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Stochastic resets have lately emerged as a mechanism able to generate finite equilibrium mean-square
displacement (MSD) when they are applied to diffusive motion. Furthermore, walkers with an infinite mean
first-arrival time (MFAT) to a given position x may reach it in a finite time when they reset their position. In this
work we study these emerging phenomena from a unified perspective. On one hand, we study the existence of
a finite equilibrium MSD when resets are applied to random motion with (x?(¢)),, ~ t” for 0 < p < 2. For
exponentially distributed reset times, a compact formula is derived for the equilibrium MSD of the overall
process in terms of the mean reset time and the motion MSD. On the other hand, we also test the robustness
of the finiteness of the MFAT for different motion dynamics which are subject to stochastic resets. Finally,
we study a biased Brownian oscillator with resets with the general formulas derived in this work, finding its
equilibrium first moment and MSD and its MFAT to the minimum of the harmonic potential.
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I. INTRODUCTION

The strategies employed by animals when they seek food
are complex and strongly dependent on the species. A better
understanding of their fundamental aspects would be crucial
to control some critical situations as the appearance of invad-
ing species in a certain region or to prevent weak species to
extinct, for instance.

In recent decades, a lot of effort has been put into the
description of the territorial motion of animals [1]. Among
others, random-walk models as correlated random walks and
Lévy walks [2,3] or Lévy flights [4] are commonly used.
Nevertheless, in the vast majority of these approaches, only
the foraging stage of the territorial dynamics is described
(i.e., the motion patterns while they are collecting), leaving
aside the fact that some species return to their nest after
reaching their target.

Having in mind that limitation, Evans and Majumdar [5]
studied the properties of a macroscopic model consisting on a
diffusive process subject to resets with constant rate (meso-
scopically equivalent to consider exponentially distributed
reset times), which introduces this back-to-the-nest stage. For
this process, the mean first-passage time (MFPT) is finite and
the mean-square displacement (MSD) reaches an equilibrium
value. The latter result allows us to define the home range of
a given species being a quantitative measure of the region that
animals occupy around its nest.

From then on, multiple works have been published gen-
eralizing this seminal paper [6-18], by introducing for in-
stance absorbing states [7] or generalizing it to d-dimensional
diffusion [10]. Some works have also been devoted to the
study of Lévy flights when they are subject to constant
rate resets [19,20] and others have focused on the analy-
sis of first passage processes subject to general resets [21—
23]. Also, stochastic resets have been studied as a new
element within the continuous-time random-walk (CTRW)
formulation [24-28].
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Despite the amount of works devoted to this topic, the
existence of an equilibrium MSD and the finiteness of the
mean first-arrival time (MFAT) found in Ref. [5] for diffusive
processes with exponential resets have not been explicitly
tested in general. In this work we address this issue by ana-
lyzing these properties for a general motion propagator with
resets from a mesoscopic perspective. From all the existing
papers, in Ref. [29] Eule and Metzger perform a similar
study to ours but using Langevin dynamics to describe the
movement. Our work differs from that one in the fact that we
start from a general motion propagator P(x,t), which allows
us to derive an elegant and treatable expression for the first
moment and the MSD of the overall process in terms of the
motion first moment and MSD respectively [see Eq. (4)].
Moreover, the formalism herein employed eases the inclusion
of processes which are not trivial to model in the Langevin
picture as Lévy flights or Lévy walks.

This paper is organized as follows. In Sec. IIA we find
an expression for the propagator of the overall process in
the Laplace-position space and a general formula for the
MSD of the overall process in terms of the motion MSD; the
first-arrival properties of the system are studied in Sec. II B.
In Sec. III we apply the general results to three types of
movement (subdiffusive, diffusive, and Lévy), and in Sec. IV
we apply the formalism to study the transport properties and
the first arrival of a biased Brownian oscillator. Finally, we
conclude the work in Sec. V.

