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We suggest a method for calculation of parameters of dispersive shock waves in the framework of Whitham
modulation theory applied to nonintegrable wave equations with a wide class of initial conditions corresponding
to propagation of a pulse into a medium at rest. The method is based on universal applicability of Whitham’s
“number of waves conservation law” as well as on the conjecture of applicability of its soliton counterpart to the
above mentioned class of initial conditions which is substantiated by comparison with similar situations in the
case of completely integrable wave equations. This allows one to calculate the limiting characteristic velocities
of the Whitham modulation equations at the boundary with the smooth part of the pulse whose evolution obeys
the dispersionless approximation equations. We show that explicit analytic expressions can be obtained for laws
of motion of the edges. The validity of the method is confirmed by its application to similar situations described
by the integrable Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations and by comparison with
the results of numerical simulations for the generalized KdV and NLS equations.
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I. INTRODUCTION

It is well known that if one neglects effects of dissipation
and dispersion, then the theory of propagation of nonlinear
waves suffers from breaking singularity developed at some
finite moment of time tb after which a formal solution of
nonlinear wave equations becomes multivalued. The classical
approach to resolution of this problem is based physically on
taking into account dissipation effects resulting in formation
of shock waves instead of the nonphysical multivalued so-
lutions. Since in practice the dissipation is often very small
and, consequently, the width of shocks is very small, too, such
shocks can be treated as surfaces of discontinuities of physical
parameters whose values at both sides of such a surface are
related by jump conditions derived from conservation of mass
of the fluid, its momentum, and energy [1,2]. As a result,
one arrives at remarkably powerful theory which has found
numerous applications in science and technology.

However, in many physical systems the dissipative effects
are relatively small compared with dispersion effects. The
well-known example of such a situation is given by “undular
bores” in shallow water waves theory (see, e.g., [3]). In
this case, interplay of relatively strong dispersion and weak
dissipation leads to formation of a wide stationary oscillatory
structure instead of a standard shock discontinuity. The gener-
ality of this situation was underlined by Sagdeev [4] who con-
sidered similar structures in plasma physics and quantitative
asymptotic theory of such undular bores was developed by
Johnson [5] in framework of the Korteweg–de Vries–Burgers
equation incorporating both damping and dispersion.

If the damping effects are measured by some parameter
(say, the viscosity coefficient) ν, then the asymptotic station-
ary stage is developed at very large time t � ν−1, hence for
considerable period t � ν−1 these damping effects can be
neglected and the wave evolution is essentially nonstationary.

In this case, short-wavelength nonlinear oscillations are gen-
erated after the wave breaking moment instead of a classical
viscous shock discontinuity. Since such a nonstationary os-
cillatory structure describes transition between two different
states of smooth flow, it is usually called dispersive shock
wave (DSW). The simplest and, apparently, most powerful
theoretical approach to a description of DSWs was formulated
by Gurevich and Pitaevskii [6] in framework of the Whitham
theory of modulation of nonlinear waves [7,8] which was
based on the large difference between scales of the wavelength
of nonlinear oscillations within DSW and the size of the whole
DSW. Further development of nonlinear physics demonstrated
the generality of this phenomenon and now they have been
observed in a number of physical situations (see, e.g., review
article [9] and references therein).

Due to the above mentioned difference of time scales, the
modulation parameters change slowly along the DSW and
their evolution is governed by the Whitham equations which
can be obtained by the averaging of the conservation laws of
the wave equation under consideration over fast oscillations
within the DSW. Although this approach is very general,
its practical applicability depends crucially on mathematical
properties of the nonlinear wave equations which describe the
evolution of the wave. The great achievement of Whitham
was that in the case of waves whose evolution is described
by the Korteweg–de Vries (KdV) equation he succeeded in
transformation of the modulation equations to the so-called
diagonal Riemann form. Gurevich and Pitaevskii used just this
form of modulation equations in their seminal paper [6]. It
became clear later [10], that Whitham’s diagonalization of the
modulation equations was possible due to the special property,
discovered in Ref. [11], of complete integrability of the KdV
equation. Development of the finite-gap integration method
[12,13] as well as of the methods of derivation [10,14] and
solution [15,16] of the Whitham equations permitted one to
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extend the Gurevich-Pitaevskii approach to a number of other
completely integrable equations of physical interest (see, e.g.,
[9]). Complemented by the perturbation theory, derived for
the KdV equation with small viscosity term added [17–20]
and later generalized to a wide class of perturbed completely
integrable equations in Ref. [21], this theory has found many
important applications.

On the contrary, development of the general Whitham
method of modulations, not restricted to completely integrable
equations, was much slower and its progress was quite lim-
ited. Apparently, the first general statement was made by
Gurevich and Meshcherkin [22], who proposed the condition
which replaces the familiar “jump conditions” commonly
used in the theory of viscous shocks. This condition is for-
mulated in terms of Riemann invariants of the hydrodynamic
system obtained in the dispersionless limit of the original non-
linear wave equations under consideration. Typically, wave
breaking occurs in the simple-wave flow when all physical
variables of the system can be expressed as functions of only
one of them which means that after transformation to the
corresponding Riemann invariants only one of them breaks
and the others remain constant. Gurevich and Meshcherkin
claimed that this statement is correct also after formation
of a DSW, so that flows at both its edges have the same
values of the nonbreaking Riemann invariants. This property
is evidently correct in a simple case of self-similar solutions of
Whitham equations for the KdV equation studied in Ref. [6],
when Whitham equations are transformed to the diagonal
form, and Gurevich and Meshcherkin generalize it to situa-
tions when Riemann invariants of the modulation equations
are unknown or even do not exist.

A remarkable contribution into the general Whitham the-
ory of modulations was made by El [23] who showed that
in simple-wave DSWs of Gurevich-Meshcherkin type it is
possible to find parameters of the DSW at its harmonic edge
without full integration of the Whitham modulation equations
by using instead the Whitham conservation of number of
waves equation,

∂k

∂t
+ ∂ω(k)

∂x
= 0, (1)

where k and ω are the wave vector and the frequency of a
linear harmonic wave ∝exp[i(kx − ωt )] propagating along a
smooth background. El noticed that in the simple-wave break-
ing situation the physical parameters at the small-amplitude
DSW edge depend on a single parameter only. As a result,
Eq. (1) reduces to an ordinary differential equation which
has an integral and the value of this integral can be found
with the use of the Gurevich-Meshcherkin conjecture. This
yields the value of the wave number of the wave packet at
the small-amplitude edge of the DSW which allows one to
calculate the speed of this edge equal to the group velocity of
the wave packet provided the other parameters of the wave at
this edge are also known.

The importance of the conservation of number of waves
law (1) was underlined by Whitham [7,8] who noticed that it
is a direct consequence of definitions of the wave vector k =
∂θ/∂x and the frequency ω = −∂θ/∂t in a slowly modulated
wave, where θ = θ (x, t ) is the phase of the wave. Therefore
k and ω are defined also for nonlinear waves and Eq. (1)

fulfills along the entire DSW. As a result, it can be derived
from any full system of modulation equations. Unfortunately,
Eq. (1) loses its meaning at the soliton edge of a DSW
where k → 0. In spite of that, El showed [23] that under
some additional assumptions one can obtain from Eq. (1) the
ordinary differential equation relating the physical variables
along the characteristic of Whitham equations at the soliton
edge of the DSW. Then one can get again the integral of this
equation and find its value by the same Gurevich-Meshcherkin
method. This procedure gives the inverse half width k̃ of the
leading soliton and k̃ is related to the soliton’s velocity by
the well-known formula following from a simple reasoning:
since a soliton propagates with the same velocity as its tails
and if the tails of a soliton have an exponential form ∝
exp[∓k̃(x − Vst )], x → ±∞, then the tails obey the same
linearized equations which lead to the linear dispersion law
ω = ω(k). Hence, we arrive immediately at the statement that
the soliton velocity Vs is related with its inverse half width k̃

by the formula

Vs = ω̃(̃k)/̃k, (2)

where ω̃(̃k) is defined as

ω̃(̃k) ≡ −iω(ik̃). (3)

This relationship was noticed long ago and helped a lot in
finding soliton solutions of complicated systems of nonlinear
wave equations (see, e.g., Refs. [24,25]).

In an important particular case of initial steplike disconti-
nuities all the parameters besides k and k̃ at the DSW edges
are fixed, so after finding k and k̃ by the El method one can cal-
culate such characteristics of the DSW as speeds of its edges
and the leading soliton amplitude. Application of this scheme
to the problems of evolution of initial steplike discontinuities
for integrable equations, when the global solutions for the
whole DSWs are known due to the existence of Riemann
invariants, showed that El’s method works perfectly well at
least for this class of problems. Its further application to
similar problems for nonintegrable equations and comparison
of the results with numerical simulations demonstrated its
good applicability at least for moderate values of jumps of
physical variables at the initial discontinuities. As a result, a
number of interesting problems was successfully considered
by this method (see, e.g., Refs. [26–33]).

Obviously, “number of waves” conservation equation (1)
is universally correct for any DSWs beyond those generated
from steplike initial discontinuities and indeed it was suc-
cessfully used in estimate of asymptotic number of solitons
generated from an initially localized pulse evolved accord-
ing to nonintegrable equation [34] (see also [27]). However,
El’s method cannot be applied directly to the problems of
evolution of pulses different from steplike discontinuities and
therefore it needs further development.

