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Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators
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The Belousov-Zhabotinsky (BZ) reaction is a famous experimental model for chemical oscillatory reaction
and pattern formation. We herein study a diffusive coupled system of two oscillators with global feedback using
the photosensitive BZ reaction both experimentally and theoretically. The coupled oscillator showed in-phase
and antiphase oscillations depending on the strength of diffusive coupling and light feedback. Moreover, we
analyzed our model to locate the bifurcational origin and found the reconnection of the bifurcation branches for
antiphase oscillation, which was induced by the competition between global feedback and the diffusion effect.
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I. INTRODUCTION

Pattern dynamics has been drawing attention in many
research fields such as chemical reaction, thermal convection,
ecology, and physiology. Further, it has been explained using
mathematical models [1].

The Belousov-Zhabotinsky (BZ) reaction is a famous ex-
perimental model that produces both excitable and oscillatory
patterns. One can also control the pattern dynamics of the BZ
reaction with Ru(bpy)2+

3 catalyst through light illumination
[2]. Oscillations and wave propagations in the photosensitive
BZ reaction are inhibited by light stimulation because pho-
tochemical reaction produces the inhibitor Br− [3,4]. Using
this property, a light feedback BZ system that can be used
in excitable situations has been reported. In fact, Mihaliuk
et al. reported that they localized the traveling wave and
controlled its movements [5–7]. Nishi et al. reported that they
eliminated the propagation wave [8]. In the above reports, they
introduced theoretical studies using the Oregonator model.

Meanwhile, several studies have been conducted for the
light feedback BZ system in oscillatory conditions. Petrov
et al. reported that standing waves were observed via pe-
riodic light stimulation to the photosensitive BZ reaction
[9]. They found that the wavelength of the standing wave
patterns depends on the frequencies of the light stimulation.
However, this might not indicate the intrinsic behaviors of
the system because Petrov’s system is a forced oscillatory
control system. Therefore, we would like to realize oscillatory
patterns using feedback control instead. It is noteworthy that
the research by Vanag et al. pertains to this area [10,11]. They
observed standing waves using a global feedback system for
the photosensitive BZ reaction. Moreover, they introduced a
mathematical model to study spatiotemporal patterns in the
global feedback system of the BZ reaction [11]. In addition,
coupled BZ oscillators with inhibitory diffusion and negative
global feedback has been recently reported [12]. They stud-
ied dynamics of a one-dimensional (1D) array and observed
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several kinds of oscillatory cluster patterns with changing
feedback strength in experiments and numerical simulations.
Kashima et al. introduced a theoretical study of feedback
control for Turing patterns or oscillatory patterns produced by
wave instability using the idea of semipassivity [13,14].

It has been reported that many varieties of oscillatory
cluster patterns appear depending on the initial condition if we
observe the 2D problem with global feedback [10,11]. They
observed oscillatory cluster patterns both in the experiment
and in a modified BZ model. We can also observe a similar
behavior using the three-component Oregonator model in the
1D or 2D region � as follows [10,11]:

∂u

∂t
=Du�u + 1

ε
[qv − uv + u(1 − u)],

∂v

∂t
=Dv�v + 1

δ
(−qv − uv + f w + sφ),

∂w

∂t
=Dw�w + u − w,

φ = 1

|�|
∫

�

wdx.

(1)

In fact, antiphase-like oscillations such as standing oscillation
patterns or localized standing patterns are observed.

We herein propose a simple situation to clarify the type of
mechanism that causes such antiphase-like behaviors. More
precisely, we study the behaviors of two BZ oscillators cou-
pled via diffusion, instead of 2D domains, with negative
global feedback effect as well. This can be considered to be
the simplest oscillatory cluster pattern. One can imagine that
in-phase oscillation is observed with diffusive coupling only
and no negative global feedback [15–19]. On the contrary,
antiphase oscillation may be observable with negative global
feedback only and with no diffusive coupling. Therefore, the
behavior of coupled BZ oscillators under the competition
between global feedback and diffusion effects is an interesting
research topic.

