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The dynamics of a classical point particle confined to an asymmetric time-dependent potential well is
investigated under the framework of scaling. The potential corresponds to a reduced version of a particle
moving along an infinitely periodic sequence of synchronously oscillating potential barriers. The dynamics of
the model is described by a two-dimensional nonlinear and area preserving map in energy and phase variables.
The asymmetric potential well is defined by two regions: Region I with fixed null potential and region II with an
oscillating potential. The time-dependent potential of region II makes, for certain initial conditions, the particle
to undergo a number of multiple reflections η at the border of the two regions and stay trapped in region I.
Such trappings are described by histograms of multiple reflections η, obeying the power-law H (η) ∝ η−ν with
ν ≈ 3, which are scale invariant with a scaling parameter depending of the control parameters of the mapping.
We identify the location of the sets of initial conditions in phase space producing the multiple reflections and
show that they generate well defined self-similar structures in density plots of trajectories in energy space. The
self-similar structures can be enhanced by properly tuning the system parameters.
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I. INTRODUCTION

Particles moving along potential wells or potential barri-
ers are paradigmatic systems in classical mechanics, quan-
tum mechanics, and electrodynamics; for recent studies see
Refs. [1–8]. This class of systems can be described by the
use of different procedures that may range from quantum
approaches, where the Schrödinger equation is solved, to
classical-chaos investigations, where chaotic seas are charac-
terized by Lyapunov exponents, passing through the descrip-
tion of phase transitions with the variation of control parame-
ters, among other approaches [9–14]. The effect of noise in the
dynamics and other kinds of perturbations are also subjects
of interest [12]. In the classical case and considering time
perturbations to the potential, the particles may exhibit chaotic
motion leading to scaling invariance under the variation of
control parameters whenever also the escape of particles from
specific regions of the phase space can be considered [12,14].
To cite an application of the quantum case, the Gaussian
wave-packet dynamics and quantum tunneling in asymmetric
double-well systems were reported in [15].

The model considered in this paper is a classical parti-
cle, or equivalently an ensemble of noninteracting particles,
confined to move inside a potential box which contains a
periodically oscillating time-dependent barrier. The Hamil-
tonian that describes the model is of the type H (x, p, t ) =
p2/(2μ) + V (x, t ), where x, p, and t correspond to the
position, momentum, and time, respectively. The potential
V (x, t ) is controlled by dimensionless parameters. A phase
transition from integrability—characterized by a constant en-
ergy of the particle—to non-integrability, where the parti-
cle may develop either chaotic or regular dynamics, is ob-
served when changing the control parameters. The dynamics

of the model is described by a two-dimensional non-linear
area preserving mapping, for the variables energy and time.
The phase space of the model is of mixed type and shows
periodic islands surrounded by a chaotic sea limited by a
set of invariant spanning curves preventing unlimited dif-
fusion in energy. Applications of the formalism are imme-
diate since for some materials, like photonic crystals, the
heterostructure can be conveniently considered as a chain with
an infinite number of time-dependent potential barriers (or
wells), as shown in Fig. 1(a). These potential barriers can
also be the representation of quantum dots [16,17]. In our
system, the top of the barriers are oscillating in synchrony,
where it can happens, for example, due to the electron-
phonon interaction [18] or the presence of a monochromatic
electromagnetic or acoustic field [19,20]. Considering the
barriers are symmetric, one can map the infinite sequences
of barriers to a single time-dependent barrier, as shown in
Fig. 1(b).

This paper is organized as follows. In Sec. II we describe
in detail the construction of the two-dimensional nonlinear
mapping used in the study of the dynamics of particles
confined into the asymmetric time-dependent potential well.
Also we define the main quantity of investigation: the number
of multiple reflections η that particles, having specific initial
conditions, suffer at the interface of the two regions defining
the asymmetric potential well. Such multiple reflections are
naturally observed in the chaotic dynamics, however are rare
as compared to the whole dynamics. The results and discus-
sion are presented in Secs. III and IV: First we perform a
scaling analysis of the histograms of η (Sec. III) and then
show the emergence of self-similar structures in energy space
(Sec. IV). Finally, a summary is given in Sec. V.
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FIG. 1. (a) Sketch of an infinite sequence of identical poten-
tial barriers whose hight oscillates periodically in time. (b) Time-
dependent potential well corresponding to the desymmetrized ver-
sion of the sequence of potential barriers in (a). I and II label the two
regions of the well. a, b, V0, V1, and ω are the control parameters of
the dynamical system.

