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Nonstationary dynamics of the sine lattice consisting of three pendula (trimer)
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The low- and high-amplitude oscillations in the system of three nonlinear coupled pendula (trimer) are
analyzed beyond the quasilinear approximation. The considered oscillations are fundamental for many models
of the energy exchange processes in physical, mechanical, and biological systems, in particular, for the torsional
vibrations of flexible polymers or DNA’s double strands. We obtained the conditions of the basic stationary
solutions’ stability. These solutions correspond to the nonlinear normal modes (NNMs), the instability of which
leads to the appearance of localized NNMs (stationary energy localization). Using an asymptotic procedure,
we reduce the dimension of the system’s phase space that allows us to analyze the energy exchange between
pendula in the slow timescale and to reveal periodic interparticle energy exchange and nonstationary energy
localization. It has been shown recently that essentially nonstationary resonance processes of this type are
adequately described in terms of the limiting phase trajectories (LPTs) corresponding to beatings between the
oscillators or coherence domains in the slow timescale. Moreover, it turns out that criteria of the transition to
the stationary and nonstationary energy localization can be formulated as the bifurcation conditions for NNMs
and LPTs, respectively. The trimer under consideration is a nonintegrable system, and therefore its equations
of motion is only after dimensions reduction can be analyzed by the Poincare sections method. Finally, we aim
to study the highly nonstationary regimes, which correspond to beatinglike periodic or quasiperiodic recurrent
energy exchange between the pendula.

DOI: 10.1103/PhysRevE.99.012209

I. INTRODUCTION

The dynamics of coupled nonlinear oscillators have at-
tracted the growing interest of the scientific community be-
cause of its fundamental meaning and various applications.
Besides the early classic works which can be found in mono-
graphs [1–5] and more recent works [6,7], we can distinguish
various types of the investigations. Many of them are devoted
to the search for the periodic motions and cycles in the
complex systems which comprise weakly coupled subsystems
[8–10], including proofs of the existence and stability of
the 2π -periodic motions, but without the construction of
the solutions themselves. There are also papers describ-
ing numerically the regimes existing in the systems of the
identical oscillators with different coupling types [11,12].
Another special series of investigations on synchronization
of the coupled oscillators is based on the phase approx-
imation [13–15] and quasilinear approach [16,17]. These
works are based on the assumption of the small amplitude
modulations of the oscillators. Analysis of the stability of
the NNMs and construction of the analytical solutions in
the vicinity of the equilibrium state of two pendula with
weak or strong linear coupling has been made in [18–20].
If the amplitude modulations are not small, the approach
based on the nonlinear normal modes (NNMs) and limiting
phase trajectories (LPTs) appears to be very effective [21–
39]. The limiting phase trajectories are defined as phase
trajectories showing the maximum possible energy exchange
between the parts of the system [i.e., between the oscillators,
the oscillatory clusters (coherence domains), or between the
system and external field] [25,26]. Evolution of the LPTs

in the parametric space allows prediction of the thresholds
corresponding to the dynamic transition. In the case of
strongly modulated processes, the analytical description can
be obtained in terms of nonsmooth basic functions. The
efficient solution of the nonstationary problem for two linearly
coupled pendula without restrictions on the amplitudes of
oscillations is presented in [27].

The model of the coupled nonlinear pendula with the
sine-type nonlinear coupling (we will denote it as a strongly
nonlinear coupling) serves as an adequate model for many
physical systems such as paraffin crystals, ferromagnetic
chains, and many organic molecules, including DNA [28,29].
In the paper, we consider one of the simplest cases of this
type, namely, the system of three identical pendula coupled
via a strongly nonlinear potential. With the example of the
Fermi-Pasta-Ulam chain [30,31], we have already shown
that under the resonant conditions, the coherent domains
(clusters), which interact weakly, play the role of the oscilla-
tors in the energy exchange and energy localization processes.
The dynamics of the clusters in the framework of the two
degrees of freedom model is reduced to the dynamics of the
oscillators themselves.

