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The out-of-time-ordered correlator (OTOC) is a measure of quantum chaos that is being vigorously investi-
gated. Analytically accessible simple models that have long been studied in other contexts could provide insights
into such measures. This paper investigates the OTOC in the quantum bakers map which is the quantum version
of a simple and exactly solvable model of deterministic chaos that caricatures the action of kneading dough. Exact
solutions based on the semiquantum approximation are derived that tracks very well the correlators until the
Ehrenfest time. The growth occurs, surprisingly, at the exponential rate of the classical Lyapunov exponent which
is half of that expected semiclassically. This exponential growth is modulated by slowly changing coefficients.
Beyond this time, saturation occurs at a value close to that of random matrices. Using projectors for observables
naturally leads to truncations of the unitary time-t propagator and the growth of their singular values is shown to
be intimately related to the growth of the out-of-time-ordered correlators.
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I. INTRODUCTION

Quantum mechanics of low-dimensional systems with a
deterministically chaotic classical limit have attracted steady
attention since the late 1970s, and textbooks such as [1–4]
chronicle a variety of these studies. These pose significant
challenges and have given us various insights, including semi-
classical periodic orbit theory and the relevance of random
matrix ensembles for even one-particle systems whose clas-
sical limit is chaotic and surveys collected in [5] form an
excellent introduction. A resurgence of interest in quantum
chaotic or nonintegrable systems has occurred around the
related themes of scrambling and out-of-time-ordered corre-
lators or OTOCs [6–13]. The OTOC, as commonly defined, is
connected to the development of noncommutativity of initially
commuting operators [14] and therefore this forms a con-
venient starting point. In the context of many-body systems
they capture how initially localized information spreads and
is related to the Lieb-Robinson bound for commutator growth
in systems with a finite range of interactions [15,16].

In the recent past, it has been used in the study
of quantum field theories and black holes, which are
said to be nature’s fastest scramblers as they saturate
a conjectured upper-bound on chaos [14,16,17]. A, by
now standard, qualitative motivation for relating commuta-
tors with chaos is that −〈[q̂(t ), q̂(0)]2〉 ∼ h̄2{q(t ), q(0)}2 =
h̄2[∂q(t )/∂p(0)]2 ∼ h̄2e2λt , where the semiclassical connec-
tion with Poisson brackets is used and further in the last step a
chaotic evolution with a Lyapunov exponent of λ is assumed.
Thus the growth of the commutator is a quantum measure
of instability, and the Lyapunov exponent growth is expected
in a time regime that is between a diffusion time scale td
and the Ehrenfest time scale tEF at which quantum-classical
correspondence, if any, breaks down. The growth of the
commutator being a purely quantum measure can be used in
systems such as spin chains which have no apparent classical
limits and is a dynamical measure of the system’s complexity.

Simple models from classical dynamical systems have
played an important role in the study of quantum chaos. These
include quantum maps [18,19], which are Floquet systems or
quantizations of finite canonical transformations which have
also been invoked in recent studies of OTOCs. For example,
the standard map or kicked rotor has been studied in [6]
while the quantum cat map and its perturbed versions have
been studied in the context of operator spreading and OTOCs
[9,13]. The classical cat map, introduced by Arnold and Avez
[20], is a smooth linear area-preserving map of the two-
torus into itself. Its quantization [21] possesses nongeneric
features such as exact periodicity in time, which is overcome
by smooth perturbations on it but renders it analytically in-
tractable. The classical bakers map, introduced by Hopf [22]
is a discontinuous linear transformation of the phase space,
in the form of a square, into itself that is a caricature of the
actions involved in kneading dough that leads to a uniform
mixture, an essential prerequisite for good pastry. It is an
exactly solvable and deterministic model of chaos [23,24], and
yet is strongly stochastic in the sense that it is isomorphic to
a Bernoulli process, in other words it is as random as a coin
toss [25] and has been described as the “harmonic oscillator
of chaos.”