The aim of this paper is to develop the method of cal-
culation of the main characteristics of DSWs generated in
evolution of more general pulses than the initial steplike
discontinuities. To this end, we study first whether Eq. (1)
admits the transformation (3), so that the equation

∂k̃

∂t
+ ∂ω̃(̃k)

∂x
= 0 (4)
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plays at the soliton edge the role analogous to that of Eq. (1). It
is evident that, on the contrary to the situation with modulated
nonlinear periodic wave, where the wavelength has clear
enough physical meaning along the DSW and k can be defined
as a gradient of the phase θ , we cannot define in a similar way
the inverse “wave width” k̃, so Eq. (4) has a clear sense at
the soliton edge only and even in this limit its correctness is
not guaranteed. In spite of that, a simple calculation shows
that it is correct in the case of integrable equations at the
edge matching to the smooth profile of the pulse provided
the initial profile belongs to the class of simple waves which
means physically that the pulse propagates through medium
“at rest” with constant values of the dispersionless Riemann
invariants. Following to Gurevich and Meshcherkin [22], we
generalize this observation to nonintegrable equations. As a
result, the conditions of applicability of Eq. (4) are formulated
in terms of dispersionless wave breaking patterns and mean
physically that the wave breaking occurs at the boundary with
the medium at rest. Naturally, these conditions are fulfilled
for the steplike discontinuities, hence El’s theory is included
in this approach.

Assuming correctness of Eq. (4), we can transform it again
in the vicinity of the soliton edge of the DSW to the ordinary
differential equation in simple-wave type problems, and then
this equation can be solved if an appropriate boundary con-
dition at the small-amplitude edge is known in the problem
under consideration. To find the law of motion of DSW’s edge
at the boundary with the smooth dispersionless flow, we use
the fact that in this limit the characteristic velocities of the
Whitham equations have known values which allow one to
write down the corresponding limiting Whitham equation in
the hodograph transformed form and to solve it with the use of
the fact that the smooth dispersionless solution is also known.
This procedure generalizes to nonintegrable equations the
method used in Ref. [35] for calculation of the law of motion
of the small-amplitude edge in the KdV equation theory and
applied recently in Ref. [36] to calculation of the motion of
the soliton edge at the boundary with the smooth solution in
the nonlinear Schrödinger (NLS) equation theory.

Although in the case of monotonous initial pulses this
method gives velocity of the edge at the boundary with smooth
nonuniform distribution only, in the case of nonmonotonous
pulse the method provides also the asymptotic value of ve-
locity of the opposite edge at the boundary with the medium
at rest. Comparison of the results obtained by this method
with known solutions of integrable KdV and NLS equations
as well as with the results of numerical solution of non-
integrable equations confirms its validity. Thus, the method
greatly increases the area of applicability of the Whitham
theory to description of evolution of DSWs in nonlinear wave
systems. In particular, it can be applied to description of
DSWs observed in experiments on evolution of pulses in
shallow water waves [37,38], nonlinear optics [39–41], and
Bose-Einstein condensates [42–44].

The paper has the following structure. In Sec. II we discuss
applicability of Eqs. (1) and (4) to the edges of DSWs for
integrable KdV and NLS equations and formulate the condi-
tions of applicability of Eq. (4) to nonintegrable equations.
The method formulated here is applied to different types
of nonlinear wave equations in Sec. III and situations with

unidirectional and two-directional propagation are considered
separately in Secs. III A and III B, respectively. In both cases,
we show that our method reproduces correctly the known
results obtained earlier for integrable KdV and NLS equations
and then apply the method to typical in nonlinear physics
generalized KdV and NLS equations. In Sec. IV the method
is validated by comparison of analytical formulas obtained in
Whitham approximation with exact numerical solution of the
generalized NLS equation. Section V is devoted to conclusion
and general discussion. Derivation of convenient for us form
of El’s equations is given in the Appendix.

II. HARMONIC AND SOLITON DISPERSION LAWS

We shall call the functions ω = ω(k) and ω̃ = ω̃(̃k), which
appear in Eqs. (1) and (4), “harmonic” and “soliton” disper-
sion laws, respectively. As was indicated in the Introduction,
these functions are defined by linearized equations of motion
for small-amplitude (harmonic) and soliton’s tails limits, cor-
respondingly, and they can be converted one into another by
means of Eq. (3). To formulate the conditions of applicability
of Eqs. (1) and (4) along DSW, we have to define k and k̃ in
the vicinity of DSW edges which can be done if the periodic
and soliton solutions of the equation under consideration are
known. Moreover, if these solutions are parametrized by the
Riemann invariants of the corresponding Whitham modula-
tion equations, then we can check the validity of Eqs. (1)
and (4) in the Whitham approximation. We shall make such
a check at the small-amplitude and soliton edges of DSWs
described by the KdV and NLS equations, and the results
obtained will permit us to formulate a plausible conjecture
about the conditions of applicability of Eq. (4).

A. KdV equation case and generalizations

As is well known (see, e.g., [45]), the KdV equation

ut + 6uux + uxxx = 0 (5)

has a periodic solution which can be written in the form

u(x, t ) = r2 + r3 − r1 − 2(r2 − r1)

× sn2(
√

r3 − r1 (x − V t ),m), (6)

where

V = 2(r1 + r2 + r3), m = r2 − r1

r3 − r1
, (7)

and sn is the Jacobi elliptic function. In the strictly periodic
case the parameters r1 � r2 � r3 are constant, but in slowly
modulated waves they become slow functions of x and t

whose evolution is governed by the Whitham equations,

∂ri

∂t
+ vi (r1, r2, r3)

∂ri

∂x
= 0, i = 1, 2, 3, (8)

where the expressions for the characteristic velocities vi (r )
were obtained by Whitham [7,8] (see also [45]).

In the small-amplitude limit r2 − r1 � |r2| the solution (6)
transforms into a harmonic wave,

u(x, t ) = r3 + (r2 − r1) cos[2
√

r3 − r1 (x − V t )],

V = 2(2r1 + r3), (9)
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and in this limit the Whitham velocities are equal to

v1|r2=r1 = v2|r2=r1 = 12r1 − 6r3, v3|r2=r1 = 6r3. (10)

The harmonic dispersion law follows immediately from lin-
earized Eq. (5),

ω(k) = 6uk − k3, (11)

and it agrees with the expressions for k and ω that follow
from (9),

k = 2
√

r3 − r1, ω = kV = 4(2r1 + r3)
√

r3 − r1, (12)

if one takes into account that u ≈ r3 at this edge. Supposing
that r1 and r3 evolve here according to the Whitham equations

∂r1

∂t
+ (12r1 − 6r3)

∂r1

∂x
= 0,

∂r3

∂t
+ 6r3

∂r3

∂x
= 0, (13)

we readily find that the k and ω defined by Eqs. (12) satisfy
Eq. (1) identically. This agrees with the general statement
that the number of waves conservation law (1) is a strict
consequence of the Whitham modulation equations.

In a similar way, in the soliton limit r2 → r3 Eq. (6)
reduces to the soliton solution

u(x, t ) = r1 + 2(r3 − r1)

cosh2[
√

r3 − r1(x − Vst )]
,

Vs = 2(r1 + 2r3), (14)

and the Whitham velocities are given by the formulas

v1|r2=r3 = 6r1, v2|r2=r3 = v3|r2=r3 = 2r1 + 4r3. (15)

Now the soliton dispersion law reads

ω̃(̃k) = 6ũk + k̃3 (16)

and from Eq. (14) we get u ≈ r1 and

k̃ = 2
√

r3 − r1, ω̃ = k̃Vs = 4(r1 + 2r3)
√

r3 − r1. (17)

Substitution of these expressions into Eq. (4) with account of
the Whitham equations

∂r1

∂t
+ 6r1

∂r1

∂x
= 0,

∂r3

∂t
+ (2r1 + 4r3)

∂r3

∂x
= 0 (18)

yields after simple transformations the equation

∂k̃

∂t
+ ∂ω̃(̃k)

∂x
= 4̃k

∂r3

∂x
. (19)

Hence, Eq. (4) does not hold for DSWs with changing Rie-
mann invariant r3 in the vicinity of the soliton edge. However,
as is known from Gurevich-Pitaevskii theory [6] for evolution
of the initial steplike discontinuity, in this particular case
r3 = const and for such a DSW Eq. (4) is fulfilled. This type
of DSW corresponds to the diagram of Riemann invariants
shown in Fig. 1. Schematically, this diagram is equivalent to a
formal multivalued solution of the Hopf equation,

ut + 6uux = 0, (20)

which is the dispersionless approximation of the KdV equa-
tion, for the problem with the initial steplike discontinuity,
where r1, r2, r3 symbolize the three values of this multivalued
solution. (To avoid any confusion, we stress that numerically
the parameter u in the formal dispersionless solution differs
from values of r2 obtained in the solution of the Whitham

x

r

uL

uR

r3

r2

r1

xL xR

FIG. 1. Plots of Riemann invariants for the solution of the step-
like initial problem. In this case r3 = const and Eq. (4) is correct.

equations, and the same difference exists between the co-
ordinates xL, xR of the edges in these two situations, that
is we mean here just qualitative geometric similarity of the
respective diagrams rather than their quantitative numerical
identity.) It is natural to suppose that Eq. (4) remains correct
for DSWs described by nonintegrable wave equations for
some variable u, if the corresponding dispersionless wave
breaking pattern is given geometrically by Fig. 1, although its
counterpart for the Riemann invariants of Whitham equations
does not exist anymore. Actually, this conjecture corresponds
exactly to the El theory [23] applied to the steplike initial
problems.