II. DYNAMICAL MODEL AND CORRESPONDING
MAPPING

We consider a classical particle of mass μ that moves along
an infinite sequence of identical potential barriers of width
b whose height oscillates periodically in time as shown in
Fig. 1(a). The barriers are separated by a distance a from
each other. Since the potential is periodic we can focus on
its desymetrized version; that is, we shall study the dynamics
of the potential depicted in Fig. 1(b) which is given by

V (x, t ) =

⎧⎪⎨
⎪⎩

∞, x � 0,

0, 0 < x < a/2,

V0 + V1 cos(ωt ), a/2 � x < (a + b)/2,

∞, (a + b)/2 � x.

(1)

Here, V0, V1, and ω are, respectively, the average barrier
height, the barrier hight oscillation amplitude, and the os-
cillation frequency. Therefore, a, b, V0, V1, and ω are the
control parameters of the system. Similar wells have been
studied in Refs. [12,14,20]; none of those works considered
the investigation we are dealing with in this paper. Also, we
have defined two regions in the well, labeled as I and II in
Fig. 1(b).

We describe the dynamics of a particle inside the well of
Fig. 1(b) by the use of a mapping. To construct the mapping
we consider a particle (at time t = tn) with energy given by

En > V0 + V1 cos(ωtn), (2)

immediately before entering region I (at x = a/2) from region
II. We define position x = a/2 as a Poincaré section, so the
mapping is iterated each time the particle reaches that point.
After entering in region I the particle suffers an abrupt change
in its kinetic energy, K ≡ μv2/2, but due to total energy

conservation

K ′
n = En. (3)

Once in region I the particle moves to the left with constant
velocity v′

n = √
2K ′

n/μ, since there are no forces acting on
it. The particle travels until it reaches the infinitely-hight
potential barrier at x = 0. It is reflected backwards and travels
to the right up to x = a/2 with an energy given by

E′
n = K ′

n. (4)

The time to travel the distance a is �ta = a/v′
n. At x = a/2

two different situations may happen: (i) The particle has not
enough energy to leave region I, or (ii) the particle enters in
region II. Case (i) is observed for

E′
n � V0 + V1 cos[ω(tn + �ta )],

at which the particle suffers a reflection, staying in region I. So
it travels again to the left, reaches the infinite potential at x =
0, it is reflected there and returns to x = a/2. The condition
to leave region I, therefore leading to Case (ii), is

E′
n > V0 + V1 cos[ω(tn + i�ta )], (5)

where i is the smallest integer number that satisfies Eq. (5).
For i = 1 the particle does not stay trapped in region I, leaving
it immediately after one full incursion. For i = 2 the particle
suffers only one reflection at x = a/2 and leaves region I after
two full incursions. i = 3 corresponds to a particle leaving
region I after three full incursions and so on. Therefore, the
number of successive reflections of the particle at x = a/2,
without leaving region I, is given by

η = i − 1. (6)

We stress that in the following sections we will focus our study
on the quantity η.

If condition (5) is satisfied, the particle has enough energy
to leave region I. It then suffers another abrupt change in its
kinetic energy

K ′′
n = E′

n − {V0 + V1 cos[ω(tn + i�ta )]}.
The particle travels the distance b, which takes a time �tb =
b/v′′

n , with constant velocity given by v′′
n = √

2K ′′
n/μ. After

that the particle reaches the Poincaré section just before
entering into region I again. There, at x = a/2, the energy is

En+1 = K ′′
n + V0 + V1 cos(ωtn+1), (7)

at time

tn+1 = tn + i�ta + �tb. (8)

Rewriting the two expressions we obtain the mapping

T :

{
En+1 = En + V1[cos(ωtn+1) − cos(ω(tn + i�ta ))]
tn+1 = tn + i�ta + �tb, mod(2π/ω) .