The quantization of the bakers map, which treats the
phase space square as a torus, has been studied in many
different flavors since the original quantization by Balazs
and Voros [26,27]. The quantum map consists of discrete
Fourier transforms on appropriate spaces and is hence a
simple N -dimensional unitary matrix B which has also been
implemented in an NMR experiment [28,29]. It can be consid-
ered, when the Hilbert space dimension N = 2L, as dynamics
of L qubits with nonlocal interactions and entanglement in
these qubits have also been studied [30]. However, despite
its simplicity, it has not yet been solved analytically, say for
its eigenspectra which have a close resemblance to those of
random matrix ensembles [31]. In this sense it is arguably
less valuable than its classical counterpart. Nevertheless there
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are some simplifications in the sense that the powers of the
classical map can be independently quantized and a simpler
operator results that is not the powers of the quantum map
itself [32,33]. This “delayed quantization” has been called
semiquantum and provides a valuable approximation Bt for
the time evolved propagator (the powers of the matrix Bt ). For
example this is the starting point for a semiclassical periodic
orbit quantization of the bakers map [34].

The semiquantum approximation is used below to evalu-
ate analytically the OTOC for the quantum bakers map. By
construction the semiquantum approximation is valid only
until the Ehrenfest time and therefore the OTOC can be
explicitly found in its Lyapunov regime. The analytical results
reveal a surprisingly complex situation with the rate reaching
the classical Lyapunov exponent λ (and not twice this) at
late times. The origin for this could be from the dynamics
being nonsmooth, giving rise to “diffraction” effects. It is
known [35] that sufficiently localized operators are needed for
quantum classical correspondence to exist, localized enough
to not suffer the discontinuities within the Ehrenfest time.
The other is also that the operators themselves need not have
smooth classical symbols with which to compute their Poisson
or Moyal brackets. For the bakers map it is the former property
that results in this rate being different from 2λ and closer to λ,
as we see this also for operators with smooth classical limits.
However in this work, we consider for analytical purposes
phase space projection operators whose classical limits are
evidently characteristic functions on phase space. This allows
for the OTOC to be written exclusively based on a truncation
of the unitary propagator Bt to a nonunitary operator. That
the spectrum and singular values of such truncations carry
information about scrambling is a general feature.

Consider the noncommutativity of Hermitian operators
A(0) and A(t ) as given by

f (t ) = − 1
2 Tr[A(t ), A(0)]2 = f2(t ) − f4(t ),

f2(t ) = Tr[A(t )2A(0)2], f4(t ) = Tr[A(t )A(0)A(t )A(0)],

(1)

where A(t ) = U−tA(0)Ut is the operator evolved to time t

by the dynamics of the propagator Ut . The term f2(t ) is a
two-point correlation, while f4(t ) is a four-point OTOC. Let
the operator A(0) be a projector

P (0) =
jmax∑

j=jmin

|j 〉〈j |, (2)

where {|j 〉, 0 � j � N − 1} forms a complete orthonormal
basis. Let J = [jmin, jmax] be the range of the projector, and
let the complementary range be J = [0, jmin − 1] ∪ [jmax +
1, N − 1]. We will also use the same letter J to denote
the dimensionality jmax − jmin + 1 of the projector space. It
follows that

f2(t ) = Tr[P (t )P (0)] = Tr(Ũ t†Ũ t ) = ‖Ũ t‖2, (3)

where P (0)UtP (0) = Ũ t is a J -dimensional truncation of Ut

in the basis {|j 〉} and the norm is Euclidean.
Such correlations have been previously studied for a va-

riety of “interacting” bakers maps that are isomorphic to
Markov chains in [36]. These quantized maps are studied

as models of relaxation in classical mixing systems [37]. In
general if g and h are two functions on a phase space, then
〈htg〉 − 〈ht 〉〈g〉 (where ht is the time-evolved function and
〈·〉 denotes phase space averaging) decay exponentially at the
rates determined by the Ruelle-Pollicott resonances [38]. The
change in the two-point correlator is rapid in comparison with
the OTOC and is essentially governed in the classical limit by
these resonances that lead to mixing. Beyond the time scales
set by these, the noncommutativity grows due to the decay of
the OTOC. This is the process we are interested in, but we will
study the noncommutativity f (t ) which includes both these
contributions and sometimes loosely refer to it as the OTOC
itself.

The OTOC has the following simplifications:

f4(t ) =
∑

j,j ′∈J

|〈j |P (t )|j ′〉|2 = Tr(Ũ t†Ũ t )2 = ‖Ũ t†Ũ t‖2.