First, we study a mathematical model, i.e., the three-
variable Oregonator model modified for the photosensitive
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BZ reaction, and observe two different types of oscillations:
in-phase and antiphase oscillations. (See Fig. 1 in detail.)
The period of antiphase oscillations increases by increasing
feedback strength. We analyzed our model to locate the bifur-
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FIG. 1. (i) Time profiles and (ii) phase plane plots of wi for
stable periodic solutions. (I) In-phase oscillation. [(II), (III), and
(IV)] Antiphase oscillation. Parameters are (I) D = 0.3, s = 0.0; (II)
D = 0.3, s = 1.0; (III) D = 0.0, s = 0.3; and (IV) D = 0.0, s =
1.0. In the case of D = 0.3, we can observe the transition from
in-phase (I) to antiphase oscillation (II) by increasing s. Meanwhile,
without diffusion coupling, antiphase oscillation gradually changes
its period as s becomes larger (III and IV). We used fourth-order
Runge-Kutta method for these numerical simulations. The time step
size is dt = 0.0002.

cational origins of antiphase oscillations by varying the global
feedback strength as a bifurcation parameter. In fact, when the
diffusive coupling is sufficiently small, antiphase oscillation is
stable for any feedback strength. Meanwhile, if the diffusive
coupling is reasonably large, then the branch of the stable
antiphase oscillation originates from the period-doubling bi-
furcation point along the branch of the in-phase oscillation.
Moreover, the reconnection of two different branches is ob-
served by the two-parameter search. Therefore, the branch of
antiphase oscillations may have different bifurcational origins
depending on the diffusion effects.

Next, we experimentally observed synchronization phe-
nomena and measured the periods of oscillation. Our experi-
mental system was composed of two flow reactors coupled by
a pump and light feedback system. A flow reactor can keep the
concentration of reactants constant. Therefore, it is suitable
for observing the oscillation for a long time. In addition, the
pump system is appropriate for coupling the flow reactors
and controlling the strength of coupling [15]. Moreover, the
experimental results well agree with the bifurcation diagram
obtained by our model.

II. MATHEMATICAL MODEL

A. MODEL

We consider a coupled system of two oscillators that are
described by the Oregonator model [20,21]. The oscillators
are connected by two types of coupling terms—diffusion and
light feedback,

dui

dt
=1

ε
[qvi − uivi + ui (1 − ui )] + D(uj − ui ),

dvi

dt
=1

δ
(−qvi − uivi + f wi + sφ) + D(vj − vi ),

dwi

dt
=ui − wi + D(wj − wi ),

φ =w1 + w2

2
. (i, j = 1, 2, i �= j )

(2)
Here ui (t ) = (ui (t ), vi (t ), wi (t ))(t > 0) are dimensionless
variables that correspond to the concentrations of the activa-
tor HBrO2, inhibitor Br−, and oxidized catalyst Ru(bpy)3+

3 ,
respectively, for the oscillator i. We use the typical parameter
set for the limit cycle oscillation: ε = 0.1, δ = 0.001, f =
1.0, and q = 0.01. The diffusion coefficients for u, v,w are
assumed to be the same positive constant D. We describe the
light feedback effect by adding sφ to the equation for v, where
φ is the average concentration of w1 and w2 and s is a positive
constant corresponding to the feedback strength [3,4,8]. We
consider s and D as bifurcation parameters.

B. Numerical results

Two different types of stable oscillations are numerically
observed, as shown in Fig. 1: in-phase and antiphase. Suppose
(u1(t ), u2(t )) is the periodic solution of Eq. (2) with period
T . We call (u1(t ), u2(t )) in-phase oscillation if (u1(t ), u2(t ))
≡ (u2(t ), u1(t )) holds. On the other hand, we call (u1(t ),
u2(t )) antiphase oscillation if (u1(t ), u2(t )) ≡ (u2(t + T/2),
u1(t + T/2)) holds. In fact, in-phase oscillations are observed
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under the nonfeedback condition (s = 0.0), as shown in Fig.
1(I-i) and 1(I-ii), when diffusion coupling exists. On the other
hand, antiphase are observed under the feedback condition
[Figs. 1(II-i), 1(II-ii), 1(III-i), 1(III-ii), 1(IV-i), and 1(IV-ii)].
In the case of D = 0.3, we can observe the transition from

