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Phase evolution of Peregrine-like breathers in optics and hydrodynamics
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We present a simultaneous study of the phase properties of rational breather waves generated in a water
wave tank and in an optical fiber platform, namely, the Peregrine soliton and related second-order solution. Our
analysis of experimental wave measurements makes use of standard demodulation and filtering techniques in
hydrodynamics and more complex phase retrieval techniques in optics to quantitatively confirm analytical and
numerical predictions. We clearly highlight a characteristic phase shift that is a multiple of π between the central
pulsed part and the continuous background of rational breathers at their maximum compression. Moreover, we
reveal a large longitudinal phase shift across the point of maximum compression.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is a rather
simple but extremely powerful generic equation, able to de-
scribe the evolution of a large range of nonlinear waves, in-
cluding hydrodynamic waves, Bose-Einstein condensates, and
light in single-mode fibers. Among the existing solutions that
can be analytically computed, bright solitons are undoubtedly
the best known, having been deeply studied in various fields
since the early 1970s [1]. Solitons on a finite background
(also called breathers) were also the subject of analytical
investigations in the early 1980s with nonlinear structures,
now known as the Kuznetsov-Ma solitons [2], the Peregrine
soliton (PS) [3], and the Akhmediev breathers (ABs) [4].

In the last decade, these nonlinear coherent structures pre-
senting temporal and/or spatial localization have been exten-
sively investigated after the renewed interest driven primarily
by the study of extreme events [5]. This has led to the
first experimental observation of breather waves with typical
signatures of the Peregrine soliton, in both the optical and the
hydrodynamic domains [6,7] as well as in multicomponent
plasmas [8]. Those experiments have confirmed the temporal
and spectral exchange of energy between the central localized
peak and the finite background. With accurate generation
and detection devices, the longitudinal evolutions of the
temporal and spectral intensity profiles have been carefully
characterized and found to be in good agreement with the
analytical predictions. Since these pioneering experiments,
many other works have confirmed the crucial importance
of PS or AB features in the understanding of rogue events
induced by modulation instability [9–11], in the higher-order
soliton compression stage [12], in the focusing evolution of
super-Gaussian structures [13,14], as well as in the turbulent
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evolution of a partially incoherent wave [15–18]. At the same
time, higher-order rational solutions have also been identified
[5,19] and experimentally synthesized up to the fifth order
[20–22].

If examples confirming the temporal and spectral profiles
of the PS are numerous, much less attention has been devoted
to the characterization of its phase profile. To the best of
our knowledge, no results are up-to-now available in the
hydrodynamic domain and only few works exist in fiber optics
[6,12,23], stressing the existence at the point of maximum
compression of a typical π phase shift between the central
peak of the PS and the continuous background.

In this paper, we specifically focus our analysis on the
phase properties of the PS both in time and in space. We
revisit some of our past experimental works and provide
new results to emphasize the phase shift that is experienced
at the point of maximum compression, for rational breather
solutions, namely, the Peregrine soliton and related higher-
order solution. The paper is therefore organized as follows.
First, we recall the analytical properties of the ideal PS and the
second-order rational soliton. Then, we investigate the phase
profile of such nonlinear waves experimentally recorded at the
point of maximum focusing in a water tank. In a third section,
we focus our attention on fiber optics and we also confirm
the existence of a π phase shift at the point of maximum
compression between the central peak and the surrounding
background. In addition, we also follow the longitudinal
evolution of this phase difference along propagation, thus
providing full characterization of the PS growth-decay cycle.

II. PRINCIPLE UNDER INVESTIGATION AND
PROPERTIES OF RATIONAL SOLITONS

As stressed by several recent studies [24,25], the propa-
gation of weakly nonlinear water waves in one-dimensional
systems or light waves in single-mode optical fibers can be
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described by the focusing nonlinear Schrödinger equation
written in the following dimensionless form:

i ψξ + 1
2 ψττ + |ψ |2ψ = 0 (1)

where subscripted variables stand for partial differentiations.
Here ψ is a wave group or wave envelope which is a function
of ξ (a scaled propagation distance or longitudinal variable)
and τ (a comoving time, or transverse variable, moving with
the velocity of the wave-group central frequency).