(4)

Thus if the eigenvalues of Ũ t†Ũ t , or equivalently (square of)
the singular values of Ũ t , are μi (t ), then these completely
determine the f2(t ) as well as f4(t ). Their difference f (t ) is
then

f (t ) =
∑
j∈J

∑
j ′∈J

|〈j |P (t )|j ′〉|2 =
J∑

i=1

μi (t )[1 − μi (t )]. (5)

Truncated unitary matrices, especially from random matrix
ensembles, have been studied vigorously since the pioneering
work of Zyczkowski and Sommers [39] and find applications
in many contexts such as chaotic scattering, where truncations
of S matrices arise [40,41], open quantum systems [42], and
tunneling studies [43]. Note that 0 � μi (t ) � 1 and f (t ) �
J/4. The growth in norm of truncations of powers of unitary
matrices are naturally related to the OTOC, an observation
that may provide more insights. Apart from the singular
values μi (t ) of Ũ t , their complex eigenvalues also provide
a characterization of the dynamics that reflects the growth of
the OTOC as will be seen in the example of the bakers map.

II. PRELIMINARIES OF THE BAKERS MAP

This section is to provide an introduction (to nonbakers)
of well-known facts of the bakers map, both classical and
quantal.

A. Classical map

The classical bakers map is given by the transformation of
(q, p) ∈ [0, 1) × [0, 1) to itself and is given by

T (q, p) = (q ′, p′) = (2q(mod 1), (p + [2q])/2). (6)

It is piecewise linear with a discontinuity at q = 1/2, and if
the square is treated as a torus it is discontinuous at q = 0
as well. The action on the unit square is illustrated in Fig. 1,
where the stretching by a factor of 2 along the q direction
and compression along p is illustrated. The left vertical half
L gets mapped into the bottom horizontal half B. In this
action the q suffers the “doubling map” q 	→ 2q (mod 1) and
the dynamics in terms of binary representation is one of the
left shift [23,24]. The momentum ensures that the shifted
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FIG. 1. The bakers map action on the unit square on the left takes
it to the right, by stretching the left half L by a factor of 2 along q and
compressing by a factor 1/2 along p so that it becomes the bottom
half B. The transformation from the right half R to the top half T

is similar. Repeating this action constitutes a highly efficient mixing
protocol and a solvable textbook example of deterministic chaos.

bits are not lost. If q = 0.a0a1a2 . . . and p = 0.a−1a−2 . . .

are the respective binary representations (ai ∈ {0, 1}), then
q ′ = 0.a1a2a3 . . . and p′ = 0.a0a−1a−2 . . . . Thus this left-
shift iterated is the bakers map action that lays bare the heart
of deterministic chaos. In particular the Lyapunov exponent is
ln 2, all its orbits are hyperbolic (unstable), the map is ergodic
and mixing. The exponential growth of the number of periodic
orbits is determined by the topological entropy which is also
ln 2. The enumeration of periodic orbits and their structure
plays a crucial role in the semiquantum operator as well. Let

ν =
t−1∑
k=0

ak2k, and ν =
t−1∑
k=0

ak2t−k−1 (7)

be the binary expansion of an integer ν (0 � ν � 2t − 1)
and ν is an integer whose binary expansion contains the
corresponding bit-reversed string, read from right to left. The
period-t points are at

qν = ν

2t − 1
, pν = ν

2t − 1
, (8)

and there are 2t of these. Thus the classical map is in many
ways exactly solvable, if fully chaotic, and moreover is a
caricature of what happens in the neighborhood of homoclinic
intersections of stable and unstable manifolds that are the
genesis of Hamiltonian chaos [24].

B. Quantum map

The quantization is complicated by the lack of a Hamil-
tonian, even a time-dependent one, such as exists for the
standard map or the kicked top, other well studied models
of low-dimensional chaos. Nevertheless Balazs and Voros
observed that the generating function of the transformation
from the left half L to the bottom half B is F2(q, P ) = 2qP .
From the correspondence of the unitary propagator being the
exponential of the classical generating function, the mixed
representation of the transformation of L 	→ B is 〈P |B|q〉 ∼
e−i2qP/h̄. As the phase space is now a compact torus, the
quantization is also one which takes this into account and
subsequently the Hilbert space is a finite one, its dimension
N = A/h, where A is the area of the torus, which we take
as 1. Hence h = 1/N is the effective Planck constant and the
position states labeled by |n〉, 0 � n � N − 1 are related to

q

p

q''

p''

FIG. 2. Action on the unit-square phase space of the bakers
map iterated twice. The four identical vertical rectangles are each
stretched and compressed by a factor of 4 into corresponding hori-
zontal rectangular partitions. Notice that unlike in Fig. 1 the patterns
in the partitions are not faithfully stretched or compressed in this
illustration.