II. GENERAL FORMULATION

In this section we use a renewal formalism to study both
the transport properties of a random motion and its first-
arrival statistics. Concretely, we derive formulas for the global
properties of the system in terms of the type of random motion
and the reset distribution. We focus in three measures which
are of special interest in the study of movement processes: the
first moment, the MSD and the MFAT.
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A. Transport properties

Let us consider a general motion propagator P(x, t) start-
ing at x =0 and ¢t = 0 which is randomly interrupted and
starts anew at times given by a reset-time distribution @g(t).
When one of these resets happens, the motion instantaneously
recommences from x = 0 according to P(x, t) and so on and
so forth. Then, the propagator of the overall process, which
we call p(x, t), is an iteration of multiple repetitions of P(x, t)
and the running time of each is determined by ¢g(?).

We start by building a mesoscopic balance equation for
p(x, t). For simplicity, we assume that the overall process
starts at the origin. Then, the following integral equation is
fulfilled:

(e, 1) = Gh(P(x. 1) + f or(@p(e,t —)dr', (1)
0

where @p(t) = ftoo @r(t")dt’ is the probability of the first
reset happening after 7. The first term in the right-hand side
accounts for the cases where no reset has occurred until ¢
and, therefore, the overall process is described by the motion
propagator. The second term accounts for the cases where at
least one reset has occurred before ¢ and the first one has been
at time ¢’ < t, in which case the system is described by the
overall propagator with a delay #’. Notably, we have intro-
duced p(x,t —t’) as the propagator of the process starting at
x = 0 at time ¢’ [formally, it should be p(x, #;0,')]. This can
be done independently of the form of P(x, ¢) as long as the first
realization of the process does not affect the following ones.
When this is so, the scenario at ¢’ is equivalent to a system
starting at ¢y = 0 and having a time 7 — ¢’ to reach x.

Taking Eq. (1) to the Laplace space for the time variable,
we can isolate the propagator of the overall process to be

bl s) = E[f}'é(t)f’(x, )]
— @r(s)

where L[f(t)] = j‘(s) = fooo e~ f(¢t)drt denotes the Laplace
transform. We can now obtain a general equation for the first
moment of the overall process multiplying by x at both sides
of Eq. (2) and integrating over x. Doing so, one gets

Llpp(t)(x(#))m]
1 — @r(s)
where (x(t)),, is the time-dependent first moment of the mo-
tion process. Nevertheless, usually this process is symmetric
and its first moment is zero. In these cases, the second moment
or MSD becomes the most relevant magnitude to describe the

transport of the system. From Eq. (2), instead of multiplying
by x, if we do so by x? and integrate over x we get

LIgp ) (x* (1)) m]
1 — @r(s)

2)

(&(s)) = 3)

(#(s) = “)
where (x*(¢)),, is the motion MSD. The importance of this
equation lies in the fact that, if we know the motion MSD and
the reset-time probability density function (PDF) separately,
we can introduce them into Eq. (4) and directly obtain the
transport information about the overall process.

The renewal formulation used herein differs from the
method most commonly used in the bibliography to study
random-walk processes with resets, consisting on introducing

a reset term ad hoc to the master equation of the process (see
Ref. [5], for instance). Contrarily, it resembles the techniques
employed in Ref. [20] to study Lévy flights with exponentially
distributed resets or in Ref. [23] to study from a general per-
spective the first passage problem with resets. In these works,
processes described by a known propagator or completion
time distribution which are subject to resets are studied using
a renewal approach.

1. Exponentially distributed reset times

Let us study the particular case where reset times are ex-
ponentially distributed [pgr(¢) = ie” /@], keeping the move-
ment as general as before. In this scenario, the real space-time
propagator of the overall process in Eq. (2) can be found by
applying the inverse Laplace transform to be

t /
/ e m P, t)dt'.  (5)

: 1
pe(xv t) = eiap(xv t) + —
Tm Jo

m

Under the condition that the Laplace transform of P(x,r)
exists at s = rl, an equilibrium is reached and the distribution
there can be generally written as

Pl 5)

m

Pe(x) = (6)
The required condition for the equilibrium distribution to exist
includes a wide range of processes from the most studied in
the bibliography: Brownian motion, Lévy flights, etc. Simi-
larly, an expression for the equilibrium first moment of the
overall process in terms of the motion first moment can be
derived from Eq. (3) reading

()e(00) = ——, )

and for the MSD we have

),

Tﬂl

<x2>€(00) = (®)

Equation (8) introduces an extra condition on the type of
motion for it to define a finite area around the origin: the
Laplace transform of its MSD must be finite at s = % For
instance, despite Lévy flights reaching an equilibrium state
when they are subject to constant rate resets, since its MSD
diverges so does the MSD of the overall process.

