
PHYSICAL REVIEW E 99, 012146 (2019)

Random close packing from hard-sphere Percus-Yevick theory
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The Percus-Yevick theory for monodisperse hard spheres gives very good results for the pressure and structure
factor of the system in a whole range of densities that lie within the liquid phase. However, the equation seems
to lead to a very unacceptable result beyond that region. Namely, the Percus-Yevick theory predicts a smooth
behavior of the pressure that diverges only when the volume fraction η approaches unity. Thus, within the theory
there seems to be no indication for the termination of the liquid phase and the transition to a solid or to a glass.
In the present article we study the Percus-Yevick hard-sphere pair distribution function, g2(r ), for various spatial
dimensions. We find that beyond a certain critical volume fraction ηc, the pair distribution function, g2(r ), which
should be positive definite, becomes negative at some distances. We also present an intriguing observation that
the critical ηc values we find are consistent with volume fractions where onsets of random close packing (or
maximally random jammed states) are reported in the literature for various dimensions. That observation is
supported by an intuitive argument. This work may have important implications for other systems for which a
Percus-Yevick theory exists.
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I. INTRODUCTION

The hard-sphere model provides a canonical minimalistic
model that captures the main ingredient in the description of
simple liquids, namely, the strong short-range repulsion be-
tween atoms in the liquid. As in other systems in equilibrium
statistical physics, the model is used to obtain macroscopic
observables from the microscopic description of the system.
In the case of the hard-sphere model, the goals are the equa-
tion of state, the liquid structure factor, and a description of
the solidification of the liquid in terms of the average particle
density, ρ̄, and the range of the hard-sphere interaction, R

(namely, the diameter of the hard spheres). A wide arsenal
of methods has been applied over the years to the hard-
sphere problem with considerable success. Monte Carlo and
molecular dynamics simulations have been applied to that
model as early as the 1950s [1–3] and extended much later.
Experimental studies, first with ball-bearings [4,5] and later
with colloids [6], helped elucidate properties of very dense
packings which where not attainable in simulations. This
gave rise to the concept of the random-close-packing (RCP)
density, defined as the maximal density among amorphous
packings. Improved computation technologies went hand in
hand with hard-sphere simulations. For example, the hard-
sphere system is one of the first systems to be simulated on
the small-web-computing (SWC) platform in recent years [7].
These important numerical efforts resulted in obtaining the
phase diagram of the system, including crystallization and
a super-dense rotation invariant phase in three dimensions
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[8–11]. The most trusted analytic tool applied successfully
to the hard-sphere problem is the virial expansion, which is
based in turn on the cluster expansion [12–20].

The other two interesting analytic approaches are the
hyper-netted-chain (HNC) approximation [21] and the
Percus-Yevick (PY) equation [22] for the structure factor
of the hard-sphere system. The most appealing to us is
the PY equation, for several reasons. First the equation has
been given exact analytic solutions in odd dimensions d � 7
[23–30] (where d is the dimension of the system). In fact, an
exact analytic solution can be obtained in principle for any
odd dimension but it involves solving a polynomial equation
of degree 2(d−3)/2. Thus, the highest dimension for which
a strict analytic solution in closed form exists is 7, due to
the Abel-Ruffini theorem. However, thanks to the existence
of this developed analytic structure it is possible to obtain
semianalytic results for higher odd dimensions with a simple
numerical computation [30,31]. More recently, a systematic
analytic method of solution, based on the virial expansion for
the PY equation, has been obtained for general dimensions
including the even ones [32,33].

The paper is organized as follows: In Sec. II we present
an alternative derivation of the Percus-Yevick equation. In
Sec. III we show that unlike the common lore the PY the-
ory breaks down at a critical density, which is intrinsic to
the theory. In Sec. IV we discuss the physical meaning of
the reported observations and in Sec. V we summarize and
provide future perspective.