Now we notice that there exist other situations shown in
Fig. 2 where r3 = const in the integrable KdV equation the-
ory, whereas both r1 and r2 change with time and space coor-
dinate. The corresponding solutions of the Whitham equations
were called quasisimple in Ref. [35]. We distinguish here the
cases with monotonous and nonmonotonous initial pulses to
underline that a nonmonotonous initial pulse u = u0(x) is
characterized also by some minimal value um which plays an
important role at the asymptotic stage of evolution of the DSW
evolved from such a pulse. In this type of DSW, the soliton
edge xR propagates along a nonuniform and time-dependent
background evolving from u0(x), and the law of motion of
this edge can be found with the use of Eq. (4) bypassing
the global solution of the full system of Whitham equations.
Again it is natural to assume that this method can be extended
to nonintegrable equations, if the wave breaking pattern for
a single wave variable u has the same geometric form and
the dispersion and nonlinearity are such that the soliton edge
is located at the boundary with the dispersionless smooth
solution.

xri xL xR

r1

r2

r3

u

(a)
xri xL xR

r1

r2

r3

um

u

(b)

FIG. 2. Plots of Riemann invariants for wave breaking of “nega-
tive” pulses with monotonous (a) and localized (b) profiles. In both
cases r3 = const and Eq. (4) is correct.
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x

ri

xRxL

r3

r2

r1

u
(a)

x

ri

xL xR

r3

r2

r1

um

u

(b)

FIG. 3. Plots of Riemann invariants for wave breaking of “posi-
tive” pulses with monotonous (a) and localized (b) profiles. In both
cases r3 changes with x and Eq. (4) is not applied.

On the contrary, if the wave breaking pattern has the form
depicted in Fig. 3, then r3 is not constant, Eq. (4) loses
its applicability and the law of motion of the soliton edge
xR cannot be found by solving this equation. It is known
that such a localized positive pulse evolves asymptotically
into a sequence of well-separated solitons and in the KdV
equation case the velocity of the leading soliton can be found
with the use of the Karpman formula [46]. The number of
solitons generated from the initial pulse can be calculated in
the nonintegrable case by the method of Refs. [27,34]. The
universal Eq. (1) is always correct and, as we shall see, permits
one to find the law of motion of the small-amplitude edge
xL. To distinguish these two situations, we shall call them
“negative” in the case of Fig. 2 and “positive” in the case of
Fig. 3. It is important for us that for a proper relative sign of
nonlinear and dispersive effects, in the first case the soliton
edge is located at the boundary xR with the smooth solution u

and in the second case the small-amplitude edge is located at
such a boundary xL.

At the same time we should notice that although Eq. (1)
is always applicable, in situations shown in Fig. 2 the small-
amplitude edge propagates into the region with constant u

which is a trivial solution of the Hopf equation (20), that is
there is no explicit relationship between the values of uL,
xL, and t at the small-amplitude edge. Therefore the law of
motion of this edge cannot be found by the method suggested
here. In spite of that, in the case of an initially localized pulse
depicted in Fig. 2(b), the asymptotic value of the velocity
of the small-amplitude edge can be expressed in terms of
the minimal value um of the initial distribution. All these
problems will be considered in Sec. III.

B. NLS equation case and generalizations

Now we turn to the question of validity of Eq. (4) for DSWs
whose evolution is described by the NLS equation

iψt + 1
2ψxx − |ψ |2ψ = 0. (21)

In this case it is convenient to represent the periodic solution
in terms of the variables ρ and u such that

ψ (x, t ) =
√

ρ(x, t ) exp

(
i

∫ x

u(x ′, t )dx ′
)

. (22)

Then, for example, in the physical context of Bose-Einstein
condensate, ρ has a meaning of its density and u of its flow
velocity. In terms of these variables, the NLS equation can be

written as a system of hydrodynamicslike equations

ρt + (ρu)x = 0, ut + uux + ρx +
(

ρ2
x

8ρ2
− ρxx

4ρ

)
x

= 0,

(23)
where the last term in the second equation describes the
dispersion effects. In smooth flows, when higher derivatives
are small, this term can be neglected and we arrive at the dis-
persionless limit represented by the “shallow water equations”

ρt + (ρu)x = 0, ut + uux + ρx = 0. (24)

The periodic solution of the system (23) is given by the
formulas (see, e.g., [45])

ρ(x, t ) = 1

4
(r4 − r3 − r2 + r1)2 + (r4 − r3)(r2 − r1)

× sn2(
√

(r4 − r2)(r3 − r1)(x − V t ),m),

u(x, t ) = V + j

ρ(x, t )
, (25)

where

V = 1

2
(r1 + r2 + r3 + r4), m = (r2 − r1)(r4 − r3)

(r4 − r2)(r3 − r1)
,

j = 1

8
(−r1 − r2 + r3 + r4)(−r1 + r2 − r3 + r4)

× (r1 − r2 − r3 + r4), (26)

that is j has the meaning of the density current in the reference
frame where the phase velocity V is equal to zero. The
parameters r1 � r2 � r3 � r4 play the role of the Riemann
invariants in a modulated wave so that the Whitham equations
have a diagonal form

∂ri

∂t
+ vi (r )

∂ri

∂x
= 0, i = 1, 2, 3, 4, (27)

and expressions for the velocities vi were found in
Refs. [47,48]. At the small-amplitude edge r3 = r4 we have
a harmonic wave

ρ = 1

4
(r2 − r1)2 − 1

2
(r2 − r1)(r4 − r3)

× cos[2
√

(r4 − r1)(r4 − r2)(x − V t )],

V = 1

2
(r1 + r2 + 2r4), (28)

and the velocities vi are given here by

v1 = 1

2
(3r1 + r2), v2 = 1

2
(r1 + 3r2),

v3 = v4 = 2r4 − (r2 − r1)2

2(2r4 − r1 − r2)
. (29)

(Analogous formulas can be obtained in another small-
amplitude limit r2 = r1, but we shall not need them in what
follows.) At the soliton edge we have the dark soliton solution

ρ = 1

4
(r4 − r1)2 − (r4 − r2)(r2 − r1)

cosh2[
√

(r4 − r2)(r2 − r1)(x − Vst )]
,

Vs = 1

2
(r1 + 2r2 + r4), (30)
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and near the soliton edge the characteristic velocities of the
Whitham system are given by the formulas

v1 = 1
2 (3r1 + r4), v2 = v3 = 1

2 (r1 + 2r2 + r4),

v4 = 1
2 (r1 + 3r4). (31)

Now we can check the validity of Eqs. (1) and (4) in frame-
work of the Whitham theory for the NLS equation.

At the small-amplitude edge Eq. (28) gives the expressions
for the wave vector and the frequency,

k = 2
√

(r4 − r1)(r4 − r2),

ω = kV = (r1 + r2 + 2r4)
√

(r4 − r1)(r4 − r2). (32)

Their substitution into Eq. (1) with account of the Whitham
equations (27) with velocities (29) demonstrate after sim-
ple calculation that Eq. (1) is fulfilled identically. [Similar
calculation proves the validity of Eq. (1) in another small-
amplitude limit r2 = r1.] Thus, we have confirmed again that
the number of waves conservation law is a consequence of the
Whitham equations in agreement with the general statement
of Whitham [7,8].

At the soliton edge we find from Eq. (30) that

k̃ = 2
√

(r4 − r1)(r4 − r2),

ω̃ = (r1 + 2r2 + r4)
√

(r4 − r1)(r4 − r2), (33)

and substitution of these expressions into Eq. (1) with account
of Whitham equations (27) with velocities (31) gives

∂k̃

∂t
+ ∂ω̃(̃k)

∂x
= 2̃k

∂r2

∂x
. (34)

Here we should make an important remark. In the above
expressions for the soliton limit we denoted the common value
of the two Riemann invariants r3 = r2 as r2 which explains the
appearance of r2 in the right-hand side of Eq. (34). If we had
denoted it as r3, then we would have obtained Eq. (34) with r2

replaced by r3. This restores the two-directional symmetry of
the NLS equation.

Thus, we arrive at the conclusion that Eq. (1) is universally
correct and (4) is correct when in the corresponding diagram
of Riemann invariants we have either r2 or r3 constant. Obvi-
ously, this takes place, for example, in the diagrams shown in
Fig. 4, where ri (i = 1, 2, 3, 4) denote the Riemann invariants
of the Whitham equations and rL

±, rR
± denote the Riemann

invariants

r± = u

2
± √

ρ (35)

x

rL
+

rL
−

rR
+

rR
−

r4

r3

r2

r1

xL xR

(a)

x

rL
+

rL
−

rR
+

rR
−

r4

r3

r2

r1

xL xR

(b)

FIG. 4. Diagrams of Riemann invariants for wave breaking of
steplike pulses in NLS equation theory.

of the dispersionless system (24) which takes a diagonal
Riemann form in terms of these variables,

∂r+
∂t

+ v+(r+, r−)
∂r+
∂x

= 0,
∂r−
∂t

+ v−(r+, r−)
∂r−
∂x

= 0,

(36)

where

v+(r+, r−) = 1
2 (3r+ + r−), v−(r+, r−) = 1

2 (r+ + 3r−).

(37)

These velocities coincide exactly with the corresponding
limits of the Whitham velocities which provides continuous
matching of the Riemann invariants of Whitham and disper-
sionless equations as is shown in Fig. 4.

The diagrams shown in Fig. 4 symbolize the steplike
wave breaking of simple waves, so that in Fig. 4(a) the
invariant r+ of the right-propagating wave breaks and r−
is constant whereas in Fig. 4(b) the invariant r− of the
left-propagating wave breaks and r+ remains constant. The
Gurevich-Mescherkin conjecture claims that even if the Rie-
mann invariants of the Whitham modulation equations do not
exist, nevertheless the values of the dispersionless Riemann
invariant r− is transferred through the DSW generated after
wave breaking of the right-propagating simple wave and, in a
similar way, the values of r+ are transferred through the DSW
generated after the wave breaking of the left-propagating
wave. El’s theory [23] corresponds to this situation and pro-
vides the method of calculation of parameters of the edges
of DSWs generated from initial steplike discontinuities for
the nonintegrable wave equations case. The agreement of El’s
theory with numerical simulations shows that although the in-
variants r2 or r3 do not exist along the whole DSW, their exis-
tence at its edges [r2 = rR

+ in Fig. 4(a) or r3 = rL
− in Fig. 4(b)]

is enough for finding the velocities of DSW edges in the case
of steplike initial problems. Here we assume correctness of
Eq. (4) in vicinity of the DSW edge. Actually, this statement
means generalization of the Gurevich-Mescherkin conjecture
to quasisimple waves where either rL

± or rR
± are constant at

one of the edges of the DSW. As is clear from Eqs. (35), in
the NLS equation case the constancy of both dispersionless
Riemann invariants at one of the edges of the DSW means that
this DSW propagates into a uniform (ρ0 = const) region with
constant flow velocity (u0 = const) which can be put equal
to zero in the appropriate reference frame. We can formulate
these observations as a conjecture that Eq. (4) holds for DSWs
propagating into a uniform “quiescent” medium.

