 [18], and as such the stable
unknot is vulnerable to wave-slapping-induced annihilation,
as it cannot “fend off” a wave train of period T0. This
same argument applies to the antiparallel segments discussed
here, but the resulting topological change is reconnection.
In addition to the similarity of the wave fields between the
coaxial unknots of Ref. [18] and the situation discussed here,
the relative filament motion is also the same; in both cases,
the perturbed filaments are drifting away from the impinging
wave field when topological change occurs. This geometric
detail is important, as the velocity of a stable unknot (0.3 [18])
is a substantial fraction of the wave speed in the medium (1.9)
and as such Doppler shift may compensate for reduced unknot
frequency. For the geometry here, however, the two effects can
only compound one another.

Topology changes previously reported in the literature have
primarily occurred at simulation boundaries [15,16], and one
might be concerned that this reconnection is also an artefact of
a finite simulation box. The snapshot of a 72 simulation at T =
2420 shown in Fig. 1 was taken from the same data shown
in Figs. 3 and 4, and was chosen specifically to emphasize
that this is not the case. Enlarging the simulation box to side
length 225 as shown in Fig. 1 yields identical knot evolution,
including the reconnection event.

Although we have focused the above discussion on the
reconnection in the 72 knot, analogous findings hold for
the other cases. A detailed understanding of the wave-field
evolution leading to such reconnections, and why they are
seen here only for N > 5, is lacking (we shall see examples
of similar wave-field-induced effects for small N in Sec. IV),
but as N increases one generically expects a more complex
wave field surrounding the knot as strands become closely
packed over one another. As such, we lose the ability to
picture segments of the knot as isolated, or even as interacting
solely with a unique “nearest-neighbor” region, but instead
must think of them analogously to the vortex ring buffeted by
external waves.

Even in the absence of reconnections, we only see stable
states for the unknot, trefoil and figure-eight knots; we shall
discuss the robustness and detailed geometry of these states
in Sec. IV. For N > 4 knots do not simplify. After the initial
relatively rapid contraction, we generically see expansion over
a much longer timescale of order several hundred vortex rota-
tion periods followed by periods of irregular evolution includ-
ing possible further expansion. Although the broad trend is to
faster expansion at higher crossing number, the variability of
behavior between knots of the same crossing number suggests
that initialization geometry is just as important in determining
long time evolution. In particular, we note the discrepancy be-
tween the behavior of a typical knot with no initial symmetry
and a torus knot initialized with high symmetry. Although
a typical knot shows length increase by time T ≈ 2000, for
the 51 knot shown in Fig. 3 this increase is only visible by
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T ≈ 4000, and is not evident for the 71 even by T ≈ 6000,
although the inset curve geometries demonstrate the knot has
indeed destabilized (that such destabilization occurs, but only
after long time simulations, clearly demonstrates the necessity
of simulating for many hundreds of rotation periods before
drawing conclusions about the dynamics of this system). In
the next section, we shall investigate the mechanisms of both
the dramatic length increases seen in a generic knot, and of
the deviation of the torus knots away from initializations of
high symmetry.

The mechanism of vortex knot length increase

Exploring the knot geometries corresponding to the generic
length increases seen in Fig. 3 one finds that, despite the
variety of behavior across knots, the increase occurs via a
common mechanism in which isolated strands of the knot
rapidly expand outwards from a tightly packed core region
forming the rest of the knot. We illustrate this behavior for
the example of the 63 knot in Fig. 5(a). The same wave-
slapping mechanism driving reconnection events has also
been proposed as a nonlocal mechanism for persistent knot
length increase; in this context when the collision interface
intersects a section of the knot, wave-vortex interactions drive
that section outwards [5,14]. The interaction does not have an
intrinsic length scale, as waves in the medium do not decay.
Instead, its range depends upon the geometry of the knot and
the accompanying collision interface. For the 63 knot shown in
Fig. 5 one may verify that this surface intersects the expanding
arm, suggesting that wave slapping may be at play.