Our work concerns the case with more than two degrees
of freedom. As the chain has free boundary conditions, the
symmetry between the middle element of the chain and the
side elements is broken. Therefore, the short chain of three
pendula with strongly nonlinear coupling is studied sepa-
rately. Up to now, the case of three- and four-element chains
was considered for the rotors only [32,33]. In these works,
the analytical solutions are studied and a comparison of the
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FIG. 1. Energy transport regimes for the initial excitation of the first element equal to Q = π

2 ; parameter values: (a) β = 0.1, (b) β = 0.2.

localized regimes with well-known discrete breathers is made
[35]. These results could be compared with the study of our
system in the limit of rotating pendula. However, in our study,
we focus only on the large-amplitude oscillations but not
rotations.

In the current paper, in contrast to many works devoted to
interacting nonlinear oscillators, the nonlinearity of both the
pendula and the coupling between them are not assumed to be
small. Thus, the research methods that involve quasilinearity
and the presence of a small parameter characterizing nonlin-
earity and/or coupling are not applicable. To overcome this
difficulty, a semi-inverse method was proposed [36]. Using
this method and the LPT concept, the system of two identical

linearly and strongly nonlinearly coupled pendula was exam-
ined under different oscillation amplitudes [26,37]. Stationary
and nonstationary transitions leading to a qualitative change
in the dynamic behavior of the system were analytically
described. This work continues the previous investigations
for the more complex case, when the coupling between the
pendula cannot be assumed weak and the number of degrees
of freedom is equal to three.

II. THE MODEL AND ASYMPTOTIC PROCEDURE

The Hamiltonian of the system of three identic pendula
coupled via the cosine potential in the dimensionless form can
be represented as follows:

H =
∑

j=1,2,3

{
1

2

(
dqj

dt

)2

+ [1 − cos(qj )]

}
+ β[1 − cos(q2 − q3)] + β[1 − cos(q2 − q1)], (1)

d2q1

dt2
+ β sin(q1 − q2) + sin(q1) = 0,

d2q2

dt2
+ β sin(q2 − q1) + β sin(q2 − q3) + sin(q2) = 0,

d2q3

dt2
+ β sin(q3 − q2) + sin(q3) = 0. (2)

The main difference of the system (2) from the system of two coupled pendula is that there is a significant symmetry break:
the middle element is under action of the coupling with two neighboring oscillators, while the side elements are coupled only
once. The periodic boundary conditions would make the situation more symmetric, but we concentrate our study on the planar
model.

Let us first look at the possible energy transport regimes similarly to the system of two strongly nonlinearly coupled pendula
[37]. For that, we set the initial conditions

q1 = 0; q2 = 0; q3 = 0; q̇1 = Q; q̇2 = 0; q̇3 = 0;

and change of the coupling parameter β in a wide range, where Q is the initial excitation (see Fig. 1). If the coupling is weak
enough, the energy will stay on the initially excited side pendulum [see Fig. 1(a)]. However, if we increase the coupling over
some threshold value, the regular energy transport between all three oscillators occurs [see Fig. 1(b)]. Let us note that only the
system of three nonlinear oscillators with a “soft” type of nonlinearity can demonstrate such behavior. The trimer with hard
nonlinearity can demonstrate regular recurrent energy transport only between two neighboring oscillators of the three elements
of the chain [38]. To study the evolution of the energy transport states, we will use a semi-inverse method (see [27,36]) for
application of the asymptotic procedure.

We suppose that the NNMs’ frequencies are close to each other, and the motion of the system happens with the frequency ω,
which is also close to those of NNMs. The assumption of the closeness of the motion to the resonance with frequency ω allows
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FIG. 2. The NNM frequencies vs the NNM’s amplitudes. Coupling parameter β = 0.1. (a) Numerical demonstration of the frequency
inversion, different NNMs are presented by colors: in-phase (1,1,1) red solid line; (1,0,–1) black dashed line; (1,–2,1) blue dotted line.
(b) Comparison of the analytical solution with the numerical results for in-phase (red lower line) mode and antiphase (1,0,–1) (black upper
line) mode. Solid lines define the analytical results; dots correspond to results obtained numerically from the initial system.

