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Rotational synchronization of camphor ribbons
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Experiments on interacting pinned self-propelled rotators are presented. The rotators are made from paper
with camphor infused in its matrix. The ribbons rotate due to Marangoni effect driven forces arising by virtue
of surface tension gradients. Two such self-rotating camphor ribbons are observed to experience a repulsive
coupling via the camphor layer in the common water medium. Lag synchronization in both corotating (same
sense of rotation) and counterrotating (opposite sense of rotation) ribbons is reported for the experiments. This
synchronization is found to be dependent on the pivot to pivot distance l. For distances less than the span
of both the ribbons, lc, the rotators successfully synchronize. Furthermore, it is experimentally perceived that
synchronization in the counterrotating ribbons is more robust than in the corotating ribbons. We rationalize the
mechanism of this synchronization via a theoretical model involving a Yukawa type interaction which is analyzed
numerically.
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I. INTRODUCTION

Synchronization is the rhythmic behavior of two or more
coupled oscillators [1]. It is a widely studied phenomenon
in nonlinear dynamics. It has been observed in a plethora of
living and nonliving systems. In various chemical and physi-
cal systems like the Mercury beating heart [2–4], the electro-
chemical dissolution of metals [5–7], and the Josephson junc-
tion [8,9], fingerprints of synchronization have been reported.
Recently, synchronization in filaments oscillating on the water
surface has also been reported [10]. Synchronization found in
biological systems has been extensively discussed in [11–16].
The coupling required for observing synchronization can be
broadly classified into four categories, namely, mechanical,
chemical, electrical, and biological coupling. For instance,
pendula and metronomes couple mechanically via a common
support or a spring [17,18], while oscillating reactions like
the Belousov-Zhabotinsky reaction are coupled chemically
[19]. Brain activity, heart signals, and power grids exhibit syn-
chronized activity through electrical coupling [1,8]. Finally,
coherent flashing of fireflies and the synchronization of the
circadian rhythm to the day and night cycles would belong to
the biological coupling scenario [8].

In this work, we report the synchronized rotational motion
of two chemically coupled self-propelled camphor dipped
paper ribbons on a liquid surface. The self-propelled motion
(SPM) of camphor on the water surface has been studied
extensively both experimentally and theoretically [20–23].
The driving force for this SPM of camphor is the surface
tension imbalance induced by an asymmetric camphor layer

surrounding the solid. It was first explained by Van der
Mensbrugghe in 1869 [24]. Camphor is a promising candidate
to make autonomous motors and to study the active particles’
collective behaviors such as jamming [25]. Self-propelled
entities made up of camphor show translational, rotational,
and intermittent motion [26]. This motion depends on the size
of the container, the shape of the particle, surface tension, and
the temperature of the water medium [21]. It is sensitive to
the boundary conditions of the enclosure [27], its chemical
environment [28], and the distribution of the camphor layer
on the water surface.

The camphor layer formed around the particles can serve
as a coupling medium when two or more particles are at play
[21]. Exploring this, Nakata and co-workers have reported
synchronized motion of two camphor boats in a single [29]
and dual [30] circular annular channel, as well as in triangular
and square channels [31]. In addition, synchronization of the
water flow around two fixed camphor disks [32] has also been
observed.

While translational synchronization of two camphor boats
in closed channels of various shapes has been studied [29,31],
rotational synchronization remains unexplored. However, ro-
tational synchronization of corotating and counterrotating
Landau-Stuart and Rossler oscillators has been numerically
reported [33]. Camphor particles can rotate either due to the
asymmetry in their shape [21] or by spontaneous symmetry
breaking [34]. There is a control on the direction of rotation,
i.e., either clockwise or counterclockwise in the former case
(shape chirality), but there is no such control in the latter sce-
nario (symmetry breaking of the surroundings). Analytically,
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FIG. 1. The schematic side view of the experimental setup (left)
and the upper view of the camphor ribbons (right). The white (upper)
dots in the ribbons (right) are used to track the ribbon trajectories,
while the red (lower) dots indicate the position of the pivot points.

the rotational motion due to spontaneous symmetry breaking
is understood only for the elliptical camphor particles [35].