II. AN ALTERNATIVE DERIVATION OF THE
PERCUS-YEVICK EQUATION

The PY equation is usually seen as a certain diagrammatic
approximation or closure scheme of the full problem [17]. It
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was shown, however, that the PY equation for the hard-sphere
system can be given a very simple and intuitive meaning
[34,35], which elucidates the assumptions underlying it, as
well as possible extensions and refinements. For the benefit
of the readers we reproduce here a short derivation of the PY
equation. Consider the particle number density,

ρ(r) =
N∑

i=1

δ(r − ri ), (1)

where ri is the location of particle i which is one of N

identical particles enclosed in a cubic container of linear size
L and periodic boundary conditions. The pair distribution
function,

g2(r) = 1

ρ̄2
〈ρ(0)ρ(r) − ρ̄δ(r)〉, (2)

yields the d-dimensional distribution to find a particle at r
given the existence of another particle at 0. The hard-sphere
system is then viewed as an ideal gas with a pair distribution
function which is constrained to vanish for |r| < R (where
R is the diameter of the hard spheres). To see how it works
we have to transform from particle coordinates to collective
coordinates [34,36] as described shortly in the following. The
natural collective coordinates are the Fourier components of
the density,

ρq = 1√
N

∫
drρ(r)e−iq·r, (3)

for q �= 0 and with discrete Fourier modes q� = 2πn�

L
, where

n� is an integer. The ideal gas Fokker-Planck equation for
the distribution of the N free particles is translated into
a functional Fokker-Planck equation for the probability to
obtain a given configuration of the density, P I {ρ} [34], which
reads at equilibrium,

∂P I

∂t
= kBT√

N

⎡
⎣∑

k,�

k · �
∂

∂ρk
ρk+�

∂

∂ρ�

−
√

N
∑

k

k2 ∂

∂ρk
ρk

⎤
⎦P I {ρ} = 0, (4)

where ρ0 = √
N is not a dynamical variable and T is the

absolute temperature.
To make the pair distribution function vanish within the

hard-sphere range we introduce into Eq. (4) a Lagrange
multiplier function λk, which is a Fourier transform of a yet
unknown function λ(r), that vanishes outside the hard-sphere
interaction range. The last requirement reflects the fact that
the pair distribution function is constrained only within that
range. The equation now reads⎧⎨

⎩
∑

k

k2 ∂

∂ρk

[
∂

∂ρ−k
+ ρk + λkρk

]

− 1√
N

∑
k,�

k · �
∂

∂ρk
ρk+�

∂

∂ρ�

⎫⎬
⎭P I

S {ρ} = 0. (5)

Note that by making λ depend only on the absolute value of
k, we assume implicitly a rotation invariant phase. Also, the
subscript S on the density distribution function denotes steady
state, which is not necessarily the equilibrium state. The
reason is that at densities corresponding to the equilibrium
solid phase we constrain our system to have a spherically
symmetric structure factor. Thus, the state described by the
solution of Eq. (5) and the constraint on the pair distribution
function is a steady state metastable state rather than an
equilibrium state. Multiplication of Eq. (5) by 1

2ρkρ−k and
functional integration by parts yields the structure factor in
terms of the unknown Lagrange multiplier λk, namely,

SHS (k) = 1

1 + λk
, (6)

where λk has to obey the two following conditions:

λ(r ) =
∫

dkλke
ik·r = 0 for r > R (7)

and

g2(r ) = 1 + 1

N

∑
k �=0

(SHS (k) − 1)eik·r = 0 for r < R. (8)

It turns out that these two conditions are in fact the hard-
sphere PY equation. In classical liquid theory a quantity
termed direct correlation function is used extensively and is
traditionally denoted by c(r ). In our language, the Lagrange
multiplier function λ(r ) is simply −ρ̄c(r ) (see Appendix A
for more details on the notation used here).