Multiple processes can be found in the bibliography with
a MSD which is Laplace transformable and, therefore, reach
an equilibrium MSD when exponential resets are applied to
them. Some of these processes are Lévy walks, ballistic, or
even turbulent motion [30]. Notably, Eq. (6) is also applicable
to movement in more than one dimension when it is rotational
invariant. In this case, the movement can be described by
a one-dimensional propagator P(r,t) where r is the radial
distance from the origin. Therefore, any process without a pre-
ferred direction as correlated random walks and Lévy walks
in the plane [2] or self-avoiding random walks for arbitrary
spatial dimension [31] are significant processes which form a
finite-size area when they are subject to exponential resets.
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B. First arrival

The second remarkable result from Ref. [5] is the existence
of a finite MFPT when diffusive motion is subject to constant
rate resets. Since then, several works have been published
focused on the first completion time with resets [21-23] but
none of them have put the focus on the generality of these re-
sults with respect to the properties of the random motion. Dur-
ing the writing of this paper we have realized that a deep anal-
ysis of the first passage for search processes has been recently
done in Ref. [32]. Nevertheless, besides our general quali-
tative analysis being similar to the one performed there, we
study in detail cases of particular interest in a movement ecol-
ogy context as subdiffusive motion, Lévy flights, or random
walks in potential landscapes. Moreover, we perform numeri-
cal simulations of the process to check our analytical results.

In this work we use the MFAT as a measure of the time
taken by the process to arrive to a given position, instead of
crossing it as is considered in the MFPT. This is motivated
by the fact that for Lévy flights the MFPT has an ambiguous
interpretation due to the possibility of extremely long jumps
in infinitely small time steps. Contrarily, the MFAT can be
clearly interpreted and its properties have been deeply studied
in Ref. [33].

Before focusing on practical cases, let us start with the
general renewal formulation. We build a renewal equation for
the survival probability of the overall process o, () in terms of
the survival probability of the motion Q,(#) and the reset-time
PDF @g(t), similar to the equation for the propagator in the
previous section:

0, (1) = @0 (1) + / er(1NO< (o (t —t))dt'. (9)
0

Here, the first term on the right-hand side corresponds to the
probability of not having reached x, nor a reset has occurred in
the period ¢ € (0, t]. The second term is the probability of not
having reached x when at least one reset has happened at time
t. In the latter, we account for the probability Q,(¢") of not
having reached x in the first trip, which ends at a random time
t’, and the probability of not reaching x at any other time after
the first reset o, (r — t); and these two conditions are averaged
over all possible first reset times ¢’. Applying the Laplace
transform and isolating the overall survival probability we
obtain

Llpr)0x(1)]
1 — LIpr)0x(1)]
This equation, which has been recently derived by similar
means in Ref. [32], is the cornerstone from which the exis-

tence of the MFAT is studied. If in the asymptotic limit the
survival probability behaves as

6y(s) = (10)

o (t) ~ 175, (11)

then for 8 > 1 the MFAT is finite, while for 8 < 1 it diverges.
Since we have the expression of the survival probability in the
Laplace space, it is convenient to rewrite these conditions for
6, (s) instead. Let us consider the following situations:

(i) When B > 1, the Laplace transform of the survival
probability tends to a constant value for small s. The MFAT

is finite and can be found as

o0
Tr =/ tqx(t)dt = lim 6.(s), 12)
0 S

where ¢,(t) = — 8"5‘1(') is the first-arrival time distribution of
the overall process. Concretely, the MFAT can be found in

terms of the distributions defined above as

Jo ep)0x(t)dt
Tr = = .
1-— _/0 @R(I)Qx(t)dt
(ii) When g = 1, the Laplace transform of the survival

probability tends to infinity for small s. Therefore, in this case,
the MFAT is infinite since

(13)

lim 6, (s) = o0,
s—0

TF:OO.