(9)

In order to reduce the number of control parameters of
mapping (9) it is convenient to consider the following set of
dimensionless variables: e = E/V0, φ = ωt , �φa = ω�ta ,
and �φb = ω�tb. The control parameters of the dynamical
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FIG. 2. Phase space portraits e vs. φ for mapping (11). The parameters considered are: (a) (Nc, r, δ) = (100, 0.5, 0.5) and (b) (Nc, r, δ) =
(30, 1, 0.5).

system become

δ = V1

V0
, r = b

a
, and Nc = a

√
μ

2V0
ω. (10)

The parameter δ controls the height of the potential barrier, r

characterizes its width, and Nc is the normalized oscillation
frequency of the barrier. We note that for δ = 0 or Nc = 0 the
system is integrable (no chaotic structures can be observed).

Using the new variables, the mapping T gets the form

T :

{
en+1 = en + δ[cos(φn+1) − cos (φn + i�φa )]
φn+1 = φn + i�φa + �φb, mod(2π ) , (11)

where

�φa = Nc√
en

, (12)

and

�φb = Ncr√
en − 1 − δ cos (φn + i�φa )

(13)

are auxiliary dimensionless variables which, respectively,
measure the time to travel the distances a and b.

Typical phase portraits (e vs. φ) for the mapping (11)
are shown in Fig. 2. The phase space is of mixed type
containing periodic islands, chaotic regions, and invariant
spanning curves limiting the size of the chaotic sea preventing
unlimited diffusion of energy and separating different regions
of chaos. Depending on the combination of control parameters
the position of the lowest invariant spanning curve changes.
Also note that the phase portraits are bounded from below
by the curve e = 1 + δ cos(φ), defining the border of allowed
energies of Eq. (2).

Once the mapping describing the dynamics is constructed,
allowing easy computation of the orbits, we then concentrate
on the quantity η. Thus, in the following section we study
scaling properties of η.

III. SCALING OF THE NUMBER
OF SUCCESSIVE REFLECTIONS

As previous results in literature reported for other models,
we expect scaling invariance of the quantity η (see for exam-
ple Refs. [21] and [22] where scaling properties of multiple
reflections of light beams inside a modulated waveguide and
of particles trapped in an oval billiard were investigated).

We start the scaling analysis of η by constructing his-
tograms, H (η), for different values of the parameter Nc.
Without loss of generality we fix the values of r and δ to 1
and 0.5, respectively. In Fig. 3(a) we show H (η) for Nc =
30, Nc = 400, and Nc = 4000 [here, Nc = 30 corresponds to
the phase portrait of Fig. 2(b)]. To construct each histogram
a single trajectory with the initial condition φ0 = 1.23 and
e0 = [1 + δ cos(φ0) + 10−3] was iterated 1010 times.

Notice the histograms in Fig. 3(a) show a clear power-law
decay,

H (η) ∝ η−ν1 , (14)

for large η. Also note that ν1 is very close to 3 and does
not seem to depend on the values of the control parameters
(not shown here in full detail). From this figure, one can
also observe that the histograms are displaced to the left for
increasing Nc showing a typical scaling behavior. To look at
the scaling we first define a quantity that can quantify the
displacement of the histograms produced by changing Nc.
Indeed, we choose the value of η such that H (η) ≈ 104; i.e.,
the intersection of the histograms with the horizontal line
at H (η) = 104, see the dashed line in Fig. 3(a). Thus, in
Fig. 3(b) we plot η, for H (η) ≈ 104, for several values of
Nc ∈ [30, 104] and observe a clear power-law behavior of the
form