Now we notice that, as in the KdV equation case, there
exist other situations in the NLS equation theory where r2 or
r3 are constant. In Figs. 5(a) and 5(b) the Riemann invariant r+
with “positive” initial distribution breaks and we distinguish
again here monotonous and localized pulses; in Figs. 5(c) and
5(d) we have depicted analogous situations with breaking of
r+ invariant for “negative” initial profiles. We have shown
recently in Ref. [36] that in the case corresponding to Fig. 5(a)
the law of motion of the soliton edge xL(t ) can be found with-
out knowing the global solution of the Whitham equations.
It is natural to suppose that this method can be generalized
in such a way that the law of motion of the soliton edge can
be found with the use of Eq. (4) for pulses whose evolution
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xxRxL

r4

r3

r2

r1

r+

rL
− rR

−

rR
+

(a)

xxL xR

r4

r3

r2

r1

rL
+

rL
− rR

−

rR
+

r+

(b)

xxL xR

r2

r3

r4

r1

r+

rR
−rL

−

rL
+

(c)

xxL xR

r2

r3

r4

r1 rR
−rL

−

rL
+ rR

+

r+

(d)

FIG. 5. Diagrams of Riemann invariants for wave breaking of
“positive” pulses with monotonous (a) and localized (b) profiles of
dispersionless Riemann invariant r+. In both cases r2 = const and
Eq. (4) is correct. For “negative” initial distributions (c) and (d) of
the invariant r+ the invariants r2 and r3 of the Whitham modulation
system vary with x and Eq. (4) is not fulfilled.

is governed by nonintegrable wave equations, if the wave
breaking patterns of the dispersionless Riemann invariants
coincide geometrically with those shown in Figs. 5(a) and
5(b) in spite of that the Riemann invariants of the Whitham
modulation equations do not exist anymore. Due to universal
applicability of Eq. (1), the laws of motion of the small-
amplitude edges at the boundaries with smooth solutions for
breaking Riemann invariants can be found in situations whose
integrable counterparts are depicted in Figs. 5(c) and 5(d)
where r2 and r3 are not constant. In these cases, the small-
amplitude edges xR propagate into smooth distributions of the
dispersionless Riemann invariants r+. The laws of motion of
the soliton edges xL can be found only at the asymptotic stage
of evolution, when the initial pulse evolves into a sequence of
well separated solitons. In integrable cases this stage can be
studied with the use of the Bohr-Sommerfeld quantization rule
for the associated Lax spectral problem (see, e.g., [49]) and in
nonintegrable cases the number of solitons can be calculated
by the method suggested in Refs. [27,34].

Now, after formulation of the class of problems where the
number of waves conservation law (1) and its soliton coun-
terpart (4) are applicable, we can proceed to demonstration of
their concrete applications to DSWs evolutions.

III. MOTION OF DISPERSIVE SHOCK EDGES

Evolution of DSWs generated from initial steplike discon-
tinuities were studied in much detail in Refs. [23,26–33] by
El’s method and we shall not consider this particular case here.
Instead, we shall turn to the class of problems referred to in
Ref. [35] as quasisimple DSWs. To illustrate the correctness

of our approach, we shall consider first integrable situations
where our results can be compared with the results known
from solutions obtained by the inverse scattering transform
method.

To simplify exposition, we notice here that El’s method
together with the Gurevich-Meshcherkin conjecture can be
formulated as an “extrapolation” procedure, that is, instead of
speaking about solving Eqs. (1) and (4) along edge character-
istics of the Whitham system with the Gurevich-Meshcherkin
initial condition, we say that we extrapolate solutions of the
limiting Whitham equation (1) or (4) from the vicinity of
one edge to the whole DSW and impose the proper boundary
condition at the opposite edge. This formulation gives the
same results as El’s method and has some advantages for
generalizations of the method to nonsteplike initial conditions.

A. Unidirectional propagation

We suppose that our nonlinear wave is described by a
single variable u. To illustrate the method, we consider first
the completely integrable KdV equation, but we shall use
here only the general properties of the Whitham modulation
equations not related with their explicit diagonal form.

1. KdV equation: Positive pulse

We shall start with a monotonous pulse with the initial form
u0(x) > 0 shown in Fig. 3(a). Our task here is to find the law
of motion of the small-amplitude edge xL(t ). In the region
x < xL(t ) the pulse is smooth and its evolution is described
by the dispersionless Hopf equation (20) whose solution reads

x − 6ut = x(u), (38)

where x(u) is a function inverse to u0(x). On the other hand,
the function u(x) can be treated at x = xL as a solution of the
Whitham equations in the limit x → xL + 0 corresponding to
the characteristic velocity v+ = 6u of the Whitham system,
where u is understood as a mean value of the wave variable at
this small-amplitude limit. But, according to the general prin-
ciples of the Whitham theory [7,8], the system of Whitham
modulation equations has in this limit another characteristic
velocity v− equal to the group velocity

v− = dxL

dt
= dω

dk
= 6u − 3k2 (39)

of the small-amplitude wave at the edge xL. The wave vector
k and the frequency ω change at this edge in such a way that
Eq. (1) is fulfilled,

∂k

∂t
+ ∂ω

∂x
= 0, ω(u, k) = 6uk − k3. (40)

If we suppose that we deal here with a simple-wave type
of solutions of the Whitham system, which agrees with the
form (38) of the smooth solution, then k depends on x and
t via u(x, t ), k = k(u). Taking into account that at this edge
Eq. (20) holds, we reduce Eq. (40) to an ordinary differential
equation

k
dk

du
= 2. (41)

Now we solve this equation and extrapolate the solution to the
whole DSW with the boundary condition that at the opposite
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soliton edge the distance between solitons tends to infinity,

k = 0 at u = 0. (42)

This extrapolation gives a correct value

k = 2
√

u (43)

of the wave number at the edge xL(t ) where u = u. Actually,
this procedure is equivalent to solving the El equation [23],
but we prefer to use here directly the number of waves con-
servation law Eq. (40) to make the method more transparent
and flexible for further generalizations.

Substitution of Eq. (43) into Eq. (39) gives the value of the
characteristic velocity

v− = dxL

dt
= −6u, (44)

which corresponds to the limiting form of the Whitham equa-
tion

∂xL

∂u
+ 6u

∂t

∂u
= 0 (45)

written in the hodograph transform representation (see, e.g.,
[45]). This equation must be compatible with Eq. (38) taken
at x = xL, so that elimination of xL yields the differential
equation

2u
dt

du
+ t = −1

6

dx

du
. (46)

We suppose that wave breaking occurs at the moment t = 0 at
the boundary u = 0 of the initial pulse. Hence, Eq. (46) must
be solved with the initial condition

t (0) = 0 (47)

which gives at once

t (u) = − 1

12
√

u

∫ u

0

x ′(u)√
u

du (48)

and substitution of this expression into Eq. (38) yields

xL(u) = −
√

u

2

∫ u

0

x ′(u)√
u

du + x(u). (49)

It is assumed here (and in similar situations in what follows)
that the function x(u) vanishes in the limit u → 0 fast enough
so that the integrals converge and tend to zero in this limit to
fulfill the initial condition (47). The formulas (48) and (49)
give us the law of motion of the small-amplitude edge xL(t )
in parametric form for a positive monotonous profile u0(x) of
the initial pulse. For example, in the case of a parabolic profile
u0(x) = √−x, we have x(u) = −u2, and easy calculation
reproduces the well-known result [35,50] (see also [45])

xL(t ) = −27t2. (50)

Our approach can be considered as a modification of calcu-
lation presented in Ref. [35], but, instead of using the known
expression for the characteristic velocity v− in terms of Rie-
mann invariants, we have calculated it in Eq. (44) by means
of El’s rule which is applicable equally to both integrable and
nonintegrable wave equations.

In the case of a localized initial pulse, Fig. 6(a), the inverse
function becomes two-valued and we denote its two branches

x

u0(x)

um

xm

(a) u

x(u) um

x(um)
x1

x2

(b)

FIG. 6. (a) Initial profile u0(x ) of a localized pulse. (b) The
inverse function x(u) is represented by two branches x1(u)
and x2(u).

as x1(u) and x2(u) [see Fig. 6(b)]. The formulas (48) and (49)
remain true up to the moment

tm = − 1

12
√

um

∫ um

0

x ′
1(u)√

u
du (51)

at which the small-amplitude edge reaches the coordinate

xm = −
√

um

2

∫ um

0

x ′
1(u)√

u
du + x1(um). (52)

After that the edge xL(t ) propagates along the second
branch x − 6ut = x2(u) of the dispersionless solution and the
equation

2u
dt

du
+ t = −1

6

dx2

du
(53)

must be solved with the initial condition

t (um) = tm (54)

which yields

t (u) = − 1

12
√

u

(∫ um

0

x ′
1(u)√

u
du +

∫ u

um

x ′
2(u)√

u
du

)
(55)

and, hence,

xL(u) = −
√

u

2

(∫ um

0

x ′
1(u)√

u
du +

∫ u

um

x ′
2(u)√

u
du

)
+ x2(u).