(iii) When B < 1, the Laplace transform of the survival
probability diverges as 6,(s) ~ s#~! for small s. The MFAT
is infinite and the survival probability decays as o, (t) ~ t#
with time.

Notably, when the reset times are exponentially distributed
[or(t) = %6_47], the MFAT of the overall process is always
finite for motion survival probabilities which are Laplace-
transformable. Concretely, in this particular case Eq. (13)
reduces to

Tr = —f’"Qf(#? : (14)
T — Qx(a)

III. FREE MOTION

To get a deeper intuition about the results in the previous
section, let us take generic expressions for both the reset-time
distribution and the motion propagator. In the first place we
study well-known processes which do not have environmental
constrains (potential landscapes, barriers, etc.).

A. Transport properties

Let us start by studying the transport properties of the
overall process for a symmetric motion, i.e.,

(x@))m =0, (15)
with a MSD scaling as
O ~ 17, (16)

with 0 < p < 2. This choice includes subdiffusive motion for
p < 1, diffusive motion for p = 1 and superdiffusive motion
with for p > 1. Also, we take the reset-time distributions to be

tvr—1 NG
wr(t) = t—n);REyRﬁyR [—(a) i|, (17)

with 0 < y < 1, where

= (="
Fr D= 2 W)

n=0
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FIG. 1. The asymptotic behavior of the MSD of the overall
process for subdiffusive motion with p = 0.5 is shown in a log-log
plot. Three different exponents yz < 1 for the reset-time distribution
are considered and all of them are seen to scale as the solid black
guide line of slope 0.5. Therefore, the reset exponent yx only affects
multiplicatively to the transport regime.

is the generalized Mittag-Leffler function with constant pa-
rameters « and B. This allows us to recover the exponential
distribution for yg = 1 and we can also study power law
behaviors of the type @g(t) ~ t~'~7% for yg < 1. For this dis-
tribution, the survival probability ¢;(1) = ftoo @(t")dt’ reads

t Yr
() = Eyk’ll:_(f_> :| (18)

For a wide study about the properties of the Mittag-Leffler
function we refer the reader to [34]. In this case, since the
first moment is zero, the MSD becomes the most significant
moment of the process. From Eq. (8) one can see that MSD of
the overall process has two possible behaviors for large ¢ (see
Appendix 1 for details):

t?, foryp < 1

0, foryg =1 (19)

() ~ {
Therefore, for power-law reset-time PDFs with any exponent
yr < 1, the MSD of the overall process scales as the motion
MSD, so that a long-tailed reset PDF does not modify the
transport regime. To illustrate this, in Fig. 1 we show sim-
ulations of the asymptotic behavior of the overall MSD for
subdiffusive motion with long-tailed resets. There we see that,
as can be seen from Eq. (19), long-tailed resets only affect the
transport multiplicatively but not modify the regime.
When the motion is a Lévy flight, the MSD diverges for
all ¢, i.e.,

(X2 (t)) = 00, t > 0.

Hence, from Eq. (4), the MSD of the overall process also
diverges for any reset-time PDF except for the pointless case
@r(t) = 8(1).

Regarding exponential reset-time distributions case (yg =
1), an equilibrium state is reached and we can in principle
compute an equilibrium distribution. We start by considering
a subdiffusive propagator (see Eq. (A2) in Ref. [35]) which,

® SD
0.20 A1 m D
A LF
0.15 A
3
& 0.10 A
0.05 A
0.00 +

T T T
-75 -5.0 -2.5 0.0 2.5 5.0 7.5
X

FIG. 2. Equilibrium distribution of the overall process with sub-
diffusive (SD) with y = 0.5, diffusive (D) and Lévy flight (LF) with
o = 1.5 motion propagator, all with D = 0.1, and exponential reset
times with 7,, = 10. Each stochastic simulation is compared to the
corresponding analytical expressions Egs. (21) and (23) (solid lines).

in the Fourier-Laplace space, reads

1
s+ Ds!=rk?’