Given the potential importance of this mechanism, we
would like to establish that it is really driving knot expan-
sion, rather than simply being correlated with it. To do so,
we investigate the effects of abruptly removing long-ranged
interactions entirely, by numerically encasing the filament
in a “glass tube” of moderate radius which moves with the
filament and fuses when two knot segments approach one
another [2]. With this construction, short-range interfilament
repulsion and geometry-mediated (including twist-induced)
filament motion are preserved but long-ranged interactions
are cut out. Using it, we may compare the evolution of a
filament both with and without long-range interactions. A
suitable radius for the tube is suggested by previous estimates
of vortex radius in the literature, as well as the naive estimate
λ0/2π ≈ 3.4: Ref. [17] directly measures a stable vortex ring
radius of 4.8, suggesting a vortex radius of ∼ 5, and Ref. [15]
estimates a radius of 5.9 by matching ideal rope length [33]
and measured trefoil lengths. To implement this construction
numerically we simulate only within a tube of lattice points
about the filament (the filament itself being constructed as in
Sec. II C). In principle the details of the boundary conditions
between the vortex and tube must be considered; however, we
have found that provided we use a tube radius above the vortex
size estimates above, such details do not alter the geometry
driven motion of the vortex, a reflection of its localized nature.
This observation allows us to sidestep a sophisticated finite-
element scheme (the spectral method discussed in Sec. II B
only being valid for a periodic box), and instead simply use a
finite difference method, with (u, v) values for points outside
of the tube set to their fixed point values (−1.03,−0.66). The

tube must move with the vortex; however, we note that this
need only happen on the (slow) timescale of vortex motion;
we may allow motion in a fixed tube for a time O(T0), after
which the tube is recentered around the vortex. The points
brought into the tube at its boundary during this procedure,
which had been set to fixed point values, are now allowed to
evolve. In practice we typically use a conservative tube radius
of ∼10 with gridspacing �x = 0.5 and timestep �t = 0.01,
with a finite difference scheme in which the Laplacian is
computed using a seven point stencil and both reaction and
diffusion terms are evolved using fourth order Runge-Kutta
timestepping. The timestep above is chosen as it gives results
identical to those of the spectral method using �t = 0.1 when
measuring the two-dimensional spiral vortex period.

Figure 5(b) contrasts the length evolution of the fully
interacting 63 knot with a copy of it encased in the tube, with
initial conditions for both taken at T = 2500, midway through
knot expansion. Upon removing long-ranged interactions we
no longer see a dramatic increase in knot length. Instead, the
length of the tubed knot stabilizes at ∼400–600. The details
of this stabilization vary depending on the radius of the tube,
but the final lengths obtained are approximately the same
across radii. Using the core size estimate of Ref. [15], the
ideal rope length of the 63 knot is 340 [33], and thus the
tubed knot is relatively tightly packed. Over longer timescales
[�T = 8000 shown for the radius 10 tube of Fig. 5(b)] the
tubed 63 does not reach a fixed geometry, but rather undergoes
a compact tumbling motion, as the binormal component of
filament motion causes segments of the knot to work over
one another, though without further substantial length change.
In Fig. 5(c) we explore the initial divergence in geometry
between the fully interacting and tubed knots. We see that it
does not occur globally but is localized to distinct expanding
segments of the interacting 63, which lie separate to the knot
core region and are responsible for global length increase;
these same segments are those which intersect the collision
interface. Within the core region, segments of the filament
are packed closer than the spatial cutoff we have defined, and
there is no immediate divergence between the interacting and
tubed knots. By contrast, removing long-range interactions
allows distant segments of the tubed knot to evolve under their
intrinsic dynamics, unaffected by wave-vortex interactions,
and so shrink toward the core region. Thus, a wave-slapping
mechanism accounts for global changes in knot length and
also for the geometry of where they occur.