rewriting the system in the following form:

d2q1

dt2
+ ω2q1 + εμ[−ω2q1 + sin(q1)] + εβ0 sin(q1 − q2) = 0,

d2q2

dt2
+ ω2q2 + εμ[−ω2q2 + sin(q3)] + εβ0 sin(q2 − q1) + εβ0 sin(q2 − q3) = 0,

d2q3

dt2
+ ω2q3 + εμ[−ω2q3 + sin(q3)] + εβ0 sin(q3 − q2) = 0,

where ε is a small parameter and μ is a bookkeeping parameter, so that εμ = 1, and εβ0 = β.
We introduce complex variables ψj = 1√

2
( 1√

ω

dqj

dt
+ i

√
ωqj ), where ω is a still undefined frequency of the resonant motion.

We also represent the sine function as an infinite sum of the following complex argument:

i
d

dt
ψ1 + ωψ1 + εμ

[
−ω

2
(ψ1 + ψ∗

1 ) + i√
2ω

∑ (−1)k

(2k + 1)!

( −i√
2ω

)2k+1

(ψ1 − c.c.)2k+1

]

+ iεβ0√
2ω

∑ (−1)k

(2k + 1)!

( −i√
2ω

)2k+1

(ψ1 − ψ2 − c.c.)2k+1 = 0,

i
d

dt
ψ2 + ωψ2 + εμ

[
−ω

2

(
ψ2 + ψ∗

2

) + i√
2ω

∑ (−1)k

(2k + 1)!

( −i√
2ω

)2k+1

(ψ2 − c.c.)2k+1

]

+ iεβ0√
2ω

∑ (−1)k

(2k + 1)!

( −i√
2ω

)2k+1

[(2ψ2 − ψ1 − ψ3) − c.c.]2k+1 = 0,

i
d

dt
ψ3 + ωψ2 + εμ

[
−ω

2
(ψ3 + ψ∗

3 ) + i√
2ω

∑ (−1)k

(2k + 1)!

( −i√
2ω

)2k+1

(ψ3 − c.c.)2k+1

]

+ iεβ0√
2ω

∑ (−1)k

(2k + 1)!

( −i√
2ω

)2k+1

(ψ3 − ψ2 − c.c.)2k+1 = 0. (3)

The value in brackets is supposed to be small, while the motion is close to the given frequency ω. Using a standard two-scale
procedure, we separate “fast” τ0 = t and “slow” τ1 = ετ0 timescales: ψj = χ0,j (τ0, τ1) + εχ1,j (τ0, τ1), j = 1, 2, 3. Taking into
account d

dt
= ∂

∂τ0
+ ε ∂

∂τ1
and keeping only terms of the zeroth order of the small parameter, we obtain χ0,j = ϕj (τ1)eiωt , j =

1, 2, 3. At the next step of the asymptotic procedure, we keep only terms of the first order of the small parameter, and supposing
that we are looking only for limited solutions, we exclude resonating (secular) terms. The procedure yields the following set of
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FIG. 3. Linear stability of the NNMs in the system (8): (a)–(d) Real parts of the eigenvalues of the Jacobian of linearized system (8) in the
polar representation for the both interacting NNMs. (a) In-phase NNM for fixed values of initial excitation: Q = π/4,Q = π/2,Q = 3π/4.
(b) In-phase NNM for fixed values of coupling: β = 0.05, β = 0.1, β = 0.25. (c) NNM (1,0,–1) for fixed values of initial excitation: Q =
π/4, Q = 3π/8, Q = 3π/4. (d) NNM (1,0,–1) for fixed values of coupling: β = 0.05, β = 0.25, β = 0.5. (e) Instability regions for in-phase
NNM (red solid line), NNM (1,0,–1) (gray, dotted line) compared with the localization-energy transport transition threshold (blue dashed line)
obtained from system (1) with initial excitation Q placed only on the first element, same as in Fig. 1.
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equations describing the evolution of the envelope functions in the slow timescale:

i
d

dτ1
ϕ1 + μ

[
−ω

2
ϕ1 + 1√

2ω
J1

(√
2

ω
|ϕ1|

)
ϕ1

|ϕ1|

]
+ β0√

2ω
J1

(√
2

ω
|ϕ1 − ϕ2|

)
ϕ1 − ϕ2

|ϕ1 − ϕ2| = 0,

i
d

dτ1
ϕ2 + μ

[
−ω

2
ϕ2 + 1√

2ω
J1

(√
2

ω
|ϕ2|

)
ϕ2

|ϕ2|

]
+ β0√

2ω
J1

(√
2

ω
|ϕ2 − ϕ1|

)
ϕ2 − ϕ1

|ϕj − ϕ3−j |
(4)