η[H (η) ≈ 104] ∝ N−ν2
c , (15)

with ν2 = 0.218(2).
Therefore, in Fig. 3(c) we plot again the histograms of

Fig. 3(a) but now as a function of the scaling parameter
η × Nν2

c . A clear overlap of all histograms onto an unique
universal curve is observed, which verifies the scaling of
H (ηNν2

c ).
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FIG. 3. Plot of (a) histograms H (η) of the number of successive
reflections at x = a/2, see Fig. 1(b); the parameters used were Nc =
30, Nc = 400, and Nc = 4000 for fixed r = 1 and δ = 0.5. Each
histogram was constructed by iterating 1010 times a single trajectory
with initial condition φ0 = 1.23 and e0 = [1 + δ cos(φ0) + 10−3].
The red full line corresponds to a power-law fit with Eq. (14) with
ν1 = 2.97(1). The dashed line at H (η) = 104 is shown to guide
the eye, see the text. (b) η, at H (η) ≈ 104, as a function of Nc.
The red full line corresponds to a power-law fit with Eq. (15) with
ν2 = 0.218(2). (c) Histograms H (η) of (a) but now as a function of
the scaling parameter η × Nν2

c .

Even though showing that histograms of the number of suc-
cessive reflections of particles obey a scaling law is already an
important result, since it shows universality in the dynamics of
the model, we want to go one step further and explore the rich
structure that successive reflections produce when analyzing
their location in phase space.

IV. LOCATION OF SUCCESSIVE REFLECTED
TRAJECTORIES IN PHASE SPACE

The function mod(2π ) in map (11) makes the phase φn+1

to lie in the interval [0, 2π ) therefore in a cylindrical sym-
metry. If the mod function is not applied, φn+1 becomes
unbounded in the phase orientation. In such a case, we define

FIG. 4. Color map of m on the phase portrait of Fig. 2(b); i.e.,
for (Nc, r, δ) = (30, 1, 0.5). Here, η = 0 was considered.

m as the magnitude of φn+1 given in units of 2π :

m = φn+1

2π
. (16)

Note that m measures the spread of φ in the phase axis. From
Eq. (11), given the pair (φn, en), the phase φn+1 ≡ 2πm can
be written as

2πm = φn + iNc√
en

+ Ncr√
en − 1 − δ cos

[
φn + i Nc√

en

] , (17)

from which m can be computed. In Fig. 4 we show a color
map of m on the phase portrait of Fig. 2(b). In this figure we
report the phase-space regions corresponding to m ∈ (3,∞),
moreover we are grouping m ∈ (9,∞) in the yellow region
located at low energies. Notice that different colors in Fig. 4
are separated by white stripes which represent integer values
of m; there, the white stripes correspond to m = 4, 5, 6, 7, 8, 9
from top to bottom. It is important to stress that the color
map of Fig. 4 was obtained for η = 0 only, i.e., from par-
ticle trajectories leaving region I immediately after one full
incursion. To complete Fig. 4, in Fig. 5(a) we show the
curves in phase space produced by integer values of m � 9.
Note that the curves for increasing m converge to limiting
curves. Clearly, those limiting curves define blank regions in
the phase space of Fig. 5(a). Moreover, such “blank regions”
contain the information of the multiple reflected trajectories
characterized by η > 0. To explicitly show this, in Fig. 5(b)
we present a color map of the regions corresponding to values
of η > 0. Also, to better show details, in Fig. 5(c) we present
the enlargement of the dashed box of Fig. 5(b).

In fact, the scenario reported in Figs. 5(a)–5(c) can be
well described by Eq. (17): We first take the limit m → ∞
in Eq. (17) to obtain

e − 1 − δ cos

[
φ + i

Nc√
e

]
= 0, (18)
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FIG. 5. (a) Curves for integer values of m � 9. As well as in Fig. 4, η = 0 was considered here. (b) Color map of m for η � 1.
(c) Enlargement of the blue dashed box in (b). (d) Curves produced by Eqs. (19) or (20), i.e., for m → ∞, for different values of i � 1.
(Nc, r, δ) = (30, 1, 0.5) in all panels.

which leads us to

φ = arccos

(
e − 1

δ

)
− i

Nc√
e

(19)

or

φ = 2π − arccos

(
e − 1

δ

)
− i

Nc√
e
. (20)

Then, in Fig. 5(d) we plot curves corresponding to i = 1, 2,
and so on (corresponding to η = 0, 1, . . ., respectively) in the
phase space region of Fig. 5(c). In fact, the curves produced
by Eqs. (19) or (20) with i = 1 correspond to the converging
curves of Fig. 5(a); while curves with i > 1 separate the
different colored regions in Figs. 5(b) and 5(c). Furthermore,
notice in Fig. 5(d) that curves for different η cross in well
defined points of phase space that we label as e′, e′′, e′′′,
etc.; see Figs. 5(b)–5(d). Indeed, e′, as well as their images
e′′, e′′′, . . ., are accumulation points for i → ∞; i.e., they
mark points in phase space corresponding to trajectories that
never escape from region I. Below we show that approaching
this points reveals a fractal structure.