(56)
The law of motion of the soliton edge cannot be found

by this method because the initial pulse, Fig. 6(a), does
not correspond to the wave breaking pattern (see Fig. 2) to
which the soliton dispersion equation (4) is applicable. For the
integrable KdV equation case, this law of motion can be found
by the inverse scattering transform method (see Refs. [51,52]).
As is known, in this case the initial pulse evolves to a sequence
of solitons whose number can be calculated with the use of
the Karpman formula [46] which admits the “nonintegrable”
generalization [27,34].

Although the law of motion xR = xR (t ) remains un-
known, its asymptotic behavior can be found with the use
of our extrapolation procedure. Let us consider the vicinity
of the moment of time t = tm when the small-amplitude
edge of DSW reaches the point xm where u takes its max-
imal value um. In terms of Riemann invariants this cor-
responds to the maximal value of r3, that is ∂r3/∂x =
0, and Eq. (19) reduces to Eq. (4). Then at vicinity of
this point we have k̃ = k̃(u) and Eq. (4) transforms to the
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equation

k̃
dk̃

du
= −2, (57)

which should be solved with the boundary condition k̃ → 0
at u → um, that is, the amplitude of solitons tends to zero
together with k̃ at the small-amplitude edge. Then the solution
reads

k̃ = 2
√

um − u (58)

and at the soliton edge with u = 0 the inverse half width
of solitons reaches its maximal value k̃m = 2

√
um which

corresponds to maximal soliton velocity and its maximal
amplitude,

vs = ω̃/̃k = k̃2 = 4um, a = 2um, (59)

which agrees with known results for the KdV equation. Thus,
at the asymptotic stage of evolution the leading soliton propa-
gates according to the law xR ≈ 4umt .

2. KdV equation: Negative pulse

Let us now have a negative monotonous initial pulse
u0(x) < 0, x > 0, with the inverse function x = x(u). Then
the smooth solution is given in the dispersionless limit by

x − 6ut = x(u), u < 0, x > 0, (60)

and it breaks at the rear small amplitude edge. The soliton
edge propagates along the nonuniform background u(x, t )
represented by the solution (60). In this case, the wave break-
ing pattern has the form of Fig. 2(a) and, according to our
conjecture, Eq. (4) is applicable,

∂k̃

∂t
+ ∂ω̃(̃k)

∂x
= 0, ω̃(u, k̃) = 6ũk + k̃3. (61)

We suppose again that the soliton inverse width k̃ depends
on x and t via u(x, t ), k̃ = k̃(u), and with account of the
dispersionless equation ut + 6u ux = 0 valid at the soliton
edge we reduce Eq. (61) to the ordinary differential equation

k̃
dk̃

du
= −2. (62)

Extrapolation of this equation to the whole DSW with the
boundary condition that the soliton inverse width vanishes
together with its amplitude [see Eq. (14)], that is, k̃(0) = 0,
gives at once the value of k̃ at the soliton edge,

k̃ = 2
√−u. (63)

Then the soliton edge velocity is equal to

ω̃/̃k = 6u + k̃2 = 2u, (64)

and this gives us the characteristic velocity

v+ = dxR

dt
= 2u (65)

of the Whitham equation

∂xR

∂u
− 2u

∂t

∂u
= 0 (66)

x

u0(x)

um

xm
(a)

u

x(u)

um

x(um)
x1

x2

(b)

FIG. 7. (a) Initial profile of a negative localized pulse. (b) Inverse
function is represented by two branches F1(u) and F2(u).

written in hodograph form. The compatibility condition of
Eqs. (60) and (66) leads to the differential equation

2u
dt

du
+ 3t = −1

2
x ′(u), (67)

whose solution with the initial condition t (0) = 0 yields

t (u) = 1

4(−u)3/2

∫ u

0

√−u x ′(u)du (68)

and, hence,

xR = − 3

2
√−u

∫ u

0

√−u x ′(u)du + x(u). (69)

These formulas give us the dependence xR (t ) in parametric
form. In particular, in the case of the initial pulse with the
form u0(x) = −x1/n, x(u) = (−u)n, we obtain

xR (t ) = −2

(
1 − 1

n

)(
4 + 2

n

)1/(n−1)

tn/(n−1), (70)

and this result can be confirmed by the global solution of
the Whitham equations obtained by the methods based on the
complete integrability of the KdV equation [53].

Generalization of this calculation on localized pulses (see
Fig. 7) is straightforward and we present here the final results
only for t > tm = t (um):

t (u) = 1

4(−u)3/2

∫ um

0

√−u x ′
1(u) du

+ 1

4(−u)3/2

∫ u

um

√−u x ′
2(u) du,

xR (u) = − 3

2(−u)1/2

∫ um

0

√−u x ′
1(u) du

− 3

2(−u)1/2

∫ u

um

√−u x ′
2(u) du + x2(u). (71)

For asymptotically large time, when |u| � |um| at the soliton
edge, we get

xR ≈ − 3

21/3
A2/3t1/3, (72)

where

A =
∫ ∞

0

√
−u0(x) dx. (73)

The number of waves conservation law (1) can be also
reduced to the ordinary differential equation (41) and it should
be solved with the boundary condition that k = 0 at the
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location of the soliton edge. However, this solution can be
found up to the moment tm only when the soliton edge reaches
the minimum um of the smooth solution. At this moment the
solution is given by the formula

k = 2
√

u − um (74)

which gives the spectrum of wave numbers generated at
the small-amplitude edge. The maximal wave number corre-
sponds to u = 0 and is given by km = 2

√−um. Consequently,
the small-amplitude edge propagates at asymptotically large
time with the group velocity

dxL

dt
= dω

dk

∣∣∣∣
k=km

= 12um. (75)

This estimate is confirmed by numerical simulations.
In the above calculations we did not use the fact of com-

plete integrability of the KdV equation, hence our method can
be easily applied to other equations with known harmonic and
soliton dispersion laws ω(k) and ω̃(̃k).

3. Generalized KdV equation: Positive pulse

To illustrate the application of our approach to DSWs
whose evolution obeys nonintegrable wave equations, we
shall turn to the generalized KdV equation

ut + V (u)ux + uxxx = 0, (76)

where we suppose that the function V (u), V (0) = 0, increases
monotonously with growth of u which excludes complications
arising in the case of nongenuinely nonlinear situations (see,
e.g., [54]). Other conditions of existence of periodic solutions
of this equation and applicability of the Whitham theory of
modulations are indicated in Ref. [23]. The solution of the
dispersionless Hopf equation

ut + V (u)ux = 0 (77)

is given in implicit form by the formula

x − V (u)t = x(u), (78)

where x(u) is the function inverse to the initial distribution
u = u0(x). [Its nonmonotonous version is shown in Fig. 6(b).]
We assume that the solution breaks at the moment t = 0
which imposes the condition F (u)/V (u) → 0 for |u| → 0.
The smooth solution matches the small-amplitude edge at
x = xL(t ) of the DSW and our task now is to find this function
xL(t ). Proceeding in the same way as in the KdV equation
case, we use the number of waves conservation law

∂k

∂t
+ ∂ω

∂x
= 0, ω(u, k) = V (u)k − k3 (79)

with k = k(u) to reduce it to the differential equation

3k
dk

du
= dV (u)

du
(80)

and, extrapolating it on the whole DSW, we solve it with the
boundary condition k(0) = 0 to obtain the wave number k at
x = xL,

k =
√

2V (u)/3. (81)

Consequently, the velocity of this edge as a function of the
value of u at x = xL is given by

v− = dω

dk
= −V (u), (82)

and it corresponds to the characteristic velocity of the limiting
Whitham equation

∂xL

∂u
+ V (u)

∂t

∂u
= 0. (83)

The compatibility condition of this equation with Eq. (78)
leads to the differential equation

2V (u)
dt

du
+ dV

du
t = −dx

du
(84)

whose solution with the initial condition t (0) = 0 reads

t (u) = − 1

2
√

V (u)

∫ u

0

x ′(u)√
V (u)

du (85)

and, consequently,

x(u) = −
√

V (u)

2

∫ u

0

x ′(u)√
V (u)

du + x(u). (86)

Generalization to localized initial pulses can be done in close
analogy with the above considered KdV equation case and it
yields the formulas

t (u) = − 1

2
√

V (u)

∫ um

0

x ′
1(u)√
V (u)

du

− 1

2
√

V (u)

∫ u

um

x ′
2(u)√
V (u)

du,

xL(u) = −
√

V (u)

2

∫ um

0

x ′
1(u)√
V (u)

du

−
√

V (u)

2

∫ u

um

x ′
2(u)√
V (u)

du + x2(u), (87)

with obvious notation (see Fig. 6). These formulas define the
function xL(t ) in parametric form.