Although Eq. (5) includes terms trilinear in the operators
ρk and ∂

∂ρk
, the solution Eq. (6) is exact, because of the

specific form of those terms. The next step beyond PY can
be affected by constraining the triplet distribution function to
vanish whenever any pair of the triplet is closer than the hard-
sphere interaction range. The equation for the distribution in
that case will include trilinear terms of a different nature,
which will prevent an exact solution for the structure factor
in terms of the two point Lagrange multiplier function. The
equation in that case belongs, however, to a wide family
of stochastic nonlinear systems, described by a functional
Fokker-Planck equation that has been treated successfully by
the self-consistent expansion (SCE) [37–43]. Thus, the PY
equation is not the last word, as it can be systematically
improved to include higher-order correlation functions. The
interesting thing is that in spite of its simplicity, the equation
of state the PY approximation produces is in very good agree-
ment with simulations for liquids [17]. In fact, since the PY is
only an approximation it produces two very good but different
equations of state, depending on the route of derivation. When
a proper weighted average of the two is constructed the really
excellent Carnahan-Starling (CS) equation of state [44] is
obtained,

PCS = ρ̄kBT
1 + η + η2 − η3

(1 − η)3
, (9)

012146-2



RANDOM CLOSE PACKING FROM HARD-SPHERE PERCUS- … PHYSICAL REVIEW E 99, 012146 (2019)

where PCS is the pressure and the volume fraction η is given
(in three dimensions) by

η = πR3

6
ρ̄, (10)

with similar expressions in other dimensions (see
Appendix A). Recall that R is the range of the hard-sphere
interaction, namely, the diameter, and not the radius of a
single sphere.

Since the CS equation of state holds for volume frac-
tions below crystallization, the fact that it holds also above
crystallization seems to be irrelevant. The reason is that the
PY approximation assumes invariance under rotation and the
emergence of a crystalline structure is just due to the fact that
the free energy associated with the solid is lower than the one
associated with the rotation invariant phase. It is interesting
to note, however, that the hard-sphere system possesses a
metastable super dense rotation invariant phase which is dis-
ordered. Actually, the pressure in that phase is well described
by the CS equation of state up to η = 0.57 for monodisperse
hard spheres, while for polydisperse hard spheres the related
BMCSL approach [45,46] extends way beyond that [47,48].
This super dense branch should, however, have terminated
at random close packing, where the pressure is expected
to diverge [49]. Furthermore, that branch as predicted by
PY continues into nonphysical volume fractions, even above
the crystalline close packing. The main trouble with PY is
therefore that there seems to be no intrinsic indication within
the PY theory that something goes wrong at higher volume
fractions. The first message of the present article is that,
contrary to the above statements, an intrinsic indication for
the failure of the theory at a certain density does exist in PY.

III. THE BREAKDOWN OF PY AT ηc

Consider the pair distribution function g2(r) defined above
in Eq. (2). g2(r) is obtained, within the PY approximation,
in the following way. The exact solution in odd d dimen-
sions provides the so-called direct correlation function c(r ) ≡
−λ(r )/ρ̄, for r < R. As it happens, those are polynomials
of degree d in r with coefficients that are functions of the
volume fraction η. Since for r > R the direct correlation
vanishes, obtaining the corresponding Fourier transform λk’s
is a straightforward analytic calculation. The last step to
obtain g2(r ) is to use Eq. (6) for the structure factor and finally
use Eq. (8) to obtain g2(r ) in the limit of infinite volume by
numerical integration.

We begin with the one-dimensional case. In Fig. 1 we
present the pair distribution function for three different vol-
ume fractions in one dimension. Of particular interest is the
high volume fraction graph. The apparent peaks are related to
the short-range order in the system, but it is clear enough that
nothing spectacular happens as the peaks are broadened and
reduced in height as a function of the distance.

We continue with Fig. 2, where we present the correspond-
ing pair distribution function in three dimensions.