More precisely, in the case of hydrodynamics, ψ is re-
lated to the water wave elevation η(z, t ) to the lowest order
by η(z, t ) = Re{ψ (z, t ) exp[i(k0z − ω0t )]} with k0 being the
wave number of the carrier wave and ω0 its angular fre-
quency given by the dispersion relation of linear deep-wave
theory, ω0 = (g k0)1/2, g being the gravitational acceleration.
The dimensional distance z and time t are related to the
rescaled variables τ and ξ by z = τ/(

√
2 k2

0 a0) + cg t and
t = 2 ξ/(k2

0 a2
0 ω0) with cg = ω0/(2k0) being the group ve-

locity and a0 being the initial amplitude of the carrier wave.
In the case of optics, the normalized quantity ψ is related to

the complex slowly varying envelope A(t, z) of the electrical
field by A = P

1/2
0 ψ , P0 being the average power assuming

a perturbed continuous wave excitation. The dimensional
distance z and time are related to the previous normalized
parameters by z = ξ LNL and t = τ t0 where the characteristic
nonlinear length and time scales are LNL = 1/(γP0) and t0 =
(|β2|LNL)1/2, respectively. γ is the nonlinear coefficient of the
fiber and β2 is its second-order dispersion coefficient.

The solution derived by D. H. Peregrine has a particu-
lar fractional form that has led this class of solution to be
described as the “rational soliton.” The first-order rational
soliton is given by [3]

ψ1(ξ, τ ) =
[

1 − 4(1 + 2 i ξ )

1 + 4τ 2 + 4ξ 2

]
eiξ (2)

where ξ = 0 corresponds to the point of maximum compres-
sion of the breathing structure. The modulus of the spectral in-
tensity profile |ψ̃ (ξ, ω)| can also be mathematically expressed
as (with the constant continuous background here omitted)
[26]

|ψ̃1(ξ, ω)| =
√

2π exp

(
−|ω|

2

√
1 + 4 ξ 2

)
, (3)

leading to a characteristic triangular shape when plotted on
a logarithmic scale. Experimentally speaking, according to
the domain of investigation, various quantities can be easily
recorded. The field ψ (ξ, τ ) can be recovered from the water
elevation at a given position. However, in optics, for picosec-
ond events, it is easier to have access to the temporal and
spectral intensity profiles |ψ (ξ, τ )|2 and |ψ̃ (ξ, ω)|2.

The longitudinal evolution of |ψ (ξ, τ )|2 is displayed in
Fig. 1(a). The PS is a limiting case of the τ -periodic AB
and the ξ -periodic Kuznetsov-Ma breather when the period
tends to infinity. Therefore, the PS is doubly localized and
the maximal amplification, obtained at ξ = τ = 0, is nine
times the background intensity. The temporal field and power

FIG. 1. Longitudinal evolution of the ideal Peregrine soliton:
(a) Temporal and spectral power profile |ψ |2 [panels (a1) and (a2),
respectively]. (b) Evolution of the phase shift between the central part
of the continuous background �φ (left, solid black line; for clarity of
the figure, the phase has been unwrapped) and peak intensity (right,
dot-dashed line).

profiles at the point of maximum compression (correspond-
ing also to the point of maximum spectral extension) are
shown in Figs. 2(a1) and 2(b1), respectively. At τ = 0, the
field is real and experiences a sign inversion between the
central peak and the continuous wave background. This cor-
responds to a π phase shift �φ between the two tempo-
ral parts of the pulse as can be seen in panel Fig. 2(c1)
representing the phase profile ϕ(0, τ ) = arg(ψ (0, τ )). �φ is
here defined as �φ(ξ ) = ϕ(ξ, τ = 0) − ϕ(ξ, τ → ∞). The
longitudinal evolution of �φ can be easily derived analyti-
cally as

tan (�φ) = − 8 ξ

4 ξ 2 − 3
(4)

and is plotted in panel Fig. 1(b). For the ideal PS, a phase
excursion of 2π does exist, as already noticed in works
discussing properties of Fermi-Pasti-Ulam recurrence [27]:
after a full growth-decay cycle, the initial and final states are
identical, but with a 2π phase shift accumulated during the
nonlinear recurrence cycle.