Again at the asymptotically large time this pulse evolves
into the sequence of solitons whose number can be calculated
by the method of Refs. [27,34]. Velocity of the leading soliton
can be found with the use of Eq. (4) in the vicinity of the
moment when the small-amplitude edge reaches the point
with u = um. This equation with k̃ = k̃(u) reduces to

3̃k
dk̃

du
= −dV

du
(88)

and it should be solved with the boundary condition k̃ = 0 for
u = um which gives

k̃ =
√

2[V (um) − V (u)]/3. (89)

Since V (u) is a monotonously increasing with u function,
we get the maximal value of k̃, k̃m = √

2V (um)/3, and, con-
sequently, the maximal soliton’s velocity, which is equal to
the asymptotic velocity of the soliton edge, is given by the
formula

dxR

dt
= ω(̃km)

k̃m

= k̃2
m = 2

3
V (um). (90)
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4. Generalized KdV equation: Negative pulse

Now we turn to a situation shown in Fig. 7 with the smooth
solution of the dispersionless equation given by

x − V (u)t = x(u). (91)

At first we consider a monotonous initial pulse. At the soliton
edge the equation

∂k̃

∂t
+ ∂ω̃(̃k)

∂x
= 0, ω̃(u, k̃) = V (u)̃k + k̃3 (92)

can be reduced to the equation

3̃k
dk̃

du
= −dV

du
(93)

whose extrapolation to the whole DSW followed by solving it
with the initial condition k̃(0) = 0 gives

k̃ =
√

−2V (u)/3. (94)

Hence the soliton edge propagates with velocity

v+ = ω̃

k̃
= 1

3
V (u) (95)

which coincides with the characteristic velocity of the limiting
Whitham equation

∂xR

∂u
− 1

3
V (u)

∂t

∂u
= 0. (96)

Its compatibility condition with Eq. (91) leads to the differen-
tial equation

2

3
V (u)

dt

du
+ dV

du
= −dx

du
(97)

whose solution with the initial condition t (0) = 0 yields

t (u) = 3

2(−V (u))3/2

∫ u

0

√
−V (u) x ′(u) du,

xR (u) = − 3

2
√−V (u)

∫ u

0

√
−V (u) x ′(u) du + x(u). (98)

For a localized pulse we obtain the formulas

t (u) = 3

2(−V (u))3/2

∫ um

0

√
−V (u) x ′

1(u) du

+ 3

2(−V (u))3/2

∫ u

um

√
−V (u) x ′

1(u) du,

xR (u) = − 3

2
√−V (u)

∫ um

0

√
−V (u) x ′

1(u) du

− 3

2
√−V (u)

∫ u

um

√
−V (u) x ′

1(u) du + x2(u),

(99)

which define in a parametric form the law of motion of the
soliton edge. For asymptotically large t we get

xR ≈ −
(

3A

2

)2/3

t1/3, A =
∫ ∞

0

√
−V [u0(x)] dx. (100)

The spectrum of wave numbers generated at the small-
amplitude edge can be found by solving the appropriate

reduction of Eq. (1) which yields

k =
√

2[V (u) − V (um)]/3 (101)

and the small-amplitude edge propagates with the maximal
group velocity

dxL

dt
= dω

dk

∣∣∣∣
k=km

= 2V (um), (102)

where km = √−2V (um)/3.
The examples considered here demonstrate clearly enough

how to apply the method to nonintegrable wave equations in
the case of unidirectional propagation.

B. Bidirectional propagation

We consider here typical situations when the wave is
described by the two variables, say, by the density ρ and
the flow velocity u, and the main supposition is that in the
dispersionless limit the equations can be transformed to the
Riemann diagonal form

∂r+
∂t

+ v+(r+, r−)
∂r+
∂x

= 0,
∂r−
∂t

+ v−(r+, r−)
∂r−
∂x

= 0

(103)
for the Riemann invariants r±. We assume also that at the
wave breaking moment one of the Riemann invariants can be
considered as constant. In many typical situations, when the
initial pulse splits into two well separated pulses correspond-
ing to different characteristic velocities v±, this assumption is
fulfilled by virtue of the wave dynamics and we can consider
wave breaking of simple waves only. Besides that, we confine
ourselves to situations when this simple wave propagates into
a uniform quiescent medium so that the arising DSW belongs
in integrable cases to the class of quasisimple waves of
Ref. [35]. To compare the results obtained by our method with
known formulas derived with the use of the inverse scattering
transform method, we shall consider first the integrable NLS
equation (21), but we are going to treat it without use of its
complete integrability.

1. NLS equation: Positive profile of r+ invariant

We shall start with the situation shown symbolically in
Figs. 5(a) and 5(b) with the breaking of the invariant r+ =
u/2 + √

ρ, so that

r− = u

2
− √

ρ = −√
ρ0, (104)

where ρ0 is the density of the quiescent medium into which
the pulse propagates. Since ρ and u are related by Eq. (104),
it is convenient to consider them as functions of some other
variable and, as we shall see, it is convenient for further
generalizations to choose the local sound velocity, equal in
our present case to c = √

ρ, as such a variable. Then u =
2(c − c0), c0 = √

ρ0, r+ = 2c − c0, so that the solution of
dispersionless equations can be written as

x − (3c − 2c0)t = x(c − c0), (105)

where x(c − c0) is the function inverse to the initial distribu-
tion of the local sound velocity which we shall write in the
form c(x) = c0 + c̃0(x), where c̃ denotes a deviation from the
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background sound velocity c0. Thus, we consider the wave
breaking in terms of the local sound velocity.

At the boundary with the smooth solution we have now the
soliton edge xL of the DSW and the wave breaking diagrams
in Figs. 5(a) and 5(b) correspond, according to our conjecture,
to the applicability conditions of Eq. (4),

∂k̃

∂t
+ ∂ω̃(̃k)

∂x
= 0, ω̃ = ũk + k̃

√
ρ − k̃2/4, (106)

where ρ, u are the density and the flow velocity of the
background along which solitons propagate. In vicinity of the
soliton edge we can consider k̃ and ρ as functions of c = √

ρ

and introduce a new variable

α̃(c) =
√

1 − k̃2(c)

4c2
, (107)

so that

k̃(c) = 2c
√

1 − α̃2, ω̃(c) = 2c
√

1 − α̃2[2(c − c0) + cα̃].

(108)

With the use of the equation

∂c

∂t
+ (u + c)

∂c

∂x
= 0, (109)

corresponding to one of the limiting characteristic velocities
of the Whitham system and equivalent to Eq. (103) for r+, we
reduce Eq. (106) to the ordinary differential equation (see the
Appendix for more details)

dα̃

dc
= −1 + α̃

c
. (110)

Following El [23], we solve it with the boundary condition

α̃(c0) = 1 (111)

which in our “extrapolation” interpretation means that at the
small-amplitude edge the inverse width k̃ of solitons vanishes
together with their amplitude [see Eq. (30)]. As a result, we
get

α̃(c) = 2c0

c
− 1 (112)

and

Vs = ω̃/̃k = c. (113)

It corresponds to another limiting characteristic velocity of the
Whitham system and the corresponding Whitham equation
can be written in the form

∂xL

∂c
− c

∂t

∂c
= 0. (114)

The compatibility condition of this equation with Eq. (105)
gives with account of Eq. (109)

2z
dt

dz
+ 3t = −dx

dz
, z = c − c0. (115)

Its solution with the initial condition t (0) = 0 reads

t (z) = − 1

2z3/2

∫ z

0

√
zx ′(z)dz (116)

and, consequently,

xL(z) = (3z + c0)t (z) + x(z). (117)

For example, for the initial profile x(z) = −zn we get

xL(t ) = c0t + n − 1

2n

(
1 + 1

2n

)1/(n−1)

tn/(n−1). (118)

This formula coincides, up to the notation, with the result of
Ref. [36] obtained from the global solution of the Whitham
equations with the use of complete integrability of the NLS
equation. Up to the notation, the formulas (116) and (117)
reproduce the law of motion of the soliton edge derived in
Ref. [55] in a different physical context of the flow of Bose-
Einstein condensate past a wing. All that confirms the validity
of our approach.

Generalization of these formulas to the case of localized
pulses is straightforward,

t (z) = − 1

2z3/2

{∫ zm

0

√
zx ′

1(z)dz −
∫ z

zm

√
zx ′

2(z)dz

}
,

xL(z) = (3z + c0)t (z) + x2(z). (119)

For asymptotically large time we find

xL = c0t +
(

3A

2

)2/3

t1/3, A =
∫ 0

−∞

√
c̃0(x) dx, (120)

where c = c0 + c̃0(x) is the initial distribution of the local
sound velocity.

To find the velocity of the small-amplitude edge, we have
to solve the number of waves conservation law equation,

∂k

∂t
+ ∂ω

∂x
= 0, ω = uk + k

√
c2 + k2

4
. (121)

Under the same assumptions as above, it can be reduced to the
equation (see the Appendix)

dα

dc
= −1 + α

c
(122)

for the variable

α(c) =
√

1 + k2(c)

4c2
, (123)

so that

k(c) = 2c
√

α2 − 1, ω(c) = 2c
√

α2 − 1[2(c − c0) + cα].

(124)

Now Eq. (122) must be solved with the boundary condition
that when the soliton edge reaches the point where c = cm,
we have k = 0 and α(cm) = 1. This gives

α(c) = 2cm

c
− 1, c0 � c � cm, (125)

and k(c) = 4
√

cm(cm − c). Consequently, the range of wave
numbers generated at the small-amplitude edge is given by

0 � k � km = 4
√

cm(cm − c0), (126)

and it is easy to find that the maximal group velocity is equal
to

dxR

dt
= dω

dk

∣∣∣∣
k=km

= 2rm − c2
0

rm

, (127)

where rm = 2cm − c0 is the maximum value of r+ in its initial
distribution. If c0 � rm, then the expression for the velocity
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of the small-amplitude edge simplifies to

dxR

dt
≈ 2rm. (128)

Thus, we have found the laws of motion of both edges
of the DSW for the case of breaking of the dispersionless
invariant r+. DSWs generated after breaking of the wave
propagating in the opposite direction can be considered in a
similar way and the resulting formulas differ from the above
ones by obvious changes of some signs.

2. NLS equation: Negative profile of r+ invariant

Now we turn to the situation shown symbolically in
Figs. 5(c) and 5(d) with such breaking of the invariant r+ that
the smooth solution matches the small-amplitude edge of the
DSW and in the integrable approach both Riemann invariants
r2 and r3 change along the DSW. At first we shall find the law
of motion of the small amplitude edge.