in-phase [Figs. 1(I-i) and 1(I-ii)] to antiphase oscillation [Figs.
1(II-i) and 1(II-ii)]. Meanwhile, without diffusion coupling,
antiphase oscillations are observed, and its period gradually
changes with the increase in s [compare Figs. 1(III-i) and
1(IV-i)]. Notice that the profile and the period of ui (t ) for
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FIG. 2. Bifurcation diagrams for Eq. (2) with respect to parameter s. Diffusion constant D is (a) 0.3, (b) 0.1, (c) 0.05, and (d) 0.0. We
describe (i) the maximum value of w1 and (ii) the period of the periodic orbits. There are three branches of periodic solutions. One is the branch
of in-phase oscillations (black). The solutions on the other two branches [red (dark gray) and green (light gray)] are antiphase oscillations. The
solid curves represent the branch of stable solution, while the broken curves represent the unstable branch. “PD” indicates the period-doubling
bifurcation point. Insets (I)–(IV) show the time profiles of wi , which are the same as Fig. 1. The profiles for (1)–(6) are shown in Fig. 4. These
oscillations are antiphase oscillations.
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FIG. 3. Phase diagram on (s,D) space. In-phase oscillations
are stable in the hatched area. Antiphase oscillations are stable in
the dotted area. The black line corresponds to the period-doubling
bifurcation point on the branch of in-phase oscillations. The red
(dark gray) line corresponds to the saddle-node bifurcation point
on the branch of antiphase oscillations when D is larger than the
reconnection point. On the contrary, when D is less than the re-
connection point, it corresponds to a critical point for stability of
antiphase oscillations. Since this critical point stays close to s = 0,
the antiphase oscillation is stable for almost all the values of s.
Moreover, this critical point corresponds to a stationary bifurcation
in the sense of Poincaré map along the periodic orbit.

antiphase oscillations in [Figs. 1(II-i) and 1(IV-i)] are quite
different from those for in-phase oscillations. Therefore, we
have extended the definition of antiphase oscillation.

C. Bifurcation analysis

We performed bifurcation analysis using the software
package AUTO [22] to understand the origin of the antiphase
oscillations. We demonstrate the bifurcation diagrams ob-
tained from a two-parameter search by s and D (Fig. 2). We
detect these diagrams from in-phase oscillation at (s,D) =
(0.0, 0.3) as a starting point.

It turns out that in-phase oscillations exist stably for a
wide range of parameter s, independent of D. The critical
point for the stability on the branch of the in-phase oscillation
corresponds to the period-doubling bifurcation. The branch
starting from the period-doubling point corresponds to unsta-
ble oscillations when D is small [Figs. 2(c-i), 2(c-ii), 2(d-i),
and 2(d-ii)]. Meanwhile, when D is large, it continues as
the stable branch of the antiphase oscillations [Figs. 2(a-i),
2(a-ii), 2(b-i), and 2(b-ii)]. When D is sufficiently small, a
long stable branch of antiphase oscillations appears [Figs.
2(c-i), 2(c-ii), 2(d-i), and 2(d-ii)]. The above is expressed in
a phase diagram, as shown in Fig. 3. Furthermore, the green
(light gray) branches are isolated in the bifurcation diagram
of s. However, these are connected by two-parameter search.
Therefore, two-parameter continuation is available. It is noted
that we show time profiles for the green (light gray) branches
as shown in [Figs. 4(1-6)].

By carefully changing D = 0.05−0.1, we can see the
reconnection of the two branches: the long stable branch of the
antiphase [red (dark gray) curve] and the unstable oscillation
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FIG. 4. Time profiles of wi for unstable solutions. These are an-
tiphase oscillations. Parameter s is same value as s = 0.5. Diffusion
parameters are (1) D = 0.3, (2) D = 0.1, (3), (4) D = 0.05, and
(5) and (6) D = 0.0. These profiles correspond to the numbers in
bifurcation diagrams, as shown in Fig. 2. We got these profiles by
AUTO.

[green (light gray) curve] in [Fig. 2(c-i) and 2(c-ii)]. After
the reconnection, the branch of the antiphase oscillation is
connected to the period-doubling bifurcation point [Fig. 2(b-i)
and 2(b-ii)]. See also Fig. 5 for an illustrative explanation for
the reconnection of the bifurcation branches.

It should be noted that there are the oscillations (u1(t ),
u2(t + θ )) for an arbitrary θ at (s,D) = (0.0, 0.0). However,
only the branches of in-phase and antiphase oscillations con-
tinue when we change s.