Higher-order rational solitons on a finite background can
also be observed. For the second-order rational solution, the
analytical expression becomes more complex and can be
obtained from Darboux transformation [5]:

ψ2(ξ, τ ) =
[

1 + G + i H

D

]
eiξ (5)
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FIG. 2. Temporal amplitude ψ (a), intensity ψ2 (b), and phase
profiles ϕ (c) at the point of maximum compression for a fundamen-
tal Peregrine soliton ψ1 and for a second-order rational soliton ψ2

(panels 1 and 2, respectively).

with G, H, and D being the polynomial functions given by

G(ξ, τ ) = 3
16 − 3

2τ 2 − τ 4 − 9
2ξ 2 − 6 τ 2 ξ 2 − 5 ξ 4,

H (ξ, τ ) = (
15
8 + 3 τ 2 − 2 τ 4 − ξ 2 − 4 τ 2 ξ 2 − 2 ξ 4

)
ξ,

D(ξ, τ ) = 3
64 + 9

16 τ 2 + 1
4τ 4 + 1

3τ 6 + 33
16ξ 2

− 3
2τ 2 ξ 2 + τ 4 ξ 2 + τ 2 ξ 4 + 9

4 ξ 4 + 1
3 ξ 6. (6)

Profiles of the second-order rational solution are provided
in Figs. 2(a2)–2(c2). The peak power of this structure is
significantly higher than the PS: as the amplitude of the nth-
order structure wave scales with a factor (2n + 1), the peak
intensity is now boosted by a factor of 25 with respect to the
continuous background. In this case, the structure crosses the
zero value four times so that the central peak is now in phase
with the continuous background.

III. PHASE PROFILES FOR HYDRODYNAMIC WAVES

We first discuss the results obtained for water waves, in
particular, features of the PS and the second-order rational
soliton observed at the point of maximum compression.

A. Experimental setup

The experimental setup is described in details in
Refs. [20,28]. The experiments were performed in the
Hamburg University of Technology in a 15 × 1.6 × 1.5-m3

water wave tank with 1-m water depth. A single-flap
wave-producing paddle activated by a hydraulic cylinder is
located at the far end of the tank. The assumption that the flap
displacement is proportional to the generated surface height

has been verified by measurements. In order to avoid higher-
order nonlinear effects, we have kept the steepness a0 k0 of the
wave very low [28]. Next, we will study two different breather
wave evolutions. We first studied the fundamental Peregrine
soliton with a0 = 2 mm and ω0 = 10.7 rad/s [28]. We also
synthesized the second-order rational soliton with a0 = 1 mm
and ω0 = 17.2 rad/s [20]. In both cases, the choice of pa-
rameters leads to a steepness of about 0.03. To avoid wave
reflections, an absorbing beach is installed at the opposite
end. All experiments are conducted under conditions where
the ratio of the water depth of 1 m to the wavelength is larger
than unity. The surface height of the water at a given position
is measured by a capacitance wave gauge with a sensitivity
of 1.06 V/cm which allows us to make measurements with
an accuracy of up to three significant digits. The sampling
frequency is 500 Hz. The field ψ is extracted from the ex-
perimental measurements η using a Hilbert transform [29,30]
after spectral filtering to isolate the fundamental component
of the spectra. Note that in order to increase the effective
propagation length for the observation of the second-order
rational soliton we split the experiment into several stages.
Namely, starting the wave generation repetitively with dif-
ferent boundary conditions given from theory, we measured
the wave profile at the other end of the tank. We repeat this
process seven times, thus reaching the propagation distance
of 72 m, which corresponds to the point of maximum wave
amplitude.

B. Experimental results

Results obtained for the fundamental PS are summarized in
Fig. 3 and are compared with the analytical envelope profile
predicted by Eq. (1). The overall waveform is in excellent
agreement with the analytical predictions. As expected, the
maximum amplitude of the envelope is three times as high as
the amplitude of the constant background, and at that moment
the central localized structure crosses the zero value twice.
Remarkably, the results of the phase reconstruction [Fig. 3(c)]
highlight a clear π phase shift at the point of maximum
compression between the central part and the background
wave, as expected by the analytics: the pulsed part of the wave
is in antiphase with respect to the carrier wave.