In this work, to allow only rotational motion, the camphor
ribbons have been pivoted about a thin wire. Once the ribbon
touches the water surface, a camphor layer forms around it.
Ideally, this camphor layer around the ribbon should be sym-
metric and uniform, leading to no motion of the ribbon. But
due to both the small irregularities in the shape of the ribbon
and the initial local fluctuations in the camphor concentration
around it this symmetry is broken. Hence, the camphor rib-
bons employed in our experiments rotate due to spontaneous
symmetry breaking [34]. The ribbons are coupled indirectly
[36] via the camphor layer on the common water surface.

For coupled rotators, various types of synchronization have
been observed in previous numerical works. For example, mir-
ror synchronization involves the rotators being synchronized
such that they are mirror images of one another [17]. Another
example is the phenomenon of mixed synchronization, a term
coined by Prasad [33], where one of the dynamical variables
is in phase, while the other is antiphase synchronized. In
our experiments, in-phase and mirror [17] synchronizations
are observed for corotating and counterrotating ribbons, re-
spectively. We have theoretically modeled the experimental
observations using a repulsive Yukawa potential between two
point oscillators constrained to move on a circle.

The paper is divided into six sections. In Sec. I, we have
introduced the system along with a brief literature review. The
experimental setup and results are presented in Secs. II and III,
respectively. The simulation model and numerical results are
described in Secs. IV and V. Finally, in the last section, a brief
discussion of the work is presented.

II. EXPERIMENTAL PROTOCOL

The experiments were performed in a glass container of
dimensions 25 × 25 × 4 cm3, placed inside a Plexiglas enclo-
sure to prevent air drafts from interfering with the system.
Figure 1 shows the schematic diagram of the experimental
setup (left) and a sketch of co- and counterrotating camphor
ribbons (right). The glass container is filled up to a height of
2 cm with deionized water at room temperature. A high speed
video camera (GOPRO Hero-4, frame rate 120 Hz, 720 p

resolution) is installed above the glass box to record the rotator
dynamics.

Two rectangular paper ribbons of dimensions 2.0 × 0.4
cm2 were cut out from the paper sheet. The ribbons were
kept black in color with a white circular region at one end
to aid with the motion tracking of the rotators [Fig. 1(b)].
Subsequently, they were dipped in a solution of 1.55 g labora-
tory grade camphor and 3.0 ml ethanol at room temperature.
The ribbons were then left to dry in the air. After the ethanol
had dried off from the ribbons, they were pivoted on a thin
wire. Finally, they were placed on the surface of the water to
observe their rotational motion.

We define twice the length of a ribbon (2 × 2.0 cm = 4.0
cm) as lc. The pivot to pivot distance between the two ribbons
is defined as l. Initially, the ribbons were kept at a pivot to
pivot distance (l > lc) and then were gradually moved towards
each other until lc

2 < l < lc.
The camphor ribbon rotates either in the clockwise or the

counterclockwise direction depending upon the initial fluctu-
ations. Hence, the initial sense of rotation is chosen at ran-
dom by the ribbon. Although the initial direction of rotation
is decided randomly, one can choose the desired rotational
direction by externally perturbing the ribbons. When the two
ribbons rotate in the same rotational sense, they are referred
to as corotating while they are called counterrotating if they
rotate in opposite directions [33].

The experimental videos (see the Supplemental Material
[37]) have been analyzed using the MATLAB particle tracking
code developed by Blair and Dufresne [38] based on the
particle tracking algorithms of Crocker and Grier [39]. The
positions of the white dots on the black ribbons is defined as
(xi, yi). It was tracked using the aforementioned algorithm.
For brevity, we refer to the positions of these white dots as
the positions of the ribbons itself throughout this paper. For
each scenario (unsynchronized, corotating, and counterrotat-
ing synchronized), the data have been recorded and analyzed
for 60 s (7200 frames ≈ 48 rotations), out of which a suitable
portion is presented.