The low volume fraction graph shows no interesting fea-
tures, but the intermediate and high-density graphs show
clearly short-range order, which is manifested by the oscil-
lations of the pair distribution function. The alert reader may

FIG. 1. The one-dimensional pair distribution functions for low,
intermediate and high volume fractions.

have already detected a serious problem in the η = 0.65 case.
The pair distribution function, g2(r ) as defined by Eq. (2), is
by definition nonnegative, while in Fig. 2 the pair distribution
function is negative in a certain region of r . Since we also
compare our numerical integration with an exact representa-
tion of g2(r ) [50,51] which is available in three dimensions
up to r � 5R this negativity cannot be attributed to an artifact
of the approximate numerical integration needed to obtain
the pair distribution function. More quantitatively, we can
look for the lowest volume fraction for which a negative part
appears. This is actually the point rc where both the function
and its derivative become zero simultaneously, i.e., g2(rc ) =
g′

2(rc ) = 0. Using the analytical result of Refs. [50,51] we find
that the lowest volume fraction for which a negative part ap-
pears is ηc(d = 3) � 0.612574... Similar regions of negative
values of the colloid-colloid pair distribution function were
obtained for colloids immersed in a fluid [52].

The inevitable conclusion thus is that the PY approxima-
tion breaks down intrinsically at high enough volume fraction.
Namely, in contrast to the reasoning based on the continuity
of the equation of state across physically impossible densities
that was discussed above, the PY calculation itself indicates
that something must go wrong, by giving negative values to a
function that is nonnegative definite. This is obviously good
news, since it sets an internal limit, ηc, on the applicability of
the fluid equation of state (or rotationally invariant phase) at
high volume fractions.

At this point it is natural to ask whether this ηc has any
physical meaning beyond being an intrinsic upper bound on
the theory? The first thing to check is whether it happens
in higher dimensions as well. We have obtained the pair

FIG. 2. The three-dimensional pair distribution functions for low,
intermediate and high volume fractions.
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TABLE I. A summary of the values ηc(d ) for dimensions in the
range 3 � d � 9.

d 3 4 5 6 7 8 9

ηc(d ) 0.613 0.467 0.367 0.230 0.207 0.087 0.112

distribution function for dimensions 3 < d � 9. For the odd
dimensions we used the exact solution, with a numerical so-
lution of the appropriate polynomial equation when required,
as well as a numerical Fourier transform to obtain the pair
distribution function; see Refs. [30,31] and the appendices
for more details (in these dimensions there is not any direct
analytical representation of the pair distribution function like
the one available in d = 3 in Refs. [50,51]). It turns out
that similar to three dimensions, for all odd dimensions in
the range 5 � d � 9, the pair distribution function becomes
negative at some range of r/R. and above some critical value
of the volume fraction, ηc(d ). The results are summarized in
Table I below, as well as graphically in Fig. 4 (red circles).
The results of our numerical integration are supported by the
exact 3D result [50,51] as well as intrinsically by comparison
with improved approximate integration.

For even dimensions we use the method and results re-
ported in previous work [32,33] that provides the pair distri-
bution function as a power series in the volume fraction η as

g2(r ) = 1 +
∑
n�1

ηng
(n)
2 (r ). (11)

In practice, the expansion functions, g
(n)
2 (r ) up to n = 13

for d = 4, 6, and 8 are available numerically from Ref. [33].
These series work very well for small volume fractions.
However, in the current work we are interested in fairly high
volume fractions and, in particular, in identifying the lowest
volume fraction for which g2(r ) develops a negative part.
Note that generically g2(r ) is a decreasing function, exhibiting
oscillations that become more and more pronounced as the
density rises. Based on this observation (and on the odd-
dimensional cases discussed above) the first negative part
should appear at the first minimum of g2(r ), which is ob-
tained in the interval 1 < r/R < 2. The technical difficulty
we encounter is that the radius of convergence of the series
Eq. (11) is not large, and scales as 2−d as the dimension,
d, grows (see Ref. [33] for a more complete discussion). In
particular, for the densities that are of interest the series does
not converge, and we need to use some method to resum it or
analytically continue it. One such popular method is the Padé
approximation [53]. We look at various Padé approximants of
g2(r ), which are composed of a polynomial of order N in η

divided by a polynomial of order M in η, of the general form

g2(r ) �
∑N

n=0 ηnun(r )∑M
n=0 ηndn(r )

. (12)