A second series of measurements has dealt with the gen-
eration of second-order rational structure. Results recorded at
the point of maximum compression are summarized in Fig. 4.
As expected, the nonlinear focusing of the water wave leads
to an amplification by a factor of 5 of the amplitude back-
ground, in agreement with the analytical form. The envelope
presents four passages through zero value, confirming that a
nth-order rational soliton presents 2n zeros [31]. We observe
that, according to the position within the nonlinear structure,
phase shifts of multiples of π can be observed. Despite some
distortions, those typical phase shifts are in agreement with
the expected results from theory. The central part is in this
case in phase with the continuous background.

IV. PHASE EVOLUTION IN OPTICAL FIBER

We now focus on the nonlinear propagation of light waves
in a single-mode fiber.
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FIG. 3. Profile of the fundamental PS at the point of maxi-
mum compression. (a) Recorded surface elevation (black curve)
with corresponding wave envelope (red curve) and carrier wave as
visual reference (gray line). The experimental envelope ψ and phase
profile ϕ [black circles in panels (b) and (c), respectively] are com-
pared with the analytical predictions (solid blue curve) provided by
Eq. (2).

A. Optical setup

The experimental setup is based on commercially available
equipment of the telecom industry. In previous experiments in
optics, we used the sinusoidal beating resulting from the tem-
poral interference of two frequency-offset continuous waves
[6] or a continuous wave laser externally modulated by a sim-
ple lithium niobate intensity modulator driven by a sinusoidal
modulation [32]. Despite their ease of implementation, those
configurations have proven very efficient to demonstrate the
main features of the PS or AB, the sinusoidal wave evolving
progressively towards the targeted nonlinear structure [33].
However, one restriction due to the imperfect initial excitation
is that after the first stage of growth the return to the initial
stage is only partial and the nonlinear structure tends to split
into several higher-order structures [32,34]. For an efficient
reshaping, the input sinusoidal modulation should be rather
small, therefore requiring significant propagation distance.
The accumulated losses may ultimately affect the growth
and decay cycle. In order to avoid those various restrictions
[6], we implemented a more advanced configuration which
is described in Fig. 5. A frequency comb with a 20-GHz
line spacing is first generated by the nonlinear evolution of a
sinusoidal beating in a fiber. In order to have input conditions
as close as possible to the ideal PS, the discrete spectral com-
ponents are then spectrally shaped in amplitude as well as in

FIG. 4. Profile of the second-order rational soliton at the point of
maximum compression. (a) Recorded surface elevation (black curve)
with corresponding wave envelope (red curve) and carrier wave as
visual reference (gray line). The experimental envelope ψ and phase
profile [black circles in panels (b) and (c), respectively] are compared
with the analytical predictions (solid blue curve) provided by Eqs. (5)
and (6).

phase using a liquid crystal on a silicon based programmable
filter (Waveshaper device) [21,35]. This method enables us to
synthesize as an initial condition a close-to-ideal PS wave at
any propagation length. Let us note that, given the temporal
periodicity of the input wave, we cannot generate rigorously
a single PS, but rather a train of breather waves where each
individual element fits the limiting ideal case of the PS (both
in amplitude and phase). The corresponding inverse scattering
transform spectrum would preserve the global information of
the PS [36]. Note that a phase modulator is also inserted in the
initial comb source, in order to prevent the deleterious effects
of Brillouin backscattering. Next the resulting shaped wave is
amplified by a high-power erbium doped fiber amplifier up to
average powers of 28.5 dB m. The propagation takes place in a
combination of segments of variable lengths made of the most
standard fiber that is currently available, i.e., the single-mode
fiber SMF-28 that is compliant with International Telecom-
munication Union recommendation G.652. The anomalous
group-velocity dispersion of this fiber is β2 = −21 ps2/km
whereas its nonlinear coefficient γ is 1.1 /W/km, leading
to a nonlinear length LNL of 1260 m. Given the high value
of β2, the impact of third-order dispersion is negligible in
the spectral bandwidth under study. After propagation into
the fiber, the output field is recorded in the temporal do-
main taking advantage of an optical sampling oscilloscope
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FIG. 5. NLS breather generator based on light wave propagation in a single-mode optical fiber. PM, phase modulator; IM, intensity
modulator; EDFA, erbium-doped fiber amplifier.