III. RESULTS

As previously mentioned, the ribbons are coupled via the
camphor layer in the common water medium. This coupling
depends upon the pivot to pivot distance l. In Fig. 2, when
the ribbons are kept at a distance l > lc, there is very little
coupling between them; hence the rotators remain unsynchro-
nized [Figs. 2(a) and 2(b)]. However, for l < lc, their rotations
synchronize both for the corotating [Figs. 2(c) and 2(d)] and
for the counterrotating [Figs. 2(e) and 2(f)] scenarios. It needs
to be emphasized that there is a slowdown of oscillations
from the unsynchronized [Figs. 2(a) and 2(b)] to the synchro-
nized [Figs. 2(c)–2(f)] domain. However, this slowdown of
oscillations is not related to synchronization. This decrease
of the angular frequency as time progresses is also observed
when ribbons are unsynchronized (l > lc ). This is not due to
different arrangements of the ribbons in unsynchronized and
synchronized scenarios or the coupling effects on the rotation
speed but because of the intrinsic decrease of the angular
frequency as time progresses. We believe that this slowdown
of rotation is because of the depletion of camphor from the
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FIG. 2. Time variation of x position (left) and y position (right)
of the ribbons for (a), (b) unsynchronized, (c), (d) corotating, and
(e), (f) counterrotating scenarios. Red (dotted line) and black (solid
line) curves represent the positions of the first and second ribbons,
respectively. At a distance larger than lc both x and y positions of the
ribbons are unsynchronized with respect to each other but, while at
a distance less than lc, both x and y positions are lag synchronized
for the corotating as well as for the counterrotating scenario. The
slowdown of rotations as one goes from unsynchronized (top) to
counterrotating (bottom) is due to the depletion of camphor from the
ribbons and the gradual decrease in surface tension gradients as time
progresses.

ribbons compounded with the accumulation of camphor on
the water surface. This lowers the surface tension gradients
which drive the motion of the ribbons [40]. The mode of
synchronization (co- or counterrotating) sets in depending on
whether the rotators were brought closer while rotating in the
same or in the opposite sense. Lag synchronization in x and
y positions of the ribbons was observed for both corotating
[Figs. 2(c) and 2(d)] and counterrotating [Figs. 2(e) and 2(f)]
camphor ribbons. It is interesting to note that counterrotating
ribbons have a larger constant phase difference with respect
to each other in comparison to the corotating ribbons. Phase
portraits shown in Fig. 3 for unsynchronized [Fig. 3(a)],
corotating [Fig. 3(b)], and counterrotating [Fig. 3(c)] ribbons
validate these observations. The corresponding videos (unsyn-
chronized.mp4, co_rotating.mp4, and counter_rotating.mp4
are provided in the Supplemental Material [37].

In the case of corotating synchronization, both the x and
the y positions of the ribbons change in a phase synchronized
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FIG. 3. Phase portraits of (a) unsynchronized, (b) corotating, and
(c) counterrotating camphor ribbons. Data for 60 s are plotted for
each panel. Red (circles) and black (solid) curves represent the x and
y positions of the ribbons, respectively. The line of slope 1 (red) and
of slope −1 (black) are drawn for reference. (a) All the available
phase space is filled, indicating unsynchronized dynamics. (b) Both
x and y positions are synchronized in phase with a constant phase
lag for corotating ribbons. (c) For counterrotating ribbons the x and
y positions are respectively in and out of phase synchronized. This
type of synchronization is termed mirror synchronization [17].

fashion with a constant phase difference close to zero. For
counterrotating ribbons, out of phase synchronization is ob-
served for the y coordinate of the ribbons’ positions while the
x coordinates vary in phase with each other. This observation
has been previously termed mirror synchronization [17].

For a pivot to pivot distance l < lc, if the ribbons come in
physical contact, the rotators exhibit some transient dynamics
followed by counterrotating synchronization as the preferred
mode. This indicates that the counterrotating synchronization
has a larger basin of attraction than that of its corotating
counterpart. However, upon carefully moving two unsynchro-
nized corotating ribbons closer while ensuring that there is
no physical contact between the ribbons, one can observe
a corotating mode of synchronization when the distance is
less than lc. Both modes of synchronization (corotating and
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counterrotating) can been observed without the physical con-
tact between the ribbons [41]. We have observed both coro-
tating and counterrotating modes of synchronization for more
than 400 cycles (1 cycle = 1.2 s) in the experiments.