In local geometric models of filament motion a mechanism
by which filament length may stabilise or increase, despite
an effective positive line tension, is via the “sproing” insta-
bility [5] in which, above some critical local twist threshold,
an initially straight filament expands into a helix—for the
FitzHugh-Nagumo model with the parameter values used
here, Ref. [4] reports this threshold at 0.024 rotations per
space unit for a straight filament. This instability has been
proposed to account for the halting of links at lengths greater
than hard core repulsion on the scale of the vortex radius
would suggest [5] and for the destabilization of symmetric
torus knots [15]. We may rule out sproing as a driver of the
dramatic length increases seen in generic knots by noting
that, as a local geometric mechanism, its effects were present
in the tubed knot discussed above. For further confirmation,
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FIG. 5. Dynamics of the 63 knot. (a) From T = 0 to T = 2000 the knot contracts and flattens, behavior caused by the intrinsic curvature
driven dynamics of an isolated filament mimicking a line tension. From T = 2000 onwards length increases, with a single arm of the knot
rapidly expanding outwards from an otherwise tightly packed core. (b) Comparison of the length evolution of the fully interacting 63 vortex
filament at T = 2000 (green) to a copy encased in a “glass tube” of radius 10 (blue) or 15 (orange). With long-ranged interactions removed,
the knot does not expand, but rather settles to a length of ∼400–600. (c) Initial divergence in geometries between the interacting 63 knot (green
curve) and the radius 10 tubed one (blue curve). Divergence does not occur globally but is localized to two distinct expanding segments outside
the length scale defined by the tube. (d) Distribution of filament twist during knot expansion. The expanding arm of the knot has twist values
well below the 0.024 rotations per space unit threshold for the sproing instability and is less highly twisted than other, nonexpanding segments
of the knot, ruling out this instability as the cause of length increase.
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we may also examine the twist distribution along the fully
interacting filament during knot expansion. Figure 5(d) shows
this distribution for the 63 knot; we see that the expanding
arm of the filament consistently has twist values well below
the sproing threshold and, further, that other sections of the
knot are more highly twisted, yet do not show the same length
increase. In fact, twist values along the entirety of the knot are
consistently below the sproing threshold, an observation also
made for the early short time simulations of Refs. [4,5].

Although not a driver of generic knot length increase, this
last observation suggests that the sproing threshold may still
have dynamical importance as a stabiliser against curvature
induced length decrease, or play a role in the destabilization of
symmetric torus knots. In Fig. 6 we study the destabilization
of the 51 torus knot, originally presented in Fig. 3, in more
detail. Figure 6(a) shows the evolution of a measure of the
asymmetry of the knot, defined by taking the power spectrum
of the knot’s curvature as a function of arclength, and comput-
ing the fraction of the power in modes which do not respect
the underlying symmetry (fivefold in this case). Alongside it
we show the evolution of both the maximal twist, expressed
as a fraction of the 0.024 rotations per space unit sproing
threshold discussed above, and the fraction of the arclength of
the 51 which attains a twist greater than 90% of this threshold.
We first note that the order of events is broadly consistent
with the sproing threshold playing a role in the dynamics.
After an initial period in which the knot flattens and the twist
remains roughly constant, maximal twist increases until it
attains the sproing threshold, thereafter remaining constant;
this threshold is attained as the length of the 51 stabilizes.
However, it is several hundred rotation periods before we see
the subsequent loss of symmetry. This timescale suggests that
it is not the case that the knot hits the sproing threshold,
and then destabilizes; Ref. [4] notes that the timescale for
sproinging to occur is typically only a few rotation periods.
Furthermore, the geometry of the destabilization is inconsis-
tent with sproing instability. In Fig. 6(b) we show the knot as it
destabilizes, colored by twist. We fail to see helical sproinging
along the highly twisted segments of the knot; instead the
whole form collapses to a twofold symmetric shape. A similar
deformation is seen in the 71 (see inset of Fig. 3) and has
been noted in early simulations of initially symmetric triply
linked rings [4], where its cause was attributed to an interplay
between the sproing threshold and interfilament interactions.
Overall, then, it appears the sproing threshold acts to halt
knot shrinkage, but that subsequent destabilization cannot be
directly attributed to the sproing instability.