(Picosolve PSO100 series) that allows a temporal resolution
of the order of picoseconds. The output spectral properties
are also recorded using an optical spectrum analyzer with a
spectral resolution of 2.5 GHz (Yokogawa AQ6370). Note that
given the high repetition rate that is here considered it is not
possible to involve signal real-time characterization schemes,
such as dispersion Fourier transform or temporal lens [37].
Although previous phase reconstruction of the output profiles
has benefited from frequency resolved optical gating [6] or
heterodyne approaches [23], we have used in this paper the
Gerchberg-Saxton (GS) algorithm [38], which only requires
the knowledge of the temporal and spectral intensity profiles
and which has previously been used in recent experiments
on laser pulse characterization [37]. Considering the spectral
comb nature of the signal greatly simplifies the convergence
of the algorithm, with only a few tens of components having
to be involved. The phase and time orientation ambiguity
that may intrinsically exist in this algorithm is removed by
comparison with realistic numerical simulation of the NLSE.
As the GS algorithm cannot provide the absolute phase of
the optical wave, we have fixed arbitrarily the phase of the
background to zero value.

B. Experimental results

We first investigate the longitudinal evolution of the tem-
poral and spectral intensity profiles. The input profile pro-
grammed on the spectral waveshaper corresponds to the PS-
like structure at a normalized distance ξ = z/LNL = −1.2.
We carried out 22 measurements, involving fiber lengths up
to 3 km, corresponding to a normalized length from ξ =
−1.2 to 1.2. Experimental results are summarized in Fig. 6
and reproduce the spatiotemporal localization similar to the
ideal Peregrine wave [Figs. 6(a2) and 6(b2)]. The point
of maximum temporal compression occurs after 1.5 km of
nonlinear propagation. This distance also corresponds to the
maximal spectral extent of the optical structure [Figs. 6(b1)
and 6(b2)]. It is worth mentioning that contrary to previous
experimental realization based on approximate sinusoidal in-
puts the recorded longitudinal evolution is here rather sym-
metric and does not present any sign of pulse splitting. The

experimental measurements are in excellent agreement with
the analytical evolution of an ideal PS [Figs. 6(a2) and 6(b2)].

Details of the temporal phase and intensity profiles at
the point of maximum temporal compression are provided
in Figs. 7(a) and 7(b) and plotted over a temporal window
corresponding to one period of the initial 20-GHz excitation.
The temporal profile retrieved at a distance z = 1.5 km ex-
hibits the typical signatures of the PS. Compared to the initial
localized perturbation (red line) obtained after accurate phase
and amplitude sculpturing of the frequency comb, the wave
has been significantly compressed down to a full width at half
maximum of 3 ps. The ratio between the background and
the central peak is up to 8. The sharp phase shift between

FIG. 6. Longitudinal evolutions of the temporal (a) and spectral
(b) intensity profiles of a fundamental PS. Experimental results
(panels 1) are compared with ideal PS predicted from Eqs. (2) and (3)
and using dimensional units of experiments (panels 2). The results of
the temporal intensity profiles are plotted on a linear scale whereas
the spectra are displayed using a logarithmic colormap with a 33-dB
dynamics.
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FIG. 7. (a) Experimental intensity and phase profiles obtained
for the generated Peregrine-like soliton (solid and dash-dotted lines,
respectively). The experimental results retrieved at the point of
maximum compression (black and gray lines) are compared with
the synthesized waveform used as the initial perturbation condition
(red curve). The phase of the background is here arbitrarily fixed
to zero. (b) Real part of the amplitude profile at the point of
maximum compression: experimental results (circles) are compared
with analytical shape of the corresponding PS (circles).

the central part and the continuous background has also
increased up to a value that becomes close to π . Therefore,
the reconstructed field passes twice through the zero value
and is in convincing agreement with the typical PS profile
corresponding to the parameters involved in the experiment
(no fitting procedure has been here employed).