the momentum states via the discrete Fourier transform. Thus
the quantization of the bakers map was proposed to be the
unitary operator, written in position basis to be

B = G−1
N

(
GN/2 0

0 GN/2

)
, (9)

where

〈m|GN |n〉 = 1√
N

exp

[
−2πi

N
(m + 1/2)(n + 1/2)

]
(10)

is the discrete Fourier transform. The shifts by 1/2 were added
by Saraceno to restore parity symmetry, which also enabled
a detailed study of eigenstates and time-evolving coherent
states in the quantum baker [44]. The R 	→ T part of the
transformation is the lower block GN/2. The factor of 1/2 in
the Fourier transforms originates from the stretching of the
classical baker being by the factor 2. Thus propagation of
states by the bakers maps are given by Bt |φ0〉 and operators
evolves as B−tA(0)Bt , with t being integers, but there are no
simple forms for the powers Bt , a fact related to the lack of
analytical understanding of the spectra.

The time t semiquantum propagator Bt is constructed by
quantizing the classical baker iterated t times [32]. This is
unique to the baker map, and Bt �= Bt , but it is believed
that Bt ≈ Bt until the time that Bt can be defined which
is at most the Ehrenfest time of log2 N . When N = N02T ,
where N0 is an odd integer, it is defined until time T and
hence is the longest when N is a power of 2. For example
B2 is got on quantizing T 2, whose action on the unit square
is shown in Fig. 2. This takes the four vertical partitions of
width 1/4 to corresponding horizontal partitions of height
1/4. Each of them can be quantized by the action of GN/4

in the mixed representation. The position of the resulting
four blocks is dictated by the period 2 orbits which are
the intersections of the vertical and corresponding horizontal
partitions: (00.00,01.01,10.10,11.11). In general the operator
Bt is governed by the 2t fixed points of the classical time t

map (or equivalently the period-t points of the classical map).
With these definitions

Bt = G−1
N (It ⊗ GN/2t ), (11)
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FIG. 3. The two-time correlator f2(t ) in Eq. (3) is shown as a
function of time for two values of N . Both reach values close to N/4,
while the case when N is a power of 2 shows anomalous oscillations
after the log time which is ≈8.

where It is a 2t × 2t matrix whose entries are zero ex-
cept elements (It )ν,ν = 1, where ν and ν are given as in
Eq. (7) which determine the classical periodic orbits. For
the special case of t = 1, I1 is the diagonal 2 × 2 identity
matrix and one gets that B1 = B. At t = 2, the (ν, ν) pairs
are (0,0),(1,2),(2,1),(3,3) and I2 is a “two-qubit swap gate,”
hence

B2 = G−1
N

⎛
⎜⎝

GN/4 0 0 0
0 0 GN/4 0
0 GN/4 0 0
0 0 0 GN/4

⎞
⎟⎠. (12)

If N = 2T , BT will in the mixed representation (the second
matrix) consist of 2T c numbers; beyond that this is not
defined—the classical partitions have reached the size of h̄.
This is also the “log time” or the Ehrenfest time tEF =
ln(1/h)/λ = log2 N , beyond which even initially maximally
localized states suffer interference.

III. OUT-OF-TIME-ORDERED CORRELATOR

The operator we choose is the projector P (0) =∑jmax
n=jmin

|n〉〈n|, where |n〉 are position eigenstates, and which
has a clear classical limit. If jmin = 0 and jmax = N/2 − 1 it
is the characteristic function of the left half vertical partition,
the rectangle L shown in Fig. 1, The quantity of interest is

f (t ) = − 1
2 [P (0), P (t )]2 = ‖B̃t‖2 − ‖B̃†t B̃ t‖2, (13)

where B̃t is the J dimensional truncation of Bt . Figure 3
displays a normalized correlator f2(t )/N for the case when
jmin = 0 and jmax = N/2 − 1 for two cases of N = 210 and
N = 256. The former case shows small fluctuations around
1/4, while for the latter there are large fluctuations observed
at 2 log2 N , twice the log time, and possibly multiples of
these with decreasing amplitude. Note that f2(0) = N/2, thus
there is an instantaneous change to values close to N/4 for
t > 0. This reflects the immediate mixing of the L parti-
tion, in the sense that the classical characteristic function
spreads so that 1/2 of it is always in L for all subsequent
times. To control the rate of mixing, coupled bakers maps
were studied with tunable coupling in [37] whose quantum
versions were studied [36]. See also [45] for such systems
on a spherical phase space. The large fluctuations in f2(t )
when N is a power of 2, especially at twice the log time, is
consistent with known eccentricities of the quantum baker.
This results in strongly localized eigenstates that are in fact all
multifractal. Approximate subsets of eigenstates can be in this
case constructed based on the ubiquitous, self-similar, binary
Thue-Morse sequence and its generalizations [46]. However
these eccentricities are prominent only at times beyond the
log time and therefore for the present purpose they do not
really concern us; for example the two cases of N in Fig. 3
are essentially the same before the log time.