We represent the smooth solution of the dispersionless
equation in the form

x − (3c − 2c0)t = x(c − c0), (129)

where x(z) > 0 for z < 0. Equation (1) can be reduced, as in
the preceding section, to Eq. (121) whose solution is looked
for with the boundary condition α(c0) = 1 at the soliton edge
which gives

α(c) = 2c0

c
− 1, 0 < c < c0, (130)

so that k = 4
√

c0(c0 − c). Then the group velocity is equal to

v− = dω

dk
= 2c0 − c2

2c0 − c
, (131)

and it corresponds to the characteristic velocity of the limiting
Whitham equation

∂x

∂c
−

(
2c0 − c2

2c0 − c

)
∂t

∂c
= 0. (132)

Its compatibility condition with Eq. (129) leads to the differ-
ential equation

(4c0 − c)(c0 − c)

2c0 − c

dt

dc
− 3

2
t = 1

2
x ′(c − c0) (133)

whose solution reads

t (c) = 1

2(4c0 − c)
√

c0 − c

∫ c

c0

(2c0 − c)x ′(c − c0)√
c0 − c

dc,

xR (c) = (3c − 2c0)t (c) + x(c). (134)

In the case of a localized pulse we obtain

t (c) = 1

2(4c0 − c)
√

c0 − c

{∫ c

c0

(2c0 − c)x ′
1(c − c0)√

c0 − c
dc

+
∫ c0

c

(2c0 − c)x ′
2(c − c0)√

c0 − c
dc

}
,

xR (c) = (3c − 2c0)t (c) + x2(c). (135)

Such a pulse evolves eventually to a sequence of dark solitons
and their number can be found with the use of the Bohr-
Sommerfeld quantization rule.

For finding the trailing soliton velocity at asymptotically
large time we solve Eq. (110) with the boundary condition
k̃ = 0 at c = cm or α̃(cm) = 1. This gives

α̃(c0) = 2cm

c0
− 1, (136)

and consequently the trailing soliton velocity is equal to

dxL

dt
= ω̃/̃k = c0α̃(c0) = 2cm − c0 = rm. (137)

We can compare this with the result of the Bohr-Sommerfeld
quantization rule (see, e.g., [49]) which gives the expression
of the soliton velocity in terms of the Riemann invariants
ri, i = 1, 2, 3, 4, of the Whitham equations, Vs = 1

2

∑
i ri .

In the case of the present initial conditions they are equal
to r1 = −√

ρ0, r2 = r3 = rm, r4 = √
ρ0, and we obtain Vs

coinciding with (137).

3. Generalized NLS equation: Positive profile of r+ invariant

To illustrate application of the method to nonintegrable
equations, we shall consider the generalized NLS equation

iψt + 1
2ψxx − f (|ψ |2)ψ = 0, (138)

where the nonlinearity function f (ρ), f (0) = 0, is supposed
to be increasing positive function of the density ρ = |ψ |2.
Linear harmonic waves propagating along background with
density ρ satisfy the dispersion law (121) where

c =
√

ρf ′(ρ) (139)

is the sound velocity (see, e.g., [56]). In the dispersionless
limit the wave dynamics equations can be written in Riemann
form (103) with the Riemann invariants

r± = u

2
± 1

2

∫ ρ

0

cdρ

ρ
(140)

and with the characteristic velocities

v± = u ± c. (141)

It is convenient to replace the density ρ as a wave variable by
the sound velocity c, so that ρ = ρ(c) is the function inverse
to c = c(ρ) defined in Eq. (139) and the Riemann invariants
take the form

r± = u

2
± σ (c), σ (c) = 1

2

∫ c

0

cρ ′(c)

ρ(c)
dc. (142)

Evolution of initial steplike distributions was studied in much
detail in Ref. [30] and we turn here to the problem of evolution
of nonuniform initial distributions of simple wave type.

In this section we consider wave breaking of a simple wave
with constant Riemann invariant

r− = u

2
− σ (c) = −σ (c0), i.e. u = 2[σ (c) − σ (c0)].

(143)

This simple wave propagates into a quiescent medium where
the constant sound velocity equals c0. Its evolution equation
can be written in the form obtained from the first equation
(103) with r+ = 2σ (c) − σ (c0),

∂c

∂t
+ (c + u)

∂c

∂x
= 0, (144)
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whose solution reads

x − {2[σ (c) − σ (c0)] + c}t = x(c − c0), (145)

where we suppose that the initial distribution of c is posi-
tive, i.e., x(c − c0) < 0 for c > c0 and the inverse function
c̃0(x) = x−1(x) defines the initial distribution of the local
sound velocity c0 + c̃0(x) such that the wave breaks at the
moment t = 0. The corresponding breaking pattern shown
symbolically in Figs. 5(a) and 5(b) leads to the formation of
DSW with the soliton edge at xL. Since in this case Eq. (4) is
applicable, we can find the law of motion of this edge by our
method.

We write the “soliton dispersion law” in the form [see
Eqs. (106) and (107)]

ω̃ = k̃[u + cα̃(c)] (146)

and its substitution together with k̃(c) = 2c
√

1 − α̃2 gives
with account of Eqs. (143) and (144) the differential equation
(see the Appendix)

dα̃

dc
= − (1 + α̃)[2σ ′(c) + 2α̃ − 1]

c(1 + 2α̃)
, (147)

which, according to the extrapolation rule, should be solved
with the boundary condition α̃(c0) = 1, that is the soliton
inverse width vanishes together with its amplitude at the
small-amplitude edge.

Generally speaking, Eq. (147) can be solved only numeri-
cally, but if σ ′(c) = 1/p = const, that is

f (ρ) = 1

p
ρp and c = ρp/2, (148)

then an easy calculation gives

c(̃α) = c0

(
2

1 + α̃

)p/(3p−1)( 2 + p

2 − p + 2pα̃(c)

)2(p−1)/(3p−2)

.

(149)
Naturally, for p = 1 this formula reproduces the result (112)
of the NLS equation theory. The function c(̃α) can be also
inverted for p = 2,

α̃(c) = 1

2

(√
1 + 8

(c0

c

)2
− 1

)
, (150)

and for p = 1/2,

α̃(c) = 1

16

{√
c0

c

(
25

c0

c
− 16

)
+ 25

c0

c
− 24

}
. (151)

Up to the notation, these formulas coincide with those found
in Ref. [30].

When the function α̃(c) is known, we can find the law of
motion of the soliton edge. Indeed, the soliton velocity

Vs = ω̃/̃k = 2[σ (c) − σ (c0)] + cα̃(c) (152)

corresponds to the characteristic velocity of the limiting
Whitham equation

∂x

∂c
− ω̃

k̃

∂t

∂c
= 0, (153)

which must be compatible with Eq. (145), and this condition
yields the equation

c[1 − α̃(c)]
dt

dc
+ [1 + 2σ ′(c)]t = −x ′(c − c0). (154)

Its solution with the initial condition t (c0) = 0 reads

t (c) = −G(c)
∫ c

c0

x ′(c − c0)dc

c[1 − α̃(c)]G(c)
(155)

and, consequently,

xL(c) = {2[σ (c) − σ (c0)] + c}t (c) + x(c − c0), (156)

where

G(c) = exp

{
−

∫ c

a

[1 + 2σ ′(c)]dc

c[1 − α̃(c)]

}
, (157)

the integration limit a is chosen so that the integral is con-
vergent. In fact, the functions t (c), xL(c) do not depend on
a. In particular, for f (ρ) given by Eq. (148) we obtain up to
inessential constant factor

G(c) = [1 + α̃(c)](p+2)/2(3p−2)[2pα̃(c) + 2 − p]4(p−1)/(3p−2)

[1 − α̃(c)]3/2
.

(158)
Generalization on localized pulses is straightforward and we
shall not write down quite lengthy formulas.

As in the case of the standard NLS equation, we can find
velocity of the small-amplitude edge at asymptotically large
time for a localized initial pulse by solving Eq. (121) provided
that the flow velocity u is given by Eq. (143). Then this
equation reduces again to Eq. (154), but now it should be
solved with the boundary condition

α(cm) = 1, (159)

where cm is the maximal value of the local velocity in the
initial distribution c(x) = c0 + c̃0(x). If f (ρ) = ρp/p, then
the solution is given by Eq. (149) or by its particular cases
for p = 1, 2, 1/2 with c0 replaced by cm. The spectrum of
wave numbers k = 2c

√
α2(c) − 1 with c in the range c0 �

c � cm has the maximal value km = 2c0

√
α2(c0) − 1 and the

corresponding group velocity

dxR

dt
= dω

dt

∣∣∣∣
k=km

= 2c0α(c0) − c0

α(c0)
(160)

equals the asymptotic velocity of the small-amplitude edge. If
α(c0) = 2cm/c0 − 1, then this formula reproduces the known
result (127).

4. Generalized NLS equation: Negative profile of r+ invariant

If the initial profile of local sound velocity c(x) = c0 +
c̃0(x) has the form of a “hole” c̃0(x) < 0, then we represent
the smooth dispersionless solution by the formula

x − {2[σ (c) − σ (c0)] + c}t = x(c − c0), (161)

where x(c − c0) > 0 for c < c0, that is, the initial distribution
of c differs from c0 at x > 0 only. Equation (1) reduces again
to Eq. (147) and its solution with the boundary condition
α(c0) = 1 coincides with Eq. (149) where α̃ is replaced by
α and now we have α > 1. Correspondingly, in formulas for
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particular cases p = 1, 2, 1/2 [see Eqs. (112), (150), (151)]
we should assume c < c0.

The small-amplitude edge propagates with the group ve-
locity

dxL

dt
= dω

dk
= 2[σ (c) − σ (c0) + cα(c)] − c

α(c)
, (162)

which can be considered as a characteristic velocity of the
limiting Whitham equation

∂x

∂c
−

{
2[σ (c) − σ (c0) + cα(c)] − c

α(c)

}
∂t

∂c
= 0. (163)

Its compatibility condition with Eq. (156) leads to the differ-
ential equation

c[α(c) − 1][2α(c) + 1]

α(c)

dt

dc
− [2σ ′(c) + 1]t = x ′(c − c0),

(164)
whose solution with the initial condition t (c0) = 0 reads

t (c) = G(c)
∫ c

c0

α(c)x ′(c − c0)dc

c[α(c) − 1][2α(c) + 1]G(c)
, (165)

where

G(c) = exp

{∫ c

a

[2σ ′(c) + 1]α(c)dc

c[α(c) − 1][2α(c) + 1]

}
, (166)

which for f (ρ) given by Eq. (148) reduces up to an inessential
constant factor to

G(c) = [α(c) + 1](p+2)/2(3p−2)[2pα(c) + 2 − p](p−2)/(3p−2)

√
α(c) − 1

.