In Fig. 8, we have also plotted the temporal profiles of
the pulse at two distances symmetrically located with re-
spect to the point of maximum compression, i.e, at distance
z = 1000 and 2000 m (i.e., ξ = −0.4 or 0.4). In those two
cases, the phase offset between the central part is not π

FIG. 8. Different intensity and phase temporal profiles (solid and
dash-dotted lines, respectively) symmetrically located before (a) and
after (b) the point of maximum compression (distance of 1000 and
2000 m). Experimentally retrieved results (black lines) are compared
with the ideal PS shape (blue line). The phase of the background is
here arbitrarily fixed to zero.

FIG. 9. (a) Longitudinal evolution of the phase offset between
the pulse central peak and the continuous background �φ. Exper-
imental results (circles) are compared with analytical results based
on Eq. (4) (blue line). For clarity, the phase has been unwrapped.
(b) Polar representation of the longitudinal evolution of the complex
field recorded at its maximum temporal value (normalized to the
continuous background). Experimental results (circles) are compared
with analytical results based of the experimental parameters (blue
line).

anymore. However, we can note that, despite the sign of
the central phase jump, the two experimental waveforms are
extremely close, confirming the phenomenon of déjà vu and
the Fermi-Pasta-Ulam recurrence of breathing structures [39].
Such an observation is in full agreement with the ideal PS
evolution.

A more systematic study of the magnitude of �φ(z) re-
trieved by the Gerchberg-Saxton algorithm is shown in Fig. 9.
We clearly see that the wave exhibits a longitudinal evolution
of the phase difference between the wings and central region
that agrees with the analytical predictions of an ideal PS
[Fig. 9(a)]. For the distances that have been here experimen-
tally considered where attenuation is not significant, the phase
excursion of �φ is higher than π . In theory, starting from
ξ → −∞, it can reach up to 2π at ξ → ∞ [27]. A convenient
way to observe the growth and decay cycle is to use a polar
plot of the complex field at the point τ = 0 [Fig. 9(b)] [27].
For an ideal PS, the trajectory on the complex plane describes
a circle of radius 2 centered in {−1, 0}. Once again, we see
that our experiments qualitatively capture the main features
of the evolution of an ideal PS over one whole cycle. The
slight deviations that may be observed may be explained by
several factors that encompass the imperfect excitation (we
involve a periodic train of PS-like breathers instead of a single
ideal one) as well as the residual dissipation of the fiber.
Those limiting factors will especially impact the propagation
for longer distances and may lead to phase-shifted spatial
recurrence [40,41].
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V. CONCLUSION

To conclude, several fundamental features of the phase
evolution of a Peregrine soliton or NLS rational solitons have
been experimentally observed in this paper. We have provided
experimental evidence in hydrodynamics of the clear π phase
shifts that exist between the central peak and the continuous
background. In the case of PS, the central part is in antiphase
with respect to the continuous background. By contrast, for
the second-order rational soliton, the central peak is in phase
with the continuous background. In nonlinear optics, we have
provided additional experimental confirmation of the π phase
shift that exists between the central part of the pulse and
the continuous background. A careful analysis of a series of
longitudinal measurements has enabled us to also confirm the
phase excursion experienced by the central peak with respect
to the continuous background. Due to the interdisciplinary
character of the approach, this paper may emphasize a wide
range of applications in other nonlinear dispersive media. It
could be extended to other governing equations such as the
Lugiato-Lefever equation that governs the nonlinear dynamics
in resonators where pulsating solution may also exist [42].
It also raises questions regarding the influence of the initial
phase profile of the excitation in the one-dimensional focusing
NLSE [43].

Those various results have been obtained taking advantage
of relatively basic analysis tools. They could be easily
extended to other physical domains such as the analysis of
the time series recorded in multicomponent plasma [8]. Note
that more advanced analysis techniques have now become
available [36,44]. Our longitudinal optical measurements are
intrinsically discrete as they are based on destructive cut-back
methods [32] or on the use of different sections of fibers. Use
of a recirculating loop could be an efficient alternative [45].
Progress in optical characterization has now made possible
continuous longitudinal measurements using the coherent
analysis of the Rayleigh back reflected wave [41]. All these
possibilities may stimulate a renewed interest in the study of
phase shifts that may emerge upon propagation of nonlinear
waves [12,46].
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