with D the (sub-)diffusion constant. This propagator describes
subdiffusive movement for y < 1 and diffusive movement for
y = 1. Then, the equilibrium distribution given by Eq. (6)
becomes a symmetric exponential distribution

~ov

(k,s) = (20)

|x]

e Vo, (1)

1
Pe(x) =
JVAaDt}

where for y = 1 we recover the equilibrium distribution found
in Ref. [5]. If instead of a subdiffusive propagator we consider
a superdiffusive motion and, in particular, the propagator for
a Lévy flight in the Fourier-Laplace space,

1

Pk, s)= ———,
k)= D

(22)

with @ < 2 and D a constant, the equilibrium distribution of
the overall process becomes

*  cos(kx)
() =2 —dk. 23
pelx) /0 1 + 7, Dk® *)

In Fig. 2 we compare both analytical results in Egs. (21) and
(23) with numerical Monte Carlo simulations of the process.
The agreement is seen to be excellent.

B. First arrival
Let us now study the MFAT for a general motion survival
probability decaying as
Ou(t) ~ 177,

for long ¢t and the same reset-time distribution defined in
Eq. (17). Under these assumptions, the asymptotic behavior of
the overall survival probability is (see Appendix 2 for details)

qg>0 (24)

o)~ ifyp+q< 1, (25)
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FIG. 3. The tail exponent g of the survival probability o (t) ~ t#
of the overall process at x = 0.5 is shown for subdiffusive motion
with exponent y in (a) and Lévy flight motion with exponent « in (b),
both subject to resets at times given by a Mittag-Leffler distribution
with tail parameter y and t,, = 10. The values of 8 have been com-
puted for yx € {0.05,0.1...0.9, 0.95}, and y € {0.5, 0.55...0.9, 0.95}
in (a) and o € {1.05,1.1...1.9, 1.95} in (b). Gaussian interpolation
has been applied to smooth the simulated results. In each plot,
the solid red curve [yg —|—% =1 in (a) and y — é =0 in (b)]
corresponds to the limit between finite (flat pink region) and infinite
(gradient) MFAT. The dashed curves are the analytical level curves
for § =0.9,0.8... from top to bottom. The black regions observed
just below the limiting curves are due to the discretization of the
parameter space.

as has been recently found in Ref. [32] by similar means. This
implies that, in this case, 7r = co. However, when yg + g > 1
the MFAT is finite and can be expressed as

fooo EVR»I[ - (Tt—m)yR]Qx(f)df
- 0oo MLT;IEVR,VR[ - (%)VR]Qx(t)df '

T

Tr(x) =

(26)

The two regions where the MFAT is finite and infinite for
a subdiffusive [Fig. 3(a)] and a Lévy flight motion process
[Fig. 3(b)] are shown in Fig. 3. Let us study these two cases
separately. As shown in Ref. [36], for a subdiffusive motion,
the survival probability in the long-time limit decays as

0.(t) ~17%, 27)

with 0 < y < 1. For y = 1 we recover the survival probabil-
ity of a diffusion process. Here we can identify ¢ = % and
from Eq. (25) the survival probability of the overall process
decays as

ou(t) ~ 1R (28)

when yg + % < 1 and the MFAT is infinite in this region of
exponents. Contrarily, the MFAT is finite when yg + 5 > 1.
This result has been compared with stochastic simulations of
the process [Fig. 3(a)], where the limiting curve yg = 1 — %
and the tail exponent for the overall survival probability are in
clear agreement with the analytical results.

We have also studied the survival probability when the
underlying motion is governed by Lévy flights propagator. In

this case, the survival probability decays as

Q.(t) ~ 17", (29)

with 1 < o < 2, as shown in Ref. [33]. Here we can also
recover the diffusive behavior for o« = 2. Identifying g = 1 —
1 the overall survival probability reads

o (t) ~ tare]! (30)

in the asymptotic limit and for yg — é < 0. In this case the

MFAT is infinite while for ygr — é > (it is finite. In Fig. 3(b)
we present the results to see that these two regions are also
found in a stochastic simulation of the overall process.