IV. STABLE KNOTS

In Sec. III we showed that the speculation that a generic
knotted vortex might simplify to a canonical form—a specu-
lation previously evidenced by promising “untangling” results
for the unknot [13] and a few further examples of simplifica-
tion in low-crossing-number knots and links [14,16]—is not
borne out for N > 4. In the search for stable knots, recent
numerical experiments found that knots and links could be
stabilized through proximity to a no-flux boundary [14,15].
Primarily the examples shown were for torus knots and links,
although the figure-eight knot and Borromean rings were
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FIG. 6. The role of the sproing instability in the destabilization of
the 51 torus knot. Panel (a) shows the (normalized) length evolution
of the 51, alongside a measure of its asymmetry. Shown also is
the maximum absolute twist along the knot as a fraction of the
0.024 rotations per space unit sproing threshold, and the fraction of
arclength which attains 90% of this threshold. The twist threshold
is reached as knot length plateaus, but no sproinging instability
is observed; instead, the knot gradually destabilizes over several
hundred rotation periods. Panel (b) shows the geometry of the knot
destabilization, colored by twist. Rather than a helical instability
developing in regions of high twist, the whole knot transitions to a
twofold symmetric form.

also briefly given as nontorus examples. In contrast to the
untangling of unknots, these boundary stabilized states of
more complex vortices were not established to be “basins
of attraction” for generic initial geometries, but rather were
obtained from highly symmetric initial vortex line geometries.
In Sec. III we also saw that in the case of torus knots more
complex than the trefoil such states are not stable in our
bulk simulations. By contrast, for the stability of the trefoil
and figure-eight knots we now show that a much stronger
statement than has been made previously is true: in the bulk,
a generic trefoil or figure eight simplifies to a canonical form,
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FIG. 7. Untangling dynamics of the (a) 18 unknots, (b) 17 trefoils, and (c) 9 figure-eight knots formed by performing single strand crossings
on the higher crossing number knot geometries of Sec. III. (a) All unknots simplify to a unique round geometry without reconnection events.
Length decrease is monotonic, however there is some variation; the geometry of one particularly slow decay is shown in the inset, displayed
at times indicated by the solid markers. (b) All trefoil geometries simplify to a unique stable state, however there is greater variation across
decays than for the unknots, with periods where knot length actively increases (boxed inset, circled markers). (c) Of the 9 tangled figure eights
simulated, 7 settle rapidly to a stable state. However, over T = 20 000 one example fails to converge and another converges only after going
through prolonged periods of length increase, contraction, and irregular “tumbling” dynamics.

analogously to the unknot. The states are the same as those
found in the survey of Fig. 3 and also appear to be the same
as those found near a reflecting boundary. In addition, we
strengthen the results of Ref. [13] and demonstrate them to
be independent of a no-flux boundary by testing the bulk
untangling dynamics of the unknot with a far greater variety
of initial conditions than has been used previously.

All knots may be converted into the unknot by performing
strand crossings. The minimal number of strand crossings
needed to convert a knot into the unknot is called its un-
knotting number. Of the knots with N � 8 there are 18 with
unknotting number 1; that is, they can be converted to the
unknot by a single strand crossing. By analogous single-strand
crossings one can also target the trefoil or figure-eight knots:
For N � 8 there are 17 that convert to the trefoil and 9 to
the figure eight under a single strand crossing. Beginning
with the knot geometries of Sec. III, we use these crossings
to provide an assortment of initial tangled geometries for
unknots, trefoils, and figure eights, and study their evolution.
Figure 7(a) summarizes the results of these simulations for the
tangled unknots. We find in all cases that the initially tangled
vortex transforms to a unique stable ring and that the dynamics
does not involve any reconnections. The typical dynamics is
an approximately constant rate of length contraction, although

this is not rigorous and there is some variation. In particular, in
one example (obtained from the 811 knot) there is a substantial
period of pause where length decreases much more slowly
than is seen on average; snapshots of the geometric evolution
of this curve are shown as insets.