The coefficients of the two polynomials are chosen in such
a way that the expansion of the ratio of the two polynomials
recovers the series g2(r ) = ∑

n�0 ηng
(n)
2 (r ) up to order (N +

M ) in η. Since there are in principle many ways to choose N

and M , we mapped all the options up to order N + M = 13
and looked at the density for which the first zero crossing

occurs. We considered only the Padé approximants for which
no spurious pole appears inside the interval 1 < r/R < 2,
i.e., no spontaneous divergence appears where we expect
no real physical divergence to occur (this is a well-known
artifact of the Padé method). The various results in d = 4 are
presented in Fig. 3, and they lead to the following estimate
of the largest volume fraction ηc(d = 4) � 0.467 ± 0.013. A
similar analysis has been performed for d = 6 and 8 and the
results are summarized in Table I, as well as graphically in
Fig. 4 (blue squares).

IV. DISCUSSION

The next question to consider is whether the appearance
of ηc(d ) carries more physical meaning than the obvious one,
namely, the inadequacy of the PY equation at high volume
fraction. If indeed it carries any physical meaning it must be
related to the termination of the super dense, rotation invari-
ant steady-state, metastable phase. What is that termination
about? The termination point should be the point where the
pressure diverges. A natural candidate is the volume fraction
of random close packing (RCP). That concept is a bit vague,
however, as evident from the wide range of RCP volume
fraction obtained in three dimensions (the values of RCP
volume fraction in three dimensions, obtained by numerous
authors [4,54–59], are spread between 0.6 [57] and 0.68
[58], depending on the method of derivation). Due to this
unsatisfactory situation, Torquato, Truskett, and Debenedetti
criticized the validity of the concept of RCP altogether and
introduced instead the concept of MRJ [60,61], which is
defined as the maximal random packing among all jammed
configurations. The MRJ volume fraction is about 0.64 well
within the range of RCP volume fractions obtained by others.
Skoge et al. [62] give the MRJ volume fraction in four, five,
and six dimensions and suggest also a fit for the MRJ density
as a function of dimension for 3 � d � 6,

ηMRJ = c1 + c2d

2d
, (13)

where c1 = −2.72 and c2 = 2.56.
More recently, Parisi and Zamponi [63], using Replica the-

ory, predicted a rich phase space that contains some transition
densities describing the sphere packing in the super dense
regime. In particular, they predicted the J point, φJ , the point
where the system jams, and the glass-close-packing (GCP)
density, φGCP, which is the point where the pressure diverges,
and beyond which there is no disordered packing. Therefore,
the termination point we are talking about should be compared
to the GCP density, whose large d dependence is given by [63]

ηGCP ∝ d ln d

2d
. (14)

We compare these results to the terminal volume fraction
for which the PY pair distribution function becomes first neg-
ative ηc(d ) in Fig. 4. Note the GCP density based on Eq. (14)
leaves the proportionality coefficient undetermined, and we
fitted it to the data in Table I for the sake of comparison. We
also tried to fit our results using the functional form given by
Eq. (13), giving rise to the estimated values ĉ1 = −5.397 and
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FIG. 3. The various Padé approximants of the PY pair distribution function in d = 4. In each case, the order of the approximation is
indicated along with the resulting terminal density. The final estimate is based on the average of these different estimates. It results in ηc(d =
4) � 0.467 ± 0.013.

ĉ2 = 3.385. As can be seen, the fit based on Eq. (13) (solid
line) and the fit based on Eq. (14) (dashed line) are almost
indistinguishable within the dimensions under discussion.

The statement that the terminal volume fraction identified
by the Percus-Yevick theory has a physical meaning seems to
be justified by the observation that ηc(d ) is close in value and
behaves as a function of dimension similarly to the theoretical
predictions for MRJ/GCP. This observation is, of course, not

FIG. 4. A plot of ηc(d ) for odd (red circles) and even (blue
squares) dimensions in the range 3 � d � 9. We also present the
theoretical predictions for the MRJ density based on Eq. (13) (dotted
line), our fit based on Eq. (13) (solid line), and the theoretical
prediction for the GCP density based on Eq. (14) (dashed line).