Unlike the existence of an equilibrium MSD, the finiteness
of the MFAT is not drastically broken when the reset-time
distribution changes from short to long-tailed. A remarkable
property that we can see in Fig. 3 is that both the reset-time
distribution and the motion first-arrival time distribution can
have an infinite mean value and still the mean value of the
overall process is finite. This property has been explicitly
tested by computing the simulated MFAT for parameters in
the white region in Fig. 3 for both the subdiffusive and the
Lévy flight case, and also for the diffusive limiting case.
The simulated MFAT is compared to the one obtained from
numerical integration of Eq. (13) and the results are shown to
be in agreement (Fig. 4).

IV. BROWNIAN MOTION IN A BIASED
HARMONIC POTENTIAL

In this section we study the transport and the first-arrival
statistics of a Brownian particle starting at x = 0 with a white,
Gaussian noise with diffusion constant D. It moves inside a
biased harmonic potential V (x) = %k(x —xp)? and it has a
drift . Unlike the cases studied in the previous section, here
the movement has an intrinsic bias towards the point xy. This,
in an ecological context, can be seen as the knowledge the
animal have about the optimal patches to find food.

When this system is constrained by constant rate resets
(i.e., exponentially distributed reset times), an equilibrium
distribution is attained as shown in Ref. [12] by introducing
resets to the Fokker-Plank equation of the system. Instead,
with the general formalism derived in Sec. II, we can first
study the system without resets and introduce the results
to the formulas derived above. Then, we start from the
Langevin equation for the Brownian particle in an harmonic
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FIG. 4. The simulated MFAT for three representative cases of
subdiffusion (SD) with y = 0.5, diffusion (D) with y =1 and a
Lévy Flight with o = 1.5, all with D = 0.1, are compared to the
analytical results obtained from Eq. (13) (solid curves) for different
reset distribution tail exponents yx and 7, = 10. Concretely, the
MFAT is computed at a distance x = 0.5 from the origin.

potential [37]:
dx D oV (x)

dt
where the over-dumped limit has been implicitly taken and
n(t) is a Gaussian noise so that (n(z)) = 0 and (n(t)n(t")) =
8(t —t’) (i.e., a white noise). For a biased harmonic potential
it becomes

o +V2Dn(@), 31

‘;_f — —DF(x — x0) + V2D (1), (32)

where F = k/y has been defined. From this equation, the
first moment and the MSD of the particle can be derived (see
Ref. [38] for specific methods and tools) to be

X)) = x0(1 — e PF1) (33)

and
() = (% +x§>(1 _ ¢ 2DFy

_ zxoe—DFl(l _ e—DFt)7 (34)

respectively. Introducing these expressions to the main equa-
tions for the moments of the process [Egs. (3) and (4)] we can
obtain the Laplace space dynamics of the mean

o =0 3 - B0 (35)
s 1 — @r(s)
and the MSD
(1L AT i +206)
(#(s)) = (F +x0)[s ot }
_ 2)68 {ZJ;S(S + DF) —A(ﬁ;(s + 2DF) ’ (36)
1 — @r(s)

in terms of the reset-time PDF. For small s, the terms with
1 — @g(s) in the denominator can be neglected with respect
to the term % when the distribution @g(¢) is long tailed. This
is because in the s — O limit, the numerator of these terms

remains finite while the denominator 1 — Qr(s) ~ s7%, with
vr < 1. Therefore, for long-tailed reset-time distributions,
the first is the dominant term. However, for exponentially
distributed resets we have that

@i(s +2DF) 1 1

== o
I —oxs) ~ s1+2DFz, 196D
and, equivalently,
Or(s + DF 1 1
(pR(S ) _ Lo (So).