The self-similar structure of the density
of successive reflections

Finally, let us explore the structures revealed in density
plots of successive reflected trajectories that we construct as
follows: We count the number of trajectories that visit the
boxes in a grid of 1000×1000 equally spaced intervals in the
e1e0 plane when iterating a dense set of 1010 initial conditions
with map (11). In particular we define the quantity � as the
log10 of the number trajectories that visit a given box �:

� = log10 �. (21)

Here, the log function is used to suppress regions with huge
counts. Then, in Fig. 6(a) we present the density plot obtained
for � when (Nc, r, δ) = (30, 1, 0.5). There, we note that a non
trivial structure, i.e., self-similar, reveals at low energies; see
also Fig. 6(b) and further enlargements in Figs. 6(c) and 6(d).

Moreover, a detailed analysis shows that the first (i.e., the
outer) swallow-like layer forming the self-similar structure in
Fig. 6(c), with edge at e0 ≈ 1.4, is produced by trajectories
characterized by η = 1. The second swallow-like layer with
edge at e0 ≈ 1.1 is formed by trajectories with η = 2, the
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are presented. (Nc, r, δ) = (30, 1, 0.5) were used.

third layer corresponds to trajectories having η = 3, and so
on. Thus, in Fig. 6(d) the layers with η � 12 are shown;
here, the accumulation point at η → ∞ corresponds to
e0 = 1 − δ = 0.5.

It is important to stress that the appearance of the self-
similar structure in Fig. 6 does not depend on the choice of
parameters made there. Indeed, we detect the appearance of
self-similar structures in the e0e1 plane when

e0 ∈ [1 − δ, 1 + δ] (22)

for any combination of (Nc, r, δ). That self-similar structures
are located in the interval (22) can be well understood since:
(i) for e0 > 1 + δ particles leave region I without suffering
reflections at x = a/2 but (ii) e0 = 1 − δ is the minimum
energy for our dynamical system to work; therefore, η > 0
requires Eq. (22).

Finally, in Fig. 7 we present additional examples of self-
similar structures. There (in left, middle, and right panels,
respectively) we used δ = 0.25, 0.75, and 1 (1 is the maximum
possible value of δ we can use). Note the larger the value
of δ the larger the self-similar structure, as anticipated by
condition (22).

It is relevant to mention that self-similar structures, com-
parable to ours, have been reported in Refs. [23,24]. There,
they were produced by whispering gallery orbits (WGO) in

billiards with concave walls. It was also shown [23] that those
self-similar structures in the energy space are mapped into
self-similar regions in phase-space (something we did not
study here). Moreover, since the main focus of Refs. [23,24]
was the ray-wave correspondence of scattering quantities, the
dependence of self-similar structures with the model param-
eters was not explored. Thus, we stress that here we are
performing a systematic study of the self-similar structures
present in our time-dependent potential well and, furthermore,
identify the parameter that tune their size; a study that could
also be extended to the billiards of Refs. [23,24].