Figures 7(b) and 7(c) show results for the trefoil and
figure-eight knots. As with the unknot, for the trefoils we see
simplification without reconnection to a unique steady state,
although there are perhaps more examples showing periods
where the length is not decreasing; one such is illustrated by
the inset figures. However, for the figure eights the dynamics
is rather more complicated; 7 of the 9 initializations rapidly
converge to a unique stable state, but 2 show prolonged
periods of length increase as well as of contraction, with
one of them failing to converge over the times simulated. In
the example highlighted in Fig. 7(c), we see that the initial
period of expansion is due to a single arm of the knot rapidly
expanding outwards from an otherwise tightly packed core,
caused by the same wave slapping as described in Sec. III.
This expansion continues for many hundreds of rotation peri-
ods and results in a total increase of several times the initial
knot length. In addition, the subsequent period of contraction
does not lead directly to a stable shape, but rather produces an
extended period of “tumbling” dynamics in which the length
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fluctuates erratically before eventually settling to the final
steady state. The total time that this dynamics plays out over
greatly exceeds that of the typical unknot.

These results bridge the gap between the simplification
of the unknot discussed in Ref. [13] and our own findings
for high-crossing-number knots by showing that, although
clearly neither the untangling dynamics nor the geometries
giving rise to wave-slapping instability are fully understood,
the same mechanisms dominating high-crossing-number knot
behavior also play an important role in determining low-
crossing-number behavior; wave slapping can totally disrupt
the appealing picture of a dynamics which monotonically de-
creases knot length even when a stable target state exists. The
results also demonstrate the importance of initial conditions
on long-term knot evolution; even given the existence of a
stable state, the difference between a “good” and “bad” initial
starting state may lead to an order of magnitude difference in
the time taken to reach that stable state.

Another notable example of the importance of initial
conditions comes from the observation that the boundary
stabilized trefoil knot actually exists in two distinct stable
configurations [15]. The first, which we denote the 31,1, has
the geometry that the tangled trefoils of Fig. 7 evolve to.
The second, which we denote the 31,2, is not reached by
our tangled trefoils. This state was constructed in Ref. [15]
from an exactly twofold symmetric initial vortex filament, and
preserves this symmetry in the final reported state. Although,
as we have seen with torus knots, highly symmetric boundary
stabilized states may not exist in the bulk, in our own sim-
ulations we have found the 31,2 to be accessible in the bulk
using an initial configuration with only approximate twofold
symmetry, and have confirmed its stability up to T = 12 000.
Thus, although this twofold symmetric 31,2 indeed appears
stable, the results of our tangled trefoil simulations suggest
that it has a small basin of attraction. Taken together, the
above results suggest that, although we have seen that the
stability of higher crossing number knots is not the norm,
stable geometries may nevertheless exist in the bulk, but that
when hunting for them we should not use any carelessly
chosen initial configuration, but ought to be more selective
in which initial geometries we use. For hints as to what
those geometries might be, we now investigate in detail the
properties of the stable knots we have found thus far.

Properties of stable knots

Figure 8 shows the geometries, curvature, and torsions as a
function of arclength, vortex framings, and twist distributions
of the stable 31,1, 31,2 and figure-eight knots. The evolution
of their vortex framings at four successive intervals over
a (approximate) vortex rotation period are indicated by the
vector fields along the curves. Curvatures and torsions shown
correspond to the geometries in the far left, T = 0 panels (as
discussed in Sec. II C there is slight intraperiod oscillation),
with the arbitrary zero of arclength fixed to coincide with
maximal curvature values. We first note the striking twofold
symmetry of both the 31,2 and the figure eight knots; this
symmetry is not a remnant of initial conditions, but emerges
from the underlying dynamics. By contrast, the 31,1 lacks
any threefold symmetry. This is especially notable given that

this state was reached starting from an exactly threefold
symmetric torus knot geometry in Sec. III. It appears that the
boundary stabilized trefoil reported in Ref. [15] also lacks
threefold symmetry, although it is unclear why this loss of
symmetry does not occur for boundary stabilized torus knots
of higher crossing number. A second striking feature of these
stable knots is the tight synchronization of the evolution of
their framings. The framings of closely separated segments
of the filament mesh [4], the wave tip emanating from one
segment being consistently met by a wave tip emanating from
a spatially neighboring segment, resulting in traveling waves
of tightly synchronised wave activity running the length of
the knot in a periodic fashion. The pattern is evident in the
31,2 and figure-eight knots but is also present in the 31,1, most
clearly when one focuses on one of its three relatively straight
segments; the framing of the curved lobes is twisted such
that it meets the rotation of the wave tip emanating from the
straight segment. Again, this meshing is an emergent property
of the stable knot.