III. EXPERIMENT

To confirm the above theoretical results, we per-
formed experiments using the photosensitive BZ reaction
with Ru(bpy)2+

3 catalyst. Two BZ solutions were con-
nected by a pump and light feedback system (Fig. 6).
More detailed schematic illustrations are as shown in
Fig. 7.
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FIG. 5. Schematic diagram for reconnection. Black, red (dark
gray), and green (light gray) lines correspond to Fig. 2.

A. Experimental setup

The experiments were performed using a continuous-flow
stirred tank reactor (CSTR) system [see also Fig. 7(a) for the
detailed setup]. The following two stock solutions were con-
tinuously supplied into the reaction tank; one was NaBrO3,
H2SO4, CH2(COOH)2, and Br− and the other was Ru(bpy)2+

3 .
Tygon tubes and peristatic pumps (AS-ONE, SMP-23AS)
were used to supply and discharge of the solutions. The
flow rate of each stock solutions was 9 ml/h, and thus the
residence time was 33 min. The volume of a reactor solution
was kept to 10 ml by the discharging tube. The final concen-
trations in the reaction solution were [NaBrO3] = 0.150 M,

LED light

PC pump

FIG. 6. Schematic illustration of the experimental setup.

[H2SO4] = 0.450 M, [CH2(COOH)2] = 0.100 M, [NaBr] =
0.012 M, and [Ru(bpy)2+

3 ] = 0.560 mM. For the coupled os-
cillator system, two reactors were connected by the peristaltic
pump system, whose flow rate was 30–507 ml/h. The experi-
ments were performed in an air-conditioned room at 25 ◦C.

To construct the feedback system, the BZ solutions were
illuminated by the same light-emitting diode (LED) whose
intensity was determined by their electric potentials. The po-
tential was measured using electrodes (Pt wire and Ag/AgCl
electrode) that were connected to an Arduino. The Arduino
system is an analog-digital converter [see also Fig. 7(b) for
the detailed setup]. The Arduino got positive electric potential
value Vi (t ) for BZ solution i(i = 1, 2). Depending on the
input value Vi (t ), the Arduino outputs positive integer value
I (t ) which is in the range of 0 to 255. Let ψi (t ) be a normal-
ized voltage by the Arduino for each BZ solution i(= 1, 2).
To determine the output value I (t ), ψi (t ) was calculated as
follows:

ψi (t ) = [Vi (t ) − Vmin,i]
255

Vref,i
. (3)

)b()a(

waste

peristatic pump

magnetic stirrer 

LED light

Arduino

PC
power supply

FIG. 7. Schematic illustarions of the detail experimental setup. (a) CSTR system and (b) light feedback system.
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FIG. 8. Light intensity of the LED depending on the output value
I (t ).

Here Vmin,i (t ) is the minimum value for Vi (t ) and Vref,i is a
positive constant defined as follows:

Vref,i = Vmax,i − Vmin,i . (4)

Here Vmax,i is the maximum value for Vi (t ). The value of I (t )
was determined by ψi (t ) using the following equation:

I (t ) = σ × ψ1(t ) + ψ2(t )

2
. (5)

Here σ (0.1 ∼ 0.6) denotes the feedback strength parame-
ter. The value of V was recorded in a PC every 100 ms.
The Arduino was connected by a control cable (AITEC
SYSTEM, model no. TCB3P) to an LED power supply

(AITEC SYSTEM, TPAP2B02430NCW) and it controlled the
light intensity of LED lights (AITEC SYSTEM, model no.
LMG100X120-22WD-4). The light intensity was determined
by the value of I (t ). I (t ) between 0 and 255 was calibrated to
the illumination intensity in lx, as shown in Fig. 8.

We performed two experiments with different flow rates
(high: 350 ml/h and low: 150 ml/h). In the case of a high flow
rate, the value of σ was set to 0.1 as the initial condition and
the oscillation was measured until the synchronized behavior
was maintained for 10 min. After the synchronized behav-
ior reached the stable state, the feedback parameter σ was
changed to the next value, and the oscillation was observed
again until the system reached the next stable state. The
feedback parameter σ was increased from 0.1 to 0.5 at first
and subsequently decreased to 0.2.