(167)
Then we get from Eq. (161)

xR (c) = {2[σ (c) − σ (c0)] + c}t (c) + x(c − c0). (168)

These formulas determine in a parametric form the law of
motion of the small-amplitude edge. Their generalization to
localized pulses is straightforward.

At asymptotically large time the velocity of the trailing
soliton generated from a localized pulse is determined by the
value α̃(c0), where α̃(c) is the solution of Eq. (147) with the
boundary condition α̃(cm) = 1. Then for the velocity of the
soliton edge we obtain

dxL

dt
= c0α̃(c0), (169)

which generalizes Eq. (137).

IV. COMPARISON WITH NUMERICAL SOLUTION

To illustrate accuracy of the method, we compare here the
results of exact numerical solution of the generalized NLS
equation (138) with f (ρ) given by Eq. (148) with p = 2 for
the initial local sound velocity distribution,

c(x) = 0.5 + [0.005(x + 100)]2, −100 � x � 0, (170)

and c(x) = 0.5 outside this interval; see Fig. 8. A typical
form of the DSW generated from such a pulse is shown in
Fig. 9. We have chosen the initial distribution with sharp front

x

c(x)

c0

cm

−100 −75 −50 −25 0

0.2

0.4

0.6

0.8

FIG. 8. Initial profile of the local sound velocity used in the
numerical solution of the generalized NLS equation.

at x = 0 to obtain fast enough transition to the asymptotic
regime for the small-amplitude edge of the DSW. At the same
time, large length of the pulse prevents too fast a transition
to the asymptotic regime for the soliton edge and therefore
the general formulas (155), (156) should be used. In actual
numerical solution this sharp transition was slightly smoothed
at the front edge, but we neglect here a small contribution of
the branch x1(c − c0) of the inverse function x = x(c − c0)
and take into account only the branch

x(c − c0) = x2(c − c0) = 200
√

c − c0 − 100. (171)

In our case with p = 2 we have σ (c) = c/2; α̃(c) is given by
Eq. (150), so an elementary integration in the formula (157)
yields

G(c) =
c +

√
c2 + 8c2

0[(
c +

√
c2 + 8c2

0

)2 − 16c2
0

]3/2
, (172)

where we have omitted an inessential constant factor which
cancels in the formulas

t (c) = −2G(c)
∫ c

cm

x ′(c − c0)dc(
3c −

√
c2 + 8c2

0

)
G(c)

,

xL(c) = (2c − c0)t (c) + x(c − c0). (173)

x

ρ

−50 0 50 100 150 200 250

0.40

0.45

0.5

0.55

0.60

0.65

FIG. 9. Plot of the density in the DSW evolved from the initial
distribution of the local sound velocity ρ = c(x ) given by Eq. (170)
[for p = 2 the density is equal to ρ = c and the flow velocity to
u(x ) = c(x ) − c0]. Evolution time is t = 120.
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FIG. 10. Law of motion of the soliton edge. Solid (blue) line
shows the result of numerical solution and dashed (red) line corre-
sponds to the analytical formulas (173).

Substitution of Eq. (171) gives the parametrical dependence
x = xL(t ) shown in Fig. 10 by a dashed line. As we can
see, it agrees reasonably well without any fitting parame-
ter with the result of numerical solution shown by a solid
line.

For finding the law of motion of the small-amplitude edge,
we use the formula (160) with

α(c0) = 1

2

⎛⎝√
1 + 8

(
cm

c0

)2

− 1

⎞⎠, (174)

which gives the velocity dxR/dt ≈ 1.356 (we take cm =
0.742, c0 = 0.5 which corresponds to the actual initial dis-
tribution). A linear dependence with this slope fits well to the
numerical solution shown in Fig. 11. This agreement should
be considered as very good since the position of the small-
amplitude edge is not very certain, as is clear from Fig. 9, and
we determine it by means of an approximate extrapolation of
the envelopes of the wave at this edge. Some irregularities in
the numerical plot in Fig. 11 correspond to changes of the
amplitude maxima and minima used in such an extrapolation
at different moments of time.

The above comparison of the analytical predictions with
the numerical solution demonstrates quite convincingly that

t

xR

60 80 100 120

60

80

100

120

140

160

180

FIG. 11. Linear law of motion of the small-amplitude edge with
the slope calculated according to Eq. (160) (red dashed line) and from
the numerical solution (blue solid line).

the method suggested here gives an accurate enough descrip-
tion of pulses whose evolution obeys nonintegrable equations.

V. CONCLUSION

We have shown that Whitham’s number of waves con-
servation law (1) and its soliton counterpart (4) allow one
to calculate the main parameters of DSWs for a wide class
of initial conditions including the pulses propagating into a
medium “at rest.” Here we formulate the main principles of
this method.

(i) While Eq. (1) is universally correct in framework of
the Whitham theory, Eq. (4) has limited applicability and we
have presented argumentation in favor of its applicability to
situations when the pulse under consideration propagates into
a medium at rest at some reference frame.

(ii) For a given initial distribution of the simple-wave type,
the smooth solution of the dispersionless equations can be
considered as known and at its boundary with DSW Eqs. (1)
and (4) reduce to ordinary differential equations which can
be extrapolated to the whole DSW, and then their solution
with known boundary condition at the opposite edge yields
the wave number k or the inverse half width of solitons k̃ at
the boundary with the smooth part of the pulse. This procedure
is equivalent to El’s approach [23].

(iii) Consequently, the corresponding group velocity or
the soliton’s velocity at the DSW edge can be expressed in
terms of the parameters of the smooth solution at its boundary
with DSW.

(iv) These velocities can be treated as the characteristic
velocities of the limiting Whitham equations at this edge and
this can be represented as the hodograph transformed form of
the first order partial differential equation.

(v) At last, the compatibility condition of this partial
differential equation with the smooth dispersionless solution
yields the law of motion of this edge of DSW. If the soliton
solution is known, then the soliton’s amplitude related with its
velocity can be also found.

This scheme reproduces the known results when it is
applied to the completely integrable equations, and its applica-
bility to nonintegrable equations is confirmed by comparison
with the results of numerical simulations. Thus, the method
suggested here permits one to calculate parameters of DSWs
in a number of interesting physical problems. The results
obtained here can be applied to various nonlinear optics
models that reduce to different forms of the generalized NLS
equation (see, e.g., [57]). Applications to shallow water waves
described by different nonlinear wave models (see, e.g., the
review [58]) or to DSWs in nonlinear lattices (see, e.g., [59])
and in systems described by the Gardner equation (see, e.g.,
[60]) are also of great interest.

ACKNOWLEDGMENTS

I am grateful to S. K. Ivanov for help with numerical
calculations. Numerous discussions of problems of nonlinear
pulses propagation with F. Kh. Abdullaev, G. A. El, M. Isoard,
S. K. Ivanov, A. I. Maimistov, N. Pavloff, and M. Salerno are
greatly appreciated. The reported study was funded by RFBR
according to Research Project No. 16-01-00398.

012203-16



DISPERSIVE SHOCK WAVE THEORY FOR … PHYSICAL REVIEW E 99, 012203 (2019)

APPENDIX: EQUATIONS FOR α(c) AND α̃(c)

Here we give for completeness some details of derivation
of equations for α(c) and α̃(c) directly from Eqs. (1) and (4).
Since in both cases the calculations are very similar, we shall
consider the equation for the small-amplitude edge of DSW
where the Whitham number of waves conservation law

∂k

∂t
+ ∂ω

∂x
= 0 (A1)

holds. We write the dispersion law in the form

ω(c, k) = uk + ckα(c, k), α(c, k) =
√

1 + k2

4c2
, (A2)

where the first term in the right-hand side represents the
Doppler shift of the frequency caused by the flow of the
medium with velocity u and the factor α(c, k) describes
deviation of the dispersion law from the dispersionless limit
ω = ck, k → 0 (u = 0), c being the local sound velocity.

In dispersionless limit the generalized NLS equation (138)
takes a hydrodynamic form which can be cast into equations
for the Riemann invariants (142). We consider the DSW
evolving from a simple wave with constant r− = const which
gives according to the Gurevich-Meshcherkin conjecture [22]
the expression for u in terms of c,

u = 2[σ (c) − σ (c0)]. (A3)

Consequently, r+ = 2σ (c) − σ (c0) is a function of c only and
the equation for r+ reduces to the equation for c,

∂c

∂t
+ (u + c)

∂c

∂x
= 0. (A4)

Following El [23], we assume that k is also a function of c, so
substitution of (A2) and (A3) into (A1) with account of (A4)
yields after obvious cancellations the equation

1

k

dk

dc
c(1 − α) = 2σ ′ + α + cα′. (A5)

From definition of α in Eq. (A2) we get

k(c) = 2c
√

α2(c) − 1 (A6)

and substitution of this expression into Eq. (A5) yields the
equation for α(c),

dα

dc
= − (α + 1)(2σ ′ + 2α − 1)

c(2α + 1)
. (A7)

The equation for α̃(c) can be obtained in a similar way.
It is worth noticing that many other physical systems differ

from the case considered here by the linear dispersion law
only, that is by the concrete form of the expression for α(c, k).
If this expression is solved with respect to k, then substitution
of k = k(c, α(c)) into Eq. (A5) gives the equation for α(c) for
the system under consideration.
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