+ β0√
2ω

J1

(√
2

ω
|ϕ2 − ϕ3|

)
ϕ2 − ϕ3

|ϕ2 − ϕ3| = 0,

i
d

dτ1
ϕ3 + μ

[
−ω

2
ϕ3 + 1√

2ω
J1

(√
2

ω
|ϕ3|

)
ϕ3

|ϕ3|

]
+ β0√

2ω
J1

(√
2

ω
|ϕ3 − ϕ2|

)
ϕ3 − ϕ2

|ϕ3 − ϕ2| = 0,

where J1 is Bessel function of the first kind.
The linear trimer of this type possesses three normal

modes: one is an in-phase (1;1;1) mode, and two are different
antiphase modes (1;0;–1) and (1;–2;1). For weak excitation
levels, we can demonstrate numerically the frequency
dependence on the amplitude of the initial excitation [see
Fig. 2(a)]. It is evidently seen that there is an inversion of
the spectrum with growth of the amplitude, namely, the
frequency of the NNM (1,–2,1) has the highest frequency
for weak excitation levels, but becomes the lowest frequency
if the amplitudes are higher than 1 rad. This phenomenon
cannot be observed in the system with linear coupling [27],
but also is reported in the system of two pendula with cosine
potential of interaction [37].

If the amplitude of the initial excitation is higher than π /2,
only two of the NNMs survive. Therefore, only two of them
can be found in the system (4), and we have found their
frequencies:

ωi =
√

2

Q
J1(Q) (5)

corresponds to in-phase mode;

ωa =
√

2

Q
(β + 1)J1(Q) (6)

corresponds to mode (1;0;–1).
The comparison between asymptotic values (5) and (6) and

the exact numerical results obtained from the initial system
are presented in Fig. 2. It can be noted that for the low
values of the coupling parameter β, the frequency of the NNM
(1;0;–1) is close to the frequency of the in-phase NNM for a
wide range of the excitation amplitudes. We see a very good

agreement between the exact and asymptotic results for the
initial excitation values up to Q = 9/10 π . As we expected,
the frequency of the oscillations decreases with the increase of
the initial excitation (due to the soft nonlinearity effect). We
should also emphasize that our assumption on the closeness of
the NNM’s frequencies appears to be valid for a wide range
of the parameters and initial conditions. The obtained result
defines the applicability of the semi-inverse method for our
problem, which allowed introduction of the slow timescale.

Using the linearization procedure of (8) in the polar rep-
resentation, the stability of both interacting NNMs can be
examined (see Fig. 3). The polar representation allows one to
consider only the amplitude instability of each of the NNMs,
which is crucial for dynamical behavior. The analytical rep-
resentation of the Jacobian is somewhat cumbersome, and
therefore we omit it, presenting all the dependencies on the
parameters of the system. We see that NNMs lose stability
with growth of the coupling parameter β and/or the amplitude
of excitation Q. However, this change of the phase space of
the system cannot explain the transition from nonstationary
energy localization to energy exchange presented in Fig. 1
[see Fig. 3(e)], as the transition occurs far below the stability
loss of the in-phase mode and occurs even in the weak
excitation region where the mode (1,0,–1) remains stable.