With a low flow rate, the feedback parameter σ was
changed from 0.6 to 0.2 and the stable synchronized behavior
was obtained for each σ . In addition, we artificially prepared
in-phase oscillations as the initial condition, and the synchro-
nized behavior was measured with changing σ from 0.2 to 0.4.

B. Experimental results

Two oscillators were synchronized typically within several
minutes after changing the value of σ . We define the synchro-
nized behavior as stable when the behavior is maintained for
more than 10 min.

We obtained the bifurcation diagrams against parameter σ

for two different flow rates. In the case of strong diffusion
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FIG. 9. The bifurcation diagram obtained by the experiments. The period of oscillation was plotted against σ . Blue (light gray) circles and
red (dark gray) squares indicate in-phase and antiphase oscillations, respectively. The flow rate was (a) 350 ml/h and (b) 150 ml/h. The error
bars were sufficiently small to be hidden behind each plot. Insets show time profiles [(1) and (2)] and phase plane plots [(i) and (ii)] of Vi .
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coupling (flowrate = 350 ml/h), in-phase oscillations were
initially observed at σ = 0.1, 0.3, and 0.4 and transited to
antiphase oscillations at σ = 0.5. The period increased from
32.0 s at σ = 0.4 to 61.2 s at σ = 0.5 [Figs. 9(a-2) and
9(a-ii)]. With a decrease in σ = 0.3, the period decreased to
38.6 s, which is an antiphase oscillation. A further decrease
in σ induced the transition to in-phase oscillation where the
period was independent of σ [Figs. 9(a-1) and 9(a-i)].

Meanwhile, with weak diffusion coupling (flowrate =
150 ml/h), antiphase oscillations were observed at σ = 0.6
[Figs. 9(b-2) and 9(b-ii)]. The antiphase oscillation was stably
observed to σ = 0.2 [Figs. 9(b-1) and 9(b-i)]. When the initial
condition was set to the in-phase oscillation, the stable syn-
chronized behavior was an in-phase oscillation for σ = 0.2
and 0.3 and was an antiphase oscillation for σ = 0.4.

IV. DISCUSSION

We discuss based on numerical simulation and experi-
mental results. It should be noted that the electric potential
Vi is positively related to wi [= concentration of Ru(bpy)3+

3 ].
Therefore, the mathematical model (2) qualitatively corre-
sponds to the experimental setup. Furthermore, we can con-
sider the comparison between numerical simulation and ex-
periment by the comparison between feedback strength pa-
rameter s and σ .

The experimental result for the strong diffusion effect, as
shown in Fig. 9(a), is consistent with the bifurcation diagram,
as shown in Fig. 2(a-ii) or Fig. 2(b-ii). This is because, as
we have described in the previous section, we observed a
transition from in-phase to antiphase oscillation by increasing
the feedback strength and a back-transition from antiphase
to in-phase oscillation by decreasing the feedback strength.
This can be explained by the fact that two stable branches
of in-phase and antiphase oscillation are not connected with
each other but connected by the unstable branch of the un-

stable oscillations. In this case, the transitions of period, i.e.,
the period of antiphase oscillations became approximately
twice that of in-phase oscillations, correspond between the
numerical simulation and the experiment. Furthermore, the
experimental result for the weak diffusion effect, as shown in
Fig. 9(b), corresponds to the bifurcation diagram, as shown in
Figs. 2(c-ii) or 2(d-ii). In particular, an antiphase oscillation
was observed even in the weak feedback strength both in
the mathematical model and the experiment [Fig. 1(III-i) and
Fig. 9(b-1), respectively].

These two different responses against the feedback strength
can be clearly explained by the reconnection of the bifurcation
branches, as described in Sec. II C. A similar reconnection
can also be observed using the FitzHugh-Nagumo model
instead of the three-component Oregonator model. Therefore,
we expect that the reconnection is a general phenomenon in
oscillatory reaction diffusion systems with global feedback.

V. CONCLUSION

We studied a feedback system for the photosensitive BZ
reaction through both theoretical and experimental studies.
Using a mathematical model, we detected the characteristic
bifurcation structure by two-parameter search. These simula-
tion results were confirmed through an experiment.

Although we have only studied one system of coupled
oscillators, the results obtained in this study are suggestive
even for the reaction diffusion system on a 1D or 2D domain.
Two-parameter search by not only the feedback strength but
also the diffusion effect is necessary to understand a variety
of oscillatory patterns.
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