IV. SIMULATION MODEL

To model the two ribbons, we have considered two point
particles of unit mass constrained to move on a unit circle. It
can be considered that the centers of the unit circles represent
the pivot points for each ribbon. The pivots are kept at the
origin (0,0) and (l,0). Therefore, the distance between the
two pivots is l . The angular positions of the particle with
respect to its constraining unit circle can be defined as θ1(t )
and θ2(t ), respectively. Then the positions of the particles
with respect to the common origin in the Cartesian coordi-
nate system are �r1(t ) = (cos θ1(t ), sin θ1(t )) and �r2(t ) = (l +
cos θ2(t ), sin θ2(t )), respectively.

The experimentally observed repulsive coupling between
the camphor ribbons [25,42] is represented through a repul-
sive Yukawa type potential ( e−Kr

r
) with a range determined

by K . The Yukawa type interaction has been employed pre-
viously in a numerical study on an ensemble of self-propelled
rods getting trapped in a wedge shaped boundary [43]. At any
time t , for a distance r (t ) = |�r1(t ) − �r2(t )| between the point
particles, the Yukawa potential is VYukawa(t ) = e−Kr (t )

r (t ) . From

the potential, the force is e−Kr (t )

r (t )2 (1 + Kr (t )), which determines
the particle dynamics. The radial component of the Yukawa
force is assumed to be balanced by the pivot constraint force.
Therefore, only the tangential component of the force acts on
the particles. This tangential component can be written as

(FT (t ))1 = e−Kr (t )

r (t )3
(1 + Kr (t ))(sin (θ1(t ) − θ2(t ))

+ l sin θ1(t )), (1)

(FT (t ))2 = e−Kr (t )

r (t )3
(1 + Kr (t ))(sin (θ2(t ) − θ1(t ))

− l sin θ2(t )). (2)

This gives us the dynamical equations for the particles as
θ̈1(t ) = (FT (t ))1 and θ̈2(t ) = (FT (t ))2, since the particles are
of unit mass and the circle is of unit radius. Denoting the
natural rotational frequencies of the first and second particles
as ω1 and ω2, the dynamical equations can be written as two
first order equations:

θ̇1(t ) = ω1(t ), (3)

ω̇1(t ) = (FT (t ))1, (4)

θ̇2(t ) = ω2(t ), (5)

ω̇2(t ) = (FT (t ))2. (6)

V. NUMERICAL RESULTS

We have simulated the dynamical equations (3)–(6) using
the Runge-Kutta fourth order algorithm with a time step
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FIG. 4. Time variation of x position (left) and y position (right)
of (a), (b) unsynchronized, (c), (d) corotating, and (e), (f) counter-
rotating particles. Red (dotted line) and black (solid line) curves
represent the positions of the first and second particles, respectively.
xi = cos θi and yi = sin θi for i = 1, 2. Cosines of the phase of the
particles are synchronized in phase for both (c) corotating and (e)
counterrotating particles. In contrast, the y positions synchronize (d)
in phase for the corotating particles and (f) out of phase for the
counterrotating particles.

of 10−4. After removing the transients for 1000 time units
(1 time unit = 104 time steps), the system is set to evolve
for another 1000 time units. The pivot to pivot distance is
l = 1.5 units (for synchronized dynamics) and 6.5 units (for
unsynchronized dynamics). The parameter K was kept fixed
at 1.5 units. For the corotating scenario, the initial angular
frequencies were taken to be ω1 = 2.0 and ω2 = 2.05, while
they were taken as ω1 = 2.0 and ω2 = −2.05 in the counterro-
tating case. This frequency mismatch was introduced keeping
in mind that the rotators in the experiments cannot be made
completely identical. Initial phases of the particles were taken
as θ1 = π and θ2 = π + 0.01 for both the cases.

Figures 4 and 5 show the simulation results for the coro-
tating and the counterrotating particles. The cosine (sine) of
their phases is analogous to the x (y) position of the ribbons
in the experiments. For l = 6.5 units, the dynamics of the two
particles remain unsynchronized [Figs. 4(a), 4(b), and 5(a)].
For l = 1.5 units, it can be observed that the cosines of
the particles’ phases synchronize in phase with each other
for both the corotating [Fig. 4(c)] and the counterrotating
scenarios [Fig. 4(e)]. However, the sine of each particle’s
phase synchronize in phase for the corotating [Fig. 4(d)] and
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FIG. 5. Phase portraits of (a) unsynchronized, (b) corotating, and
(c) counterrotating particles. Red and black curves represent the
x and y positions of the particles, respectively. The line of slope
1 (blue) and of slope −1 (magenta) are drawn for reference. (c)
The red curve and the black curve are along the line of slope 1
and −1, respectively. (a) All the available phase space is filled,
indicating unsynchronized dynamics. (b) Both x and y positions
are synchronized in phase with a constant phase lag for corotating
particles. (c) For counterrotating ribbons, x and y positions are
respectively in and out of phase synchronized. This is termed mirror
synchronization [17].