A. Two-point correlator

While we cannot compute analytically f2(t ) = ‖B̃t‖2 even
for the bakers map above, the semiquantum f2SQ(t ) = ‖B̃t‖2

turns out to be exactly N/4 for t > 0 and hence is completely
consistent with the classical. To begin we write Bt in the
mixed (momentum-position) basis and denote momentum
states as |m̃〉. This is the matrix It ⊗ GN/2t , but it helps to
write it explicitly as

〈m̃|Bt |n〉 =
√

2t

N
exp

[−2t+1πi

N

(
m + 1

2
− νN

2t

)(
n + 1

2
− νN

2t

)]
�mν�nν. (14)

For any (m, n) pair (m and n take values in [0, N − 1]) there exists a unique ν and hence ν as It is a permutation matrix. The
connection is explicit in the function �mν which is = 1 if νN/2t � m � (ν + 1)N/2t − 1 and 0 otherwise. Multiplying by G−1

N

on the left of the above mixed representation results in the matrix element of Bt in the position basis:

〈k|Bt |n〉 = 2t/2

N
eiπν exp

[
2πiν

2t

(
k + 1

2

)]
�nν

N/2t−1∑
m=0

exp

{
2πi

N

(
m + 1

2

)[
k + 1

2
− 2t

(
n + 1

2

)]}
, (15)

and it is convenient to keep this form without performing the geometric sum. For

f2SQ(t ) = ‖B̃t‖2 =
N/2−1∑
k,n=0

|〈k|Bt |n〉|2 = 2t

N2

N/2−1∑
k,n=0

∣∣∣∣∣∣
N/2t−1∑

m=0

exp

{
2πi

N

(
m + 1

2

)[
k + 1

2
− 2t

(
n + 1

2

)]}∣∣∣∣∣∣
2

= N

4
, (16)
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FIG. 4. The growth of the commutator’s norm f (t ) in Eq. (5) for two values of N and for three projectors. On the left is the case with
N = 2446 and the right has N = 2048. The three projectors are as in Eq. (2) with the jmin and jmax values indicated in the figure. The horizontal
lines are from the random matrix saturation value in Eq. (34).

the last equality follows on performing the k and n sums first.
Note that this also reflects the subunitarity of B̃t as the norm
decreases from N/2 at t = 0 to N/4 for all t > 0.

B. OTOC

We now turn to the central quantity f (t ) which measures
the noncommutativity of P (0) and P (t ) as in Eq. (13). Fig-
ure 4 shows the growth of f (t ) for two different values of
N and three different position space projectors P (0); one is
the L partition that includes the origin which is a fixed point
in the classical limit jmin = 0 and jmax = N/2 − 1, one that
excludes the origin but is still in the L partition with jmin =
[N/10], jmax = [4N/10], and a third one that is in L but
does not include either the origin which is a fixed point or the
period-2 orbit at (1/3, 2/3). It is observed that the choice of
the projector does not make a difference to the growth which
is close to being exponential, but the saturation that depends

on the size J of the projector and has lesser fluctuations when
the partition excludes low-order periodic orbits. The choice
of N = 2446, which is such that N/2 is a prime number,
ensures that we are far from nongeneric features, while with
N = 2048 = 211 an extreme nongeneric case is shown. It is
noted that the different partitions have now a more dramatic
effect on the f (t ), but in fact before the log time the two cases
of N and the three partition choices display differences too
small to be seen in the figure. It is this growth phase that is also
accessible via the semiquantum propagator Bt in Eq. (12).