The similarity of the geometries and vortex framings of
the 31,2 and figure eight is suggestive of a recurrent structural
motif. To investigate further we take the geometry of the the
stable figure eight and use it as a starting point to construct
new trial initialization geometries. We do so in the simplest
way possible—as highlighted in the dotted circle around a
section of the T = 0 figure eight in Fig. 8, the knot geometry
contains a half-turn of a helix, which we may extend to an
integer number of half-turns. Doing so gives a family of
trial initialization curves alternating between knots and two
component links, the next two being the Whitehead link and
the 62 knot. Simulation reveals that such initialization geome-
tries evolve to apparently stable states. Figure 8 shows their
detailed geometry, and in Fig. 9 we confirm their bulk stability
up to T = 15 000. Both states share the twofold symmetry and
tight synchronization over a vortex rotation period found in
the 31,2 and figure-eight knots, with especially close similarity
in the geometry and twist distributions of the figure eight,
Whitehead link, and 62 knots. This similarity suggests that
they arise as the start of a family of such stable knots which
does not cleave along some existing subcategory of knots
(for example torus knots) but rather arises specifically from
the FitzHugh-Nagumo dynamics. As another demonstration
of the importance of initial conditions, and a reminder that
such states may have small basins of attraction, we note that
the 62 of Sec. III does not find this stable state over the times
simulated.

In Fig. 10 we explore the dynamical properties of all stable
knots found thus far. With the exception of the 31,1, we find
that each drifts along its axis of symmetry and rotates as
a rigid body, with speeds and rotation rates summarised in
Fig. 10(a); these rates are computed by averaging the motion
of the rigid body frame of the stable knot over �T = 2000.
An example of this motion is shown for the 62 knot in
Fig. 10(b) (as can be seen in Fig. 9, the Whitehead link and the
62 knot have some long timescale periodic length modulation
which corresponds to a slight oscillation in their velocity).
The 31,1 instead drifts in a helix as shown in Fig. 10(c),
rotating about the helical axis as a rigid body, a reflection of its
lack of threefold symmetry (a numerical fit to this helix [34]
finds that it has radius 3.23 and pitch 39.34). The scale, and
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FIG. 8. Geometries, vortex framings, and twist distributions of our stable knots. Vector fields along curves indicate vortex framings, and
are shown at four successive times across a (approximate) vortex rotation period. Curvatures and torsions shown correspond to the T = 0
panels (there is slight intraperiod variation) with the zero of arclength fixed to maximal curvature values. With the exception of the figure eight
knot for which there is no distinction, all knots shown are the “right-handed” chiral variant—they rotate in a right-handed sense about their
direction of motion (down the page). Dotted circle highlights a half turn of a helix in the figure-eight geometry, which may be extended to
several half turns to give the initialization geometries for the stable Whitehead link and 62 knot shown.
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FIG. 9. Length evolution of the Whitehead link and the 62 knot
with initialization geometries made by extending the structure of the
stable figure eight knot. Insets correspond to marked times.

structure with knot size, of the drift velocities resembles that
found for torus links in Ref. [16]: Within the family of knots
discussed above, we see drift velocity decreasing with knot
size. However, the complex geometries of the stable knots
discussed here renders the explanation for this decrease given
for torus knots (decreasing asymmetry between inner and
outer parts of the torus as size increases) inapplicable. A
reflection of this complexity is that, beyond consistency of
scale, there is no clear accompanying pattern in the rotation
rate data.