a proof, but we can still present some supporting arguments.
First, some support is gained by the one-dimensional result
where the PY pair distribution function remains positive for
all volume fractions consistent with the fact that the real
one-dimensional system of hard spheres never crosses to an
RCP or MRJ state as the volume fraction is increased all the
way up to η = 1, where it crystallizes. Second, one can gain
further insight into why ηc(d ) may be related to RCP and
MRJ. Recall that PY provides a rotation invariant steady-state
solution, which above the crystallization density describes a
metastable disordered state. The current work shows that it
ceases to exist at ηc(d ), which is consistent with the definition
of RCP, namely, the largest density for which a disordered
phase exists. From another perspective, in a frozen system we
expect each particle to sit in a cage formed by other particles.
Vanishing g2(r ) at a certain distance indicates the existence
of such a cage. To understand that, recall that g2(r) is the
probability density to find a particle at r. Therefore, if g2(r )
vanishes at some distance rc, no particle can cross that point,
which means that the particles at r < rc are blocked within
this cage. This argument is supported by simulation results
[64] in which a freezing transition is accompanied by a strong
decrease in the first minimum of the pair distribution function.
Although these results are associated with freezing into an
ordered solid, we expect this to be also the case when the
frozen state is metastable and disordered.
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FIG. 5. The five-dimensional pair distribution functions for low-,
intermediate-, and high-volume fractions.

The derivation of the Percus-Yevick equation presented
above highlights its underlying assumptions. The main
ingredients are the approximate treatment of the hard-sphere
interaction by constraining the pair distribution function and
the assumption regarding the existence of a steady-state spher-
ically invariant state. In that sense this approximation does not
assume a fluid phase as such, and can, in principle, describe a
glassy phase as well. Previous attempts to relate the RCP den-
sity and the glass transition include experimental effort using
colloids [6], and theoretical efforts that use the rational func-
tion approximation (closely related to PY) [59,65]. However,
the theoretical efforts are not based on an intrinsic criterion
of the theory, but rather on an assumption of the existence
of a glassy phase and a comparison to an equation of state
of that phase developed by Torquato [66,67]. This approach
has the advantage of determining the glass transition density
ηg , which is not available in our approach. Basically, PY does
not take into account the dynamics and hence it is clear that
one would need further input if it is to be used to describe
the glass transition. We already explained that PY cannot
capture any nontrivial higher order correlation or response
functions, and definitely not time-dependent quantities, such
as χ4, which are extensively used in the glass community
[68–70] to characterize the glass transition. This observation
motivates future effort to take into account the dynamics (e.g.,
in the Fokker-Planck Eq. (4) along the lines of Ref. [35]) as
well as go beyond the present approximation (via constraining
the triplet distribution function and using the self-consistent

FIG. 6. The five-dimensional PY pair distribution function: a
zoom into the region where it becomes negative. As can be seen from
the figure, ηc(5) � 0.367.

FIG. 7. The seven-dimensional pair distribution functions for
low-, intermediate-, and high-volume fractions.

expansion), to gain more insight into the glassy state. Actually,
this may be particularly useful since previtrification arising
from ergodicity breaking [71] is already present way below
the glass transition in the supercooled phase.

V. SUMMARY AND FUTURE PERSPECTIVE

To summarize, in this paper we show that unlike the com-
mon lore, the Percus-Yevick theory for monodisperse hard
spheres provides an intrinsic indication for its limitation in the
regime of high densities. More specifically, the positivity of
the pair-correlation function g2(r) in d dimensions is violated
at a certain volume fraction which we denote ηc(d ), and thus
beyond it the PY theory is no longer consistent. It turns out
that this phenomenon occurs in all dimensions in the range
3 � d � 9, suggesting that it should hold also beyond. A
comparison of ηc(d ) to the various results and predictions
for the RCP, GCP, or MRJ volume fractions shows that they
are close and behave similarly as a function of dimension.
This observation suggests that the terminal volume fraction
in the PY theory actually indicates the largest density for
which a spherically invariant state can exist, even if the solid
phase is already preferred at this point, and without being
able to distinguish a fluid from a glass. In that sense, the
PY theory can provide a simple approximation or indication
for the existence of a termination density. Further investment

FIG. 8. The seven-dimensional PY pair distribution function: a
zoom into the region where it becomes negative. As can be seen from
the figure, ηc(7) = 0.207.
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FIG. 9. The nine-dimensional pair distribution functions for
low-, intermediate-, and high-volume fractions.

using more elaborate methods such as replica theory could
then reveal the full picture, which may contain glassy phases.