We turn to an analytical derivation that is based on Bt and
find the semiquantum approximation of f (t ) as

fSQ(t ) = ‖B̃t‖2 − ‖B̃†
t B̃t‖2. (17)

Using the position representation of Bt as given in Eq. (15),
and considering the projector with jmin = 0 and jmax =
N/2 − 1 for simplicity results on further simplifications in

fSQ(t ) = 1

N2

N/2−1∑
k=0

N−1∑
k=N/2

∣∣∣∣∣∣
2t−1−1∑
ν=0

exp

[
2πi

2t
ν(k − k)

]∣∣∣∣∣∣
2∣∣∣∣∣∣

N/2t−1∑
m=0

exp

[
2πi

N
m(k − k)

]∣∣∣∣∣∣
2

. (18)

Note that the third sum is over ν but the argument contains the complementary ν. Further simplifications are indeed possible.
First we have

∣∣∣∣∣∣
N/2t−1∑

m=0

exp

[
2πi

N
ml

]∣∣∣∣∣∣
2

= sin2(πl/2t )

sin2(πl/N )
. (19)

Then we notice that the ν < 2t−1 condition implies that the most significant bit of the momentum is 0, that is the periodic orbit,
corresponding to the block ν below p = 1/2. Therefore the string ν has the least significant bit to be 0, the rest being arbitrary.
This just implies that ν is any even integer from {0, 2, . . . , 2t − 2}, say 2n. Then

2t−1−1∑
ν=0

exp

[
2πi

2t
ν(k − k)

]
=

2t−1−1∑
n=0

exp[2πin(k − k)/2t−1] = 2t−1δ[(k − k) ≡ 0 mod 2t−1], (20)
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and the semiquantum OTOC reduces to

fSQ(t ) = 22t−2

N2

N/2−1∑
k=0

N−1∑
k=N/2

δ[(k − k) ≡ 0 mod 2t−1]
sin2(π (k − k)/2t )

sin2(π (k − k)/N )
. (21)

Due to the Kronecker delta and the numerator in the sin2 terms
only those pairs of (k, k) will contribute whose difference
(k − k) is an odd multiple of 2t−1.

Let N = 2T N0 where N0 is an odd number � 1 and T � 1.
The semiquantum propagator Bt is strictly defined for times
t � T . The double sum in Eq. (21) can be reduced further
as the argument depends only on the difference l = (k − k)
which can take values in [1, N − 1]. Let the number of (k, k)
pairs that give the same l value be dl . Then

dl =
{
l 1 � l � N/2
N − l N/2 < l � N − 1.

(22)

Therefore

fSQ(t ) = 22t−2

N2

N−1∑
l=1

dl δ[l ≡ 0 mod 2t−1]
sin2

(
πl/2t

)
sin2 (πl/N )

.

(23)

As both dl and the other quantities being summed over share
the symmetry l → N − l, it follows that

fSQ(t ) = 22t−2

N2

[
2

N/2−1∑
l=1

l δ[l ≡ 0 mod 2t−1]
sin2(πl/2t )

sin2(πl/N )

+ N

2
sin2(πN02T −t−1)

]
. (24)

Thus whenever 1 � t � T − 1 the last term within the brack-
ets, corresponding to l = N/2, vanishes.

Assuming that this is the case, we get on setting l = (2k +
1)2t−1 the restriction k = 0, 1, . . . , 2T −t−1 − 1, and hence for
1 � t � T − 1

fSQ(t ) = 2t

16 M2

M−1∑
k=0

2k + 1

sin2
[

π (2k+1)
4M

] (25)

with M = 2T −t−1 N0 = N/2t+1.
In fact for N powers of 2, N0 = 1 and the following are

easily seen to be true:

fSQ(t = T − 2) =
(

2 − 1√
2

)
2T −5,

fSQ(t = T − 1) = 2T −4, fSQ(t = T ) = 2T −3. (26)

Figure 5 compares this semiquantum evaluation with the
quantum one for f (t ) when N = 1024. It works well enough
that visible differences are very small. It is also seen to
work well for generic dimensions such as N = 2446, where
M = [N/2t+1] is used in Eq. (25). We may conclude that
the Lyapunov exponent based on the OTOC is ln 2, except
that there is a weak dependence of time in the coefficient
of 2t in Eq. (25). To evaluate the coefficient, the sum has
to be performed, and for large M , it may be replaced by an
integral, but this diverges and the singularity at k = 0 must be

compensated by adding and subtracting an appropriate sum to
remove the singularity from the integral,