We briefly note that in the above discussion of vortex
rotation sense, drift velocity and overall knot rotation sense
we have not been careful to distinguish the possibly different
behaviours of oriented or chiral variants from one another.
All stable knots and links discussed above are isotopic to
themselves under reversal of the orientation of any link com-
ponent, however, with the exception of the figure eight they
are all chiral, and this chirality determines the rotation sense
of the knot. In Figs. 8 and 10 we present variants rotating
in a right-handed sense about their drift velocity; left-handed
variants, with reversed twist distributions, also exist.

As discussed in Sec. III, Ref. [18] reports an increase in
the rotation period of a stable unknot by 14%. We investigate
whether similar shifts exist for other stable knots by looking
at the spectra of their high-frequency length oscillations.
Figure 10(d) shows the spectra of all stable knots as measured
over �T = 4000 after they reach their stable configurations,
alongside the spectra of the first T = 1000 of the unknot and
figure eight data shown in Fig. 3. We include this second set
of data for calibration and methodology validation, as during
this time we expect the data to give the spectrum of a nonin-
teracting knot, which should approximately correspond to f0.
As expected, the length oscillations of the noninteracting data
are consistent with the fundamental vortex rotation frequency
of f0 = 0.0898, and do not vary with knot topology—before
intervortex interactions occur the global structure of the fil-
ament does not dramatically affect vortex rotation period.
In fact, as this data is taken during the contraction of both
knots, the observation that it shows purely spectral broadening
suggests a negligible role for curvature in possible shifts to
rotation frequency. As with the noninteracting data, the stable

knot spectra show single peaks, but their frequencies are
shifted relative to the noninteracting case on a scale which
exceeds our estimate of curvature induced corrections. For
all nontrivial knots, this shift is to a higher frequency (lower
period), and its size is approximately constant; we obtain a
period of T = 0.97T0. By contrast, the unknot alone shows
a substantial shift to lower frequencies (higher period); we
find an unknot rotation period of T = 1.19T0, consistent with
the results of Ref. [18]. That the situation for nontrivial knots
is a shift to lower period relative to an isolated filament is
intriguing, and suggests itself as a potential origin of the
motion of the collision interface leading to the wave slapping
observed in Sec. III. One important complicating factor in this
sort of analysis is Doppler shift. Although the period of the
stable unknot is higher than T0, its velocity is 0.3, a substantial
fraction of the wave speed (1.9) in the medium. Using the data
presented here this gives a Doppler shifted period for a sta-
tionary observer ahead of the unknot of only 1% greater than
T0; in other words, at least for the unknot, relative filament
motion is extremely important in determining the stability of
a situation. A similar calculation for an observer behind the
figure eight gives a Doppler shifted period of T = 0.975T0,
a far less substantial shift. We speculate that these two facts,
first, that stable structures generically appear to have periods
shifted below T0, and second, that even when the shift is to a
higher period in the case of the unknot (extrapolating unknot
behavior to that of generic antiparallel strands) this increase
is compensated for in a directional manner by Doppler shift,
give an intrinsically unstable dynamics in which the formation
of any interacting structure hinders further formation via wave
slapping.

V. DISCUSSION

We have presented a survey of the bulk dynamics of
knotted vortices in the FitzHugh-Nagumo model covering
prime knots up to crossing number N = 8. Although the
simplest knots—the unknot, trefoil, and figure eight—possess
stable states and exhibit a fascinating dynamics of untangling
without reconnections, this is not repeated for any of the
other knots in our survey. The general trend is an irregular
dynamics, marked by sustained periods of length expansion of
parts of the knot, the cause of which we have directly shown
to be a long-range wave-slapping interaction. In several cases,
this wave slapping led to strand reconnections and topology
change, phenomena which appear to be associated more with
the geometry of the wave field than the topology of the vortex.