III. NONSTATIONARY DYNAMICS:
POINCARÉ MAPS STUDY

To proceed with the study of the phase space, we intend to
reduce the dimensionality of the model. Similarly to the sys-
tem of two pendula [27,37], asymptotic system (4) possesses
an additional integral of motion X = ∑3

k=1 |ϕk|2. It allows us
to introduce spherical coordinates,

ϕ1 =
√

X cos θ cos ϕ eiδ1 , ϕ2 =
√

X sin θ eiδ2 , ϕ3 =
√

X cos θ sin ϕ eiδ3 , (7)

and using the fact that only the relative phases have physical meaning, we reduce the system to the form

dθ

dτ1
= β0

Qω

J1(Q
√

S1)√
S1

cos ϕ sin �12 − β0

Qω

J1(Q
√

S2)√
S2

sin ϕ sin �23,
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FIG. 4. Poincaré sections for the slow-flow system (8): θ = 1.53, ε = 0.1, μ = 10; (a) β0 = 0.5; (b) β0 = 1.1; (c) β0 = 1.13; (d) β0 = 1.5;
(e) β0 = 2; (f) β0 = 3. Red bold points denote the phase orbit ELPT with initial conditions (10).

dϕ

dτ1
= β0

Qω

J1(Q
√

S1)√
S1

tan θ sin �12 sin ϕ + β0

Qω

J1(Q
√

S2)√
S2

tan θ sin �23 cos ϕ,

sin 2θ
d�12

dτ1
= 2μ

Qω

[
J1(Q sin θ ) cos θ − J1(Q cos θ cos ϕ) sin θ

cos ϕ

]
+ 2β0

Qω

J1(Q
√

S1)√
S1

(
sin2θ

cos ϕ
− cos2θ cos ϕ

)
cos �12

+ 2β0

Qω

J1(Q
√

S2)√
S2

(
1

2
sin 2θ − cos2θ sin ϕ cos �23

)
,

sin 2θ
d�23

dτ1
= 2μ

Qω

[
−J1(Q sin θ ) cos θ + J1(Q cos θ sin ϕ) sin θ

sin ϕ

]
− 2β0

Qω

J1(Q
√

S2)√
S2

(
sin2θ

sin ϕ
− cos2θ sin ϕ

)
cos �23

+ 2β0

Qω

J1(Q
√

S1)√
S1

(
1

2
sin 2θ − cos2θ cos ϕ cos �12

)
, (8)
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FIG. 5. Time evolutions of different regimes of system (4): θ = 1.53, ε = 0.1, μ = 10; (a) β0 = 0.5, initial conditions correspond to C1;
(b) β0 = 0.5, initial conditions correspond to C2; (c) β0 = 2, initial conditions correspond to C3; (d) β0 = 2, initial conditions correspond to
C4. Blue solid line, red dashed line, and green dotted line denote ϕ1, ϕ2, ϕ3, respectively.

where �12 = δ1 − δ2, �23 = δ2 − δ3, S1 = sin2(θ ) + cos2(θ )cos2(ϕ) − sin(2θ ) cos(ϕ) cos(�12), S2 = sin2(θ ) + cos2(θ )
sin2(ϕ) − sin(2θ ) sin(ϕ) cos(�23), X = ω

2 Q2, and the Hamiltonian of the system is

H4D = μ
[

1
4Q2ω2 − J0(Q sin θ ) − J0(Q cos θ cos ϕ) − J0(Q cos θ sin ϕ)

] − β0J0(Q
√

S1) − β0J0(Q
√

S2). (9)

The in-phase NNM and (1,0,–1) of system (2) in the
new coordinates will correspond to the following solutions
(θ, φ,�12,�23): [Arc cos(

√
2
3 ), π

4 , 0, 0] and (0, π
4 , 0, π ),

correspondingly.
It was shown for two pendula with the linear coupling

[27] as well as the strongly nonlinear [37] coupling that the
limiting phase trajectory (LPT) performs the key role in un-
derstanding the transitions between the energy exchange and
its localization. LPT is a phase trajectory which corresponds
to initial conditions when all the initial excitation is applied to
one pendulum only; LPT demonstrates the maximum possible
periodic energy exchange between the pendula for a given
parameter set.