We would like to note that the trapping of particles (due
to multiple reflections) in region I of the desymmetrized
asymmetric time-dependent potential well, see Fig. 1(b), is
equivalent to the trapping of particles in one of the wells of
the periodic version of the model, see Fig. 1(a). Thus, the
identification of the range of initial energies producing the
self-similar structures may be used: (i) To tune the diffusion
properties of particles in the periodic version of the potential
well. That is, an ensemble of particles with initial energies
in the range given by Eq. (22) should diffuse slower (due
to trapping) along the periodic potential well than particles
with higher energies. (ii) To tune the scattering properties
in an open version of the periodic time-dependent poten-
tial well, i.e., particles injected into a finite version of the

012202-6



SCALING AND SELF-SIMILARITY FOR THE DYNAMICS … PHYSICAL REVIEW E 99, 012202 (2019)

0Ψ 

0

1

2

3

4

5

0 1 2 3 4 5

e 1

0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5

1 2 3 4 5 6 7

(a) (b) (c)

0.8

1.2

1.6

2

0.8 1.2 1.6 2

e 1

0.76

0.78

0.8

0.76 0.78 0.8

e 1

e0

0.4

1.2

2

0.4 1.2 2

0.4

0.6

0.8

0.4 0.6 0.8e0

)e()d( (f)

(g) (h) (i)

0

1

2

0 1 2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
e0

FIG. 7. Density plots of �, as defined in Eq. (21). (Nc, r ) = (100, 0.5) and (a), (d) and (g) δ = 0.25, (b), (e) and (h) δ = 0.75, (c), (f) and
(i) δ = 1. Panels in second and third rows are enlargements of corresponding panels in the first row.

periodic potential well with energies in the range of Eq. (22)
should spend longer times inside the scattering region (due
to multiple reflections inside wells) before being reflected
or transmitted than particles with higher energies. This is in
contrast to the billiards of Refs. [23,24] where the self-similar
structures were produced by WGO that, in turn, correspond
to trajectories with preferential transmission, i.e., with short
delay times. Moreover, as well as in the ray-wave studies
of [23,24], we expect the self-similar structures we reported
here for the ray version of the model can also be observed
in the corresponding quantum or wave version of our time-
dependent potential well.

V. SUMMARY

We have performed a detailed numerical study of the
dynamics of a classical particle moving along an infinitely
periodic sequence of time-dependent potential barriers, whose
desymmetrized version is an asymmetric time-dependent

potential well, see Fig. 1. The asymmetric potential well is
defined by two regions: region I with fixed null potential
and region II with an oscillating potential. This well can
be described by a two-dimensional nonlinear mapping in
energy and phase variables T : (en, φn) 
→ (en+1, φn+1), see
Eq. (11). Mapping T has three control parameters: δ, r , and
Nc, they control the mean height of the potential barrier,
its width, and the oscillation frequency of the moving bar-
rier, respectively; see Eq. (10). Mapping T produces generic
mixed phase space portraits having periodic islands, chaotic
regions, and invariant spanning curves, see two examples
in Fig. 2. The oscillating potential of region II makes the
particle to undergo a number of multiple reflections η at
the border of the two regions, so the particle stays trapped
in region I for a while. By performing a scaling analysis,
we showed that histograms of η, which show the power
law behavior H (η) ∝ η−ν1 with ν1 ≈ 3, are scale invariant
with the scaling parameter η × Nν2

c , with ν2 = 0.218(2); see
Fig. 3. Then, we identify in phase space the sets of initial
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conditions producing the multiple reflections, see Figs. 4
and 5.

Finally, we show that multiple reflections generate well
defined self-similar structures in density plots of trajectories
in energy space, see Fig. 6. Such self-similar structures appear
for any combination of parameters (Nc, r, δ) when the initial
energy falls in the interval [1 − δ, 1 + δ], see Eq. (22) and
Fig. 7. Thus, the larger the value of δ (whose maximal value
can be one) the larger the region of the self-similar structure
in the e0e1 space.

It is important to underline that here we focus our attention
on (i) the scaling analysis of the histograms of multiple reflec-
tions produced by trapped trajectories, and (ii) the identifica-
tion and characterization of self-similar structures produced
by the trajectories wandering in sticky regions of phase space.
This may add some insight into the mechanisms that induce
the phase-space trapping of trajectories, a subject of interest

in non-linear dynamics since long ago; see for example the
reviews of Escande [25] and Zaslavsky [26].

Since similar self-similar structures were also reported in
Refs. [23,24], we believe that they may be ubiquitous of
dynamical systems and may be observed in regions of the
phase space where either temporal or spatial invariance are
present.
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