For those stable knots found in our initial survey, we
have tested the effectiveness of the FitzHugh-Nagumo flow in
untangling a wide variety of initial conditions. Although the
dynamics successfully untangled all but one initial geometry
over the time simulated, we saw that in the case of the figure-
eight knot this untangling was far from monotonic and that
the same wave slapping dominating high-crossing-number
knot behavior may also cause low-crossing-number knots
to substantially increase in length before untangling. These
results stand in contrast to those of Ref. [13] and our own on
the rapid untangling of unknots. We gave a detailed charac-
terization of the geometry and dynamics of all known stable
vortices in the bulk, including the tight synchronization of
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FIG. 10. Dynamics of stable knots. (a) A summary of drift speeds and rotation rates for all known stable knots. Note that the velocity given
for the 31,1 is that along its helical axis. (b) Drift and rotation of the 62 knot. Shown are centers of mass taken at T = 100 intervals (blue dots),
and snapshots of the geometry at T = 3000 intervals; between each snapshot the knot has rotated ∼20 times. (c) The 31,1 drifts along a helical
path (fitted red curve), rotating about the helix axis as a rigid body. (d) Power spectra of high-frequency oscillations in knot length data. Before
intervortex interactions occur, the oscillation period is the same as f0. All nontrivial stable knots show a similar shift to higher vortex rotation
frequencies (T = 0.97T0), with the unknot alone showing a shift to lower frequencies (T = 1.19T0).

their associated wave fields, their motion through the medium
and natural rotation periods, and shifts in the spectra of their
high-frequency length oscillations. In addition to the already
known trefoil and figure-eight knots, we found stable forms
for the Whitehead link and 62 knot, both of which appear to
come from the same “family” of knots as the figure eight.
While in the former case, the basin of attraction appears to
be large, the same cannot be said for the latter, at least for the
timescales of the simulations we have run.

Throughout this paper, we have emphasized the importance
of the collision interface on understanding long timescale
vortex dynamics. Although we have seen many examples
of its importance, an understanding of its own dynamics is
currently qualitative at best. As a first step toward rectifying
this, it would be interesting to directly study the evolution
of local rotation rate along a vortex to fully disentangle the
possible effects of curvature, twist, and interactions. Turning
from general dynamical questions to the details of stable
states, beyond noting close similarities between those found

we have not proposed principles by which their geometry and
behavior may be understood. A detailed description appears
challenging, but the observed wave-field synchronization, and
similarities in the size of spectral shifts, of Sec. IV offers a
global organizing principle from which one might try to pre-
dict geometries. When discussing stability we have contrasted
our own results in the bulk with those on torus knots and
links that have been found near no-flux boundaries [15,16],
detailing where results overlap (the stability of the trefoil and
figure eight) and where they diverge. Although we have seen
that boundary stabilization is more complex than simply a
suppression of the sproing instability, its exact nature remains
unclear and deserves further study.

The features of the FitzHugh-Nagumo model at the param-
eter values studied here which are conducive to the formation
of stable knots—short-range intervortex repulsion, a contrac-
tile filament law of motion—are offset by other undesirable
features, primarily wave slapping. Parameter choices were
originally made in Ref. [4] on the basis that such values
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gave two-dimensional vortices with desirable properties and
three-dimensional simulations were computationally feasible.
It would be interesting to revisit these choices armed with
new criteria for a desirable set of parameters. For example,
we might search for parameters (or indeed models) such
that rotation frequency is seen to decrease with twist and
interactions. A related question is to explore whether wave-
slapping interactions have any role in enhancing untangling as
well as hindering it—in other words, whether the untangling
aspect of the dynamics can be captured in a local geometric
model. Here the tubed knot of Sec. III offers some hints;
in preliminary simulations of tubed versions of the tangled
unknots of Sec. IV we do not see substantial differences in the
untangling times between tubed and untubed unknots. It may
be the case that, although the full dynamics appear extremely
difficult to capture with a local geometric model, such a model
offers insight for the restricted case of unknot untangling. This
is especially interesting given the apparent contrast between
the untangling dynamics seen here and those utilized by line
tension minimization methods [13].

Stable vortex rings have been realised experimentally and
successfully described using existing theory [35–37]. As such,
although one expects the precise details of knot stability to
be specific to the system studied, we believe that our explo-
ration of the phenomena seen here—the importance of wave
slapping, bulk simplification of low-crossing-number knots,
frequency shifts in stable knots—is of direct experimental
interest for a general excitable medium, outside of the details
of the FitzHugh-Nagumo model.
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