In the case of two pendula, the analysis of the reduced-
order system can be performed on the phase plane. The phase
plane can be presented as a periodic set of the rectangular cells
centered by stationary points corresponding to NNMs. If the
coupling parameter is high enough, the NNMs are stable, and
the LPT represents the border of each cell and describes the
full periodic recurrent energy exchange between the pendula,
i.e., beatings. If the value of coupling parameter decreases,
one of the NNMs loses its stability and two new asymmetric
NNMs appear. However, the full energy exchange between
the pendula is still possible. With the further decrease of
the coupling parameter, the LPT collides with the separatrix

encircling the two new NNMs, and then the LPT undergoes a
transformation and the dynamic phase transition occurs. The
LPT amplitude decreases significantly and the full periodic
energy exchange between the two oscillators is not possible.
The LPT in the reduced phase space shows periodic amplitude
modulations of oscillations of the initial system.

System (8) is four dimensional and its dimensionality
can be reduced using Hamiltonian (9), but the system re-
mains nonintegrable even in the slow timescale. However,
the Poincaré section’s analysis of the reduced system can be
performed. The section plane was defined as θ = 1.53 and
�23 was defined from (9) as H = h(β0).

Because system (8) is not integrable, it may exhibit chaotic
regimes. However, as it will become clear from the results
shown below, there exist certain domains in the paramet-
ric space where the regular response regimes coexist with
the nonregular ones. The intensive energy exchange regime
(Fig. 6) shows the phase trajectory corresponding to the initial
conditions for system (8):

θ (0) = ϕ(0) = �12(0) = �23(0) = 0. (10)

We call this regime the extended limiting phase trajectory
by an analogy with the phase trajectory reflecting the evo-
lution of the phase space in the system with two degrees of
freedom (2DOF). It corresponds to the initial excitation of one
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FIG. 6. Time history for the realization of the different regimes in system (1) (blue) and corresponding asymptotic system (4) (red):
θ = 1.53, ε = 0.1, μ = 10; (a) β = 0.05, β0 = 0.5, initial conditions correspond to C1; (b) β = 0.3, β0 = 3, initial conditions correspond to
C3; (c) β = 0.3, β0 = 3, initial conditions correspond to one of the closed orbits of the Poincaré section [Fig. 4(f)]; (d) β = 0.3, β0 = 3, initial
conditions correspond to special orbit (10) ELPT.

of the side elements of the short chain. Using the conditions
(10), we define the value of the integral h(β0) to show the
ELPT on the Poincaré sections. Thus, we define the area of the
phase space which can demonstrate the most intensive beating
regime and the regimes which are close to it.

We have constructed Poincaré maps for different values
of the coupling parameter β (see Fig. 4). For low values of
coupling, the dynamics is regular; there are two stationary
points on the map marked as C1 and C2.

In the two-pendulum system, the Poincaré maps were
constructed for an initial system in the fast timescale. Then
stationary points of the Poincaré maps correspond to NNMs.
However, in the case of the three pendula, the Poincaré
sections are constructed for the reduced ordinary differential
equations (ODE) set (8), where the evolution is considered
in the slow timescale. Therefore, the stationary points corre-
spond to periodic regimes in this timescale. They should cor-
respond to the regimes of periodic energy exchange between
the pendula of original system (2).

Both periodic dynamic states C1 and C2 are characterized
by the strong energy localization of the energy on one (ini-
tially excited) side element. The two stationary points are
encircled on the Poincaré map by the quasiperiodic orbits.
As we will see, the red dots show the periodic orbit of the
maximal amplitude in the Poincaré section; it corresponds
to ELPT with quasiperiodic evolution in the slow timescale
defined by initial conditions (10).

In the considered case, the regimes of the periodic energy
exchange between the pendula (as well all quasiperiodic

trajectories between the extended LPT and the just mentioned
stationary points) do not exactly satisfy the initial conditions
corresponding to excitation of one oscillator only. However,
the initial conditions for such regimes in the slow-flow system
are very close to those for the ELPT. Therefore, we will keep
the LPT denotation for the periodic trajectory corresponding
to stationary point in the slow timescale. The time evolution
for both periodic regimes in the slow timescale for weak
coupling is presented in Figs. 5(a) and 5(b).