1

M2

M−1∑
k=0

2k + 1

sin2
[

π (2k+1)
4M

]
≈ 1

2

∫ 2

0

x dx

sin2(πx/4)
− 8

∫ 2

0

x dx

π2x2
+ 16

π2

M−1∑
k=0

1

2k + 1

= 8

π2
[1 + ln(8/π ) + γ + ψ0(M + 1/2)]

= 8

π2
[1 + ln(8/π ) + γ + ln M + O(1/M2)], (27)

where ψ0(x) is the digamma function and γ the Euler con-
stant. Finally then an approximate form of fSQ(t ) is

fSQ(t ) = 2t

2π2

[
ln

(
4 eγ+1

π

N

2t

)
+ O(2t+1/N )2

]
. (28)

This is valid when N = N02T , 1 � t � T − 1, and M =
N/2t+1 � 1, that is for times much smaller than the log time.
In practice it appears to be a good approximation almost close
to the log time. The h̄ → 0 (here N → ∞) and t → ∞ limits
cannot be interchanged. Based on the above expression, the
following holds:

lim
t→∞

1

t
ln fSQ(t ) = ln 2, (29)

if N = N02t+t0 , where t0 > 1 and N0 � 1 are constants. That
is in this limit, the long time limit is slaved to h̄ → 0. If
we want the time t to be fixed, the following is true for

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14  16  18  20

ln
[f(

t)
]

time t

N=2048, Quantum
N=2048, Semiquantum

N=2446, Quantum

FIG. 5. Comparison of the semiquantum analytical evaluation in
Eq. (25) with the quantum growth of f (t ).
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instantaneous rates:

fSQ(t + 1)

fSQ(t )
≈ 2

[
1 − ln 2

ln(N02T −t−1)

]
→ 2 (30)

as N0 → ∞. Thus the rate also approaches 2 classically,
but very (logarithmically) slowly. The above expressions are
consistent then with

f (t )≈fSQ(t )∼C1e
λt ln

(
C2

eλt h̄

)
, t < tEF = ln(1/h̄)/λ,

(31)

where λ = ln 2 is the classical Lyapunov exponent of the
baker map, and C1, C2 are positive constants.

The operators used in this paper are projectors and hence
they have no smooth classical limit. We have verified nu-
merically that using operators such as cos(2πq ) also lead to
the same growth of f (t ), namely ≈2t . Work with smooth
maps such as the standard map shows that the rate is approxi-
mately twice the classical Lyapunov exponent when operators
with smooth classical limits are employed. That the rate of
the growth of OTOC in the quantum bakers map, as found
above, is only λ = ln 2 rather than 2 ln 2 is therefore worth
emphasizing. The main source of the baker’s eccentricities lie
in its discontinuous nature. This begs the question if other
discontinuous systems share such features. It also seems to
contradict the expectation that quantum diffraction effects will
lead to enhancing the chaos, rather than suppressing it.

At the instigation of a referee the quantum sawtooth map
[47], which is a discontinuous map, was studied as well. While
we do not present details here, the results are consistent with
the fact that the growth of OTOCs, before the Ehrenfest time,
in such systems is exponential with a rate that is closer to λ

rather than 2λ. Interestingly the sawtooth map as a special
case has the smooth cat maps for which indeed the growth
occurs at the rate of 2λ (consistent with [9]). However the
diffractive cases do have an initially large OTOC that outstrips
the smooth cases to compensate for the subsequent slower
growth, to allow for the same saturation value at the Ehrenfest
times. The exact time scales at which the slower growth rate
starts needs further study, but seems to be part of a “diffusive,”
possibly operator dependent, regime < td . Thus the quantum
baker is not alone in having the slower growth rate, but more
detailed investigations are left for the future.

C. Saturation value

Beyond the log time, f (t ) or the OTOC saturates and in
the bakers map it appears that there is no real gap between
the two. The saturation value follows if we assume that Ut

is chosen from a random set of uniformly distributed unitary
matrices of dimension N , namely the standard circular unitary
ensemble (CUE) of random matrix theory (RMT). While a
general result in terms of any operator can be given, we focus
on the projection operator as in Eq. (2) treated above and use
the first equality of Eq. (5) to write

f (t ) =
∑

j,j ′,j ′′ ∈J

∑
j∈J

Ujj ′U ∗
jj ′Ujj ′′U

∗
jj ′′ , (32)

where we simply write U for Ut and now treat U as a member
of the CUE and average over the ensemble. Using