out of phase for the counterrotating [Fig. 4(f)] particles. The
phase plots [Fig. 5(b)] depict in-phase synchronization of
both the cosine and the sine of the phase for the corotating
particles. Therefore, the numerical model is able to capture
the essence of the experimental observations. However, unlike
the experiments, the particles do not get synchronized with a
constant phase difference [compare Figs. 3(b) and 3(c) and
Figs. 5(b) and 5(c)], nor do they experience a slowdown in
their angular frequencies as time progresses. The phases of
the particles try to drift away from each other but the mutual
interaction between them reduces the phase difference again.
This cyclic variation of the phase difference persists even in
the asymptotic dynamics. It should be noted that there is a
disparity between the experimental observations [Figs. 2(e)
and 4(f)] and simulation results [Figs. 4(e) and 4(f)] for the
counterrotating case. The reason for this discrepancy may be
due to the rudimentary nature of our model which does not
take into account the dependence of coupling on the rotation
speed and direction of rotators [44]. Nonetheless, the model is
able to qualitatively match the experimental observations.

VI. DISCUSSION

In the present work, rotational synchronization for corotat-
ing and counterrotating camphor ribbons has been presented.
The pinned camphor ribbon rotates on the water surface
due to a surface tension gradient introduced by the camphor
layer. In this system, the initial direction of rotation, i.e.,
clockwise or counterclockwise, is determined by the random
initial local perturbations. Once a ribbon begins to rotate in
a particular direction, it sustains that motion. This is due to
the fact that the asymmetric camphor distribution around the
ribbons is now sustained by the motion itself. This acts as
a positive feedback to the initial direction of motion, which
was chosen randomly. The two camphor ribbons are coupled
via a camphor layer around them. This is an indirect type of
coupling. Each rotator leaves a trail of camphor when it passes
the region in between the two pivots. This camphor layer
influences the motion of the second rotator when it passes
through the same region. This results in a repulsive coupling
between the ribbons [25,42]. Lag synchronization for both
corotating and counterrotating ribbons was experimentally
observed. Synchronization is observed at a distance less than
the sum of the span of the two ribbons, lc. It was observed that
counterrotating synchronization is more robust in comparison
to its corotating counterpart.

To understand why the counterrotating mode of synchro-
nization is more stable, the following intuitive argument can
be given. Two corotating ribbons will move in opposite di-
rections when they pass through the common region between
the pivots. Since a camphor particle moves from high cam-
phor concentration towards low camphor concentration (low
surface tension to high surface tension), the rotators have to
repeatedly reverse the direction of the camphor concentration
gradient in the common region between the pivots. Since the
repeated reversals of the concentration gradient require a finite
amount of time, the rotators slow down in the common region.
This slowdown translates to a greater chance of physical
contact between them. In contrast, for counterrotating ribbons,
the direction of the gradient created in the common region
is the same for both the ribbons when they pass through it.
Hence, they can traverse the common region relatively quickly
and avoid physical contact.

The subtle difference between our results and mixed syn-
chronization [33] needs to be emphasized. If the x and the y

positions of the rotators are considered as independent state
variables, our experimental observations (for counterrotating
ribbons) can be considered as a manifestation of mixed syn-
chronization.

Our simple model of two point rotators interacting via
a repulsive Yukawa potential captures the essential features
of the experiments. It is able to qualitatively reproduce the
experimentally observed synchronization in both the co- and
counterrotating modes based on the initial directions of ro-
tations. We believe that the present table-top experimen-
tal system showing synchronized rotational motion through
the dynamics of the fluidic surface constitutes an interest-
ing contribution in the context of the growing field of ac-
tive matter. Our future experiments will focus on explor-
ing frustration type dynamics in more than two camphor
ribbons.
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