If the coupling increases, the chaotic regimes occupy most
of the phase space [see Figs. 4(c) and 4(d)]; then a new
periodic regime (denoted by C3 at the section plane) of regular
energy transport from one side element to another appears
in the chaotic region [see Fig. 4(c)]. We remind the reader
that this regime is called LPT, which is a phase trajectory that
shows the possibility of the intensive regular energy exchange
between the two edges of the short chain; the time evolution is
seen in Fig 5(c). This stationary point remains in the Poincaré
section with the further increase of the coupling parameter
[Figs. 5(e) and 5(f)]. There are two stationary solutions on
the map; other trajectories encircle them and correspond to
the quasiperiodic motion of asymptotic slow-flow system (4).
It is necessary to note that the stationary points corresponding
to localization C1 and C2, and to intensive energy exchange C3

coexist on the Poincaré map in a narrow range of the coupling
parameter.

The special orbit ELPT (10), being quasiperiodic for low
values of coupling parameter, becomes chaotic when the
coupling parameter increases [Fig. 4(d)]. When the coupling
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FIG. 7. Fast Fourier transform of the time histories for system (4), with the set of the initial conditions, corresponding to stationary point
C1 of the Poincaré section [see Fig. 4(a)]; (a) β = 0.05; (b) β = 0.1; (c) β = 0.12. Green color, upper curve denotes ϕ1; red color, middle
curve denotes ϕ2; and blue color, lower curve denotes ϕ3.

parameter is further increased, ELPT again appears to be
quasiperiodic [see Figs. 4(e) and 4(f)], but encircles another
dynamical regime—the regime of intensive energy beating
between the two edge elements. In the Poincaré maps study
of the 2DOF system, the transition through the chaotic region
also corresponds to the dynamical transition from energy
localization to energy exchange regime.

In both cases of two and three coupled pendula, the LPT
shows the maximum possible regular energy exchange be-
tween the edge elements of the short chain. For high values
of the coupling parameter, the LPT demonstrates the intensive
regular beatings, while for low values of the coupling pa-
rameter, it corresponds to the dynamical regimes with small-
amplitude modulations of the state localized on one side
element.

To verify the regimes obtained in the study of the reduced-
order system, we compare the time evolution of the initial
system of three pendula with the evolution of the envelope
functions, both with initial conditions corresponding to the
stationary points of the Poincaré sections (see Fig. 4). It
is obvious that the dimensionality of the asymptotic system
is reduced in comparison with the initial one. This means
that asymptotic system (8) as well as (4) can demonstrate
regular motions at the initial conditions which correspond
to the chaotic motion of the full system. To check the cor-
respondence between the regimes obtained in the Poincaré
maps study of the reduced-order system, we have thoroughly
studied the evolution of the full system for different values of
the initial conditions and for different values of the coupling
parameter. In order to demonstrate the behavior of full system

(2) in Fig. 5, we present displacement evolution with time
under parameter sets and initial conditions corresponding to
stationary points of the Poincaré sections [Figs. 4(a) and 4(f)].
We also show the evolution of special orbit ELPT (10) and
the evolution of some phase trajectory corresponding to one
closed orbit of the Poincaré section [Fig. 4(f)]. We should
mention that the different type of LPTs can be reported now,
namely, the LPT with quasiperiodic slow timescale evolution.

It is seen in Fig. 5 that the stationary point of the Poincaré
section can be associated with the periodic regime of the
slow flow as well as with the quasiperiodic one. Evidently
enough, the periodic motion of the reduced system should
correspond to the quasiperiodic or the motion with two char-
acteristic frequencies, namely, frequency of the fast oscilla-
tions and frequency of the slow envelope-function evolution
(see Fig. 6). However, the Fourier spectra obtained using the
fast Fourier transformation demonstrate that the additional
frequencies appear in the spectrum of the time evolution with
the growth of the coupling parameter β. They help us to
report on the quasiperiodic motion in the slow system with
initial conditions corresponding to the stationary point of the
Poincaré section (for example, C1 in Fig. 7 and C3 in Fig. 8).
This happens due to the presence of the multiple frequencies
which do not show themselves in the Poincaré sections. The
reason for their appearance is the essential nonlinearity of
the system that makes the processes of nonstationary energy
localization as well as energy transport in the system a much
more complex process in comparison to the one in the system
of the quasilinear coupled oscillators [39]. We demonstrate
then the basic frequency of the fast oscillations and the main
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FIG. 8. Fast Fourier transform of the time histories for system (4), with the set of the initial conditions, corresponding to stationary point
C3 of the Poincaré section [see Fig. 4(c)]; (a) β = 0.2; (b) β = 0.3; (c)β = 0.4. Green color denotes ϕ1, red color denotes ϕ2, and blue color
denotes ϕ3.