〈Ui1j1Ui2j2U
∗
i ′1j

′
1
U ∗

i ′2j
′
2
〉CUE

= 1

N2 − 1
(δi1i

′
1
δi2i

′
2
δj1,j

′
1
δj2j

′
2
+ δi1i

′
2
δi2,i

′
1
δj1j

′
2
δj2j

′
1
)

− 1

N (N2 − 1)
(δi1i

′
1
δi2i

′
2
δj1,j

′
2
δj2j

′
1
+ δi1i

′
2
δi2,i

′
1
δj1j

′
1
δj2j

′
2
),

(33)

we get

〈f (t )〉CUE = J 2(N − J )2

N (N2 − 1)
. (34)

For the case when J = N/2 we get 〈f (t )〉CUE = N/16 for
large N . It is remarkable that the semiquantum evaluation in
Eq. (26) gives f (T − 1) = N/16 as well and hence when N

is a power of 2, the semiquantum OTOC matches exactly the
RMT value at which saturation occurs. The value at t = T

is anomalously higher, a feature that seems to hold for all
values of N . Figure 4 shows the RMT value for different
partition sizes J and one sees reasonable agreement. Thus
for the bakers map, the semiquantum approximation, along
with the RMT saturation value, gives a complete picture of
the OTOC or the commutator growth f (t ).

IV. DISCUSSIONS

The quantization of the bakers map presents an almost
exactly solvable model of quantum chaos as far as the OTOC
is concerned. The semiquantum approximation is crucial
in making this possible and indicates that along with the
exponential growth there is also an additional linear time
dependence that grows into prominence at the log time. While
the explicit analytical evaluation in Eq. (25) is for partitions
that include the origin, the additional time dependence also
persists if it does not. It is clear that there cannot be a pure
exponential growth as it has to give way to a post-log-time
growth that eventually saturates to the RMT value. Whether
the form in, say, Eq. (28) can be generic remains to be seen.
Due to the discontinuities in the bakers map, it is known
to have anomalous features such as additional ln N terms
in semiclassical trace formulas [32,48]. It is possible that
these also contribute anomalously to the OTOC. Yet, the
exact nature of the time dependence of the OTOC including
an exponential behavior and saturation to a RMT value are
generic features. The N values that are powers of 2 are also
special and have multifractal states and nongeneric features,
however these only dominate the post-log-time phase, when
instead of saturating they display oscillations.

Finally as noted in this paper, the truncations of powers
of the quantum map determined the OTOCs and in fact have
more information in them. While the OTOC is determined
by the singular values, it is also of interest to study the
eigenvalues. Figure 6 shows the eigenvalues for the first 16
times when N = 1024 for the truncation with jmin = 0 and
jmax = N/2 − 1. It is seen that to begin with a majority of the
eigenvalues are very small, and that within the log-time period
they increase and predominantly occupy the area within the
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FIG. 6. The eigenvalues of the N/2 × N/2: left-top corner truncation of Bt , that is B̃t , for t = 1 to 16 and N = 1024. The time increases
from left to right and top to bottom. shown are the real and imaginary parts of the eigenvalues, as well as the unit circle and the circle with
radius 1/

√
2 are shown.

circle of radius 1/
√

2. Random unitary matrices with such
truncations are known to have eigenvalues whose modulus is
less that 1/

√
2 [49] and hence this reflects the way in which

the powers of the bakers map randomizes. It is a peculiarity of
the bakers map at N powers of 2 that the eigenvalues have
curious structures at specific times. Notably at t = log2 N

it lies almost wholly on the circle with radius 1/
√

2 and
subsequently again “collapses” with many eigenvalues being
small once more. This is consistent with the behavior of f (t )
just past the log time for such powers of 2 dimensionality.

Recent work [9] has also highlighted an exact evaluation of
the OTOC in the quantum cat map and this grows as e2λt just
as in the standard map [6]. Additionally the regime beyond the
log time was studied from the point of view of Ruelle-Pollicott
resonances. The present work indicates that the growth of

the norm of truncated Perron-Frobenius operators, via its
singular values, may well reflect the quantum OTOC growth.
It maybe noted that the spectrum of such truncated operators
has already been studied in the literature [50], but that our dis-
cussion above provides an impetus for exploring more closely
the role of the Perron-Frobenius operator in the growth of the
OTOC. While this paper did not discuss operator scrambling,
which does not occur in the (unperturbed) quantum cat map,
the bakers map’s scrambling ability is also accessible via the
semiquantum operator and is part of future work.
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