We hope this work will motivate other researchers to
check this phenomenon in many other systems described by
a Percus-Yevick theory. A few examples are hard spheres in
curved space [72–75] and hard spheres experiencing more
complicated interactions such as sticky hard spheres [76,77]
or square-well fluids [78]. Other important direction are sys-
tems composed of polydisperse or mixture of hard spheres
[17,65,76,78–81], various charged hard-sphere fluids [76],
such as the hard-sphere Yukawa fluid [82], ionic liquids
[17,78], polarizable fluids [79], and even fluids of nonspher-
ical shapes such as ellipsoids [83,84], spherocylinders [85],
and chainlike molecules [76,78].

APPENDIX A: THE PERCUS-YEVICK APPROXIMATION
IN TERMS OF THE DIRECT CORRELATION FUNCTION

The Percus-Yevick approximation derived in Sec. II and
summarized by Eqs. (7) and (8) is usually written in terms
of the direct correlation function c(r ), which is related to the
Lagrange multiplier introduced in Eq. (5) by c(r) = −λ(r)/ρ̄.
The direct correlation, c(r) is determined by the so-called
Ornstein-Zernike equation,

h(r) = c(r) + ρ̄

∫ ∞

0
h(r′)c(|r − r′|)dr′, (A1)

where h(r) = g2(r) − 1 is called the total correlation func-
tion. Note that this equation is equivalent to Eq. (8) by using
Eqs. (6) and (7). Here and in the following, we take r in units
of R, the diameter of the hypersphere to be unity, and thus in
d dimensions we have for the volume fraction η,

η = ρ̄Vd

(
R

2

)
=

(π

4

)d/2 ρ̄Rd

�
(

d+2
2

) , (A2)

FIG. 10. The nine-dimensional PY pair distribution function: a
zoom into the region where it becomes negative. As can be seen in
the figure, ηc(9) = 0.112.

where Vd (r ) is the volume of a d-dimensional hypersphere of
radius r , and �(x) is the Euler gamma function. This equation
generalizes Eq. (10) to any dimension.

In odd dimensions, a highly non trivial result [27–30]
is that the direct correlation function c(r ) within the PY
approximation turns out to be a polynomial of degree d,
namely, c(r ) = θ (1 − r/R)

∑d
i=0 ci (η)(r/R)i , where θ (x) is

the Heaviside function. Therefore, obtaining the correspond-
ing Fourier components c̃(k) is a straightforward analytical
calculation,

c̃(k) = (2π )d/2k− d−2
2

d∑
i=0

ci (η)
∫ 1

0
ui+d/2J d−2

2
(ku)du, (A3)

where Jν (x) is the Bessel function order ν. From this the
structure factor is obtained via S(k) = 1/[1 − ρ̄c̃(k)], and
the radial distribution function g2(r ) can be obtained using
Eq. (8). Note that in the dimensions discussed in the appen-
dices, namely for d > 3, there is no direct analytical repre-
sentation of g2(r ) as the one available in three dimensions
[50,51], and therefore there is no alternative to performing a
numerical inverse Fourier transform.

APPENDIX B: THE PAIR DISTRIBUTION FUNCTIONS IN
FIVE, SEVEN, AND NINE DIMENSIONS

In this part we show the function g2(r ) in five (Figs. 5
and 6), seven (Figs. 7 and 8), and nine (Figs. 9 and 10)
dimensions similarly to what has been presented in the text
for one and three dimensions. As can be seen in all cases
there is a critical volume fraction ηc(d ) at which g2(r ) starts to
develop a negative part, which marks the termination density
of applicability of the PY theory.
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