frequency of the periodic motion in the slow timescale. Please
note that for the initial conditions corresponding to C3, the
basic frequency of the slow motion can be observed in the
spectra for each of the oscillators (the high peak visible for
all the oscillators), while the frequency of the periodic energy
exchange (high peak on the right-hand side from the main
frequency) can be observed only for two side elements. In
agreement with the time-evolution profiles, we see that the rel-
ative frequency of the time modulation of the middle element
is two times higher than the frequencies of the modulations
of the side elements. More detailed analysis of the spectra
is beyond the scope of this contribution.

IV. DISCUSSION AND CONCLUSIONS

We report the study of the nonstationary dynamics in the
system of three pendula coupled by the cosine potential.
Based on the numeric evidence, we conclude (under the con-
ditions of the initial loading concentrated mainly on one of the
side-pendula) that with the growth of the coupling parameter,
the transition from the energy localization on the initially
excited pendulum to recurrent energy exchange between the
two side pendula occurs. Using the asymptotic procedure
which already was applied for the system of two linearly
coupled pendula [27], we reduce the system to the form when
the Poincaré sections analysis is possible.

We verify the applicability of the asymptotic procedure
checking the analytical dependence of the two resonating
NNMs on the amplitude of the initial excitation. It is seen that
if the coupling parameter is small enough, the frequencies of
two NNMs are close to each other.

We report that similarly to the system of two nonlinearly
coupled pendula [37], the inversion of the spectrum is ob-
served with growth of the amplitude of initial excitation.
This phenomenon is not observed for the system with linear
coupling [27]. We also provide the stability analysis of the
NNMs. Using the reduced-order model, we show that the
transition from dynamic regimes of energy localization to
recurrent energy transport is not connected with the change of
stability of one of the resonating NNMs, but with instability
of the LPT corresponding to the maximum possible periodic
energy exchange in the conditions of predominant energy
localization on the initially excited pendulum.

The analysis of Poincaré sections can be made based on
the LPT concept. The evolution of the Poincaré section shows
that similarly to the system of two linearly coupled pendula,
the transition of LPT through the chaotic region of the phase
space leads to the significant change of the response in the
case of the strongly asymmetric initial loading, i.e., from
energy localization to recurrent energy exchange.

It should be also noted that while for two weakly cou-
pled pendula the LPT corresponds to full interpendulum
energy exchange, in the case of three pendula, one has
to differ the periodic LPTs with almost full energy ex-
change between the edge pendula and quasiperiodic or-
bits. We call the outer one on the phase space the ELPT,
which corresponds to the full energy exchange between these
pendula.

The physical meaning of the regime with excitation mostly
localized on the side element is similar to that of the discrete
breather in the long chain of nonlinear oscillators [35]. In
the short chains of rotors [32], such solutions are reported
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to appear with intensive excitation of the middle element;
however, in our case, only the solution localized on the edge
element is observed.

We also emphasize that in the current study, we report on
the high-dimensional analogue of the classical beatings phe-
nomenon between the two oscillators. Due to lower dimen-
sionality in the system of two pendula, it demonstrates regular
periodic intensive energy exchange between the two oscilla-
tors. In the earlier works, the intensive beatings were reported
in the systems with more than two degrees of freedom with the
periodic boundary conditions, but they characterize the energy
exchange between the coherent domains or clusters of the
system [30,31]. The present work extends the phenomenon of

the intensive periodic energy exchange between the two ends
of the short oscillatory chains with more than two degrees of
freedom.
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