1 —@r(s)  s1+DFx,

Therefore, the equilibrium first moment and MSD of the
overall process can be seen to be

(x(00)), = X0<1 — Ky m) 37
and
(% (00))e = (i +x§) (1 - KyR;>
F | +2DFx,
2 DFt,
w0 T DFoy( 1 2DFe) OO

respectively, with «,, =1 for yg =1 and «,,, =0 for y <
1. Then, when the reset distribution is long-tailed, both the
equilibrium mean and MSD are equal to the ones for the pro-
cess without resets. However, when resets are exponentially
distributed, the values of the equilibrium mean and MSD are
diminished by the factors preceded by «,, in the equations
right above. This difference has been tested for the MSD by
means of a stochastic simulation of the Langevin equation
(Fig. 5). As happens for the transport properties of the free
processes studied in Sec. III, for this type of movement we
also find that long-tailed reset distributions do not affect the
significant features of the MSD (and also the mean in this
case), while reset times which are distributed exponentially do
affect actively the long-time behavior of the overall process.

Let us now study its MFAT for this system. The first-arrival
distribution gy, (¢) at the minimum of the potential for this
motion process has been found to be [37]

2D€7DFI|X()| { (xoefDFt)Z

3 20;

qx ()=
! 2oy

}, (39)
from which the survival probability can be found as
[e.¢]
Oy, (1) =/ 4y (t)dt’, (40)
t

with o, = (1 — ¢ PF")/F. In the asymptotic limit, the first-
arrival distribution decays as g, () ~ ¢ Pf" and so does the
survival probability Q,,(t) ~ e PF" since the decay is expo-
nential. A direct consequence of this is that the global survival
probability also has a short tail. This can be seen by looking at
Eq. (10): When the asymptotic limit of Qy,(¢) is exponential,
the expression of the global survival probability in the Laplace
space tends to a finite value for small s, which is in fact the
first-arrival time of the global process (see Appendix 3 for
further details).

In Fig. 5 we compare the analytical result predicted by
Eq. (13), taking the survival probability in Eq. (39) instead
of the ones studied in Sec. III, with Monte Carlo simulations
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FIG. 5. In (a) we show the MSD as a function of time for a
simulation of a Brownian motion (D = 0.25) with an harmonic
force F = 1 with equilibrium point at x, = 10 subject to resets with
7, = 10 and different yx parameters. For all three yx < 1 the MSD
tends to the same value, which is larger than the equilibrium MSD for
yr = 1.In (b) the simulated MFAT for F = 1,D =1, and 7,, = 10 is
compared to the analytical result for Mittag-Leffler reset distributions
with different yx (solid curves).

of the Langevin equation in Eq. (32). They are seen to be in
perfect agreement. Here, unlike for the free motion processes,
resets always penalize the arrival to the target.

V. CONCLUSIONS

In this work we have derived an expression for the first
moment, the MSD and the MFAT of stochastic motion with
resets from a unified, renewal formulation. Concretely, we
find them in terms of a general resetting mechanism and the
type of stochastic motion. This opens the analysis of resets
acting on a vast range of stochastic motion processes without
the need of building a particular model for each case.

The existence of an equilibrium MSD and a finite MFAT
has been tested for a wide class of stochastic processes subject
to random resets. The first turns to be extremely sensitive with
respect to the reset-time distribution. On one hand, when the
reset-time distribution is long-tailed, the transport regime of
the overall process is qualitatively equivalent to the regime of
the motion [see Eq. (19) for free motion and Egs. (37) and (38)
for the biased harmonic Brownian oscillator]. On the other

hand, for exponential distributions of reset times, qualitative
changes are observed regarding the transport of the overall
process. Concretely, we have found that for a free motion
process with MSD scaling as (x2(t))m ~ 1P, an equilibrium
state with finite MSD is reached. For the Brownian oscillator,
both the equilibrium mean and MSD are modified by the re-
setting mechanism. Therefore, while exponentially distributed
resets actively affect the long-time behavior of both processes,
when long-tailed reset-time distributions with infinite mean
are chosen, the asymptotics of the motion process are not
modified.

Regarding the first-arrival time, we have seen that the
difference between long-tailed and exponentially distributed
reset times is not as marked as for the transport properties. In
fact, the transition between them is seen to be soft [compare
Figs. 5(a) and 5(b), for instance]. Interestingly, for the free
motion process case, we find that a motion process with an
infinite MFAT, when it is restarted at times given by a long-
tailed PDF (i.e., with infinite mean), may have a finite MFAT
(see Fig. 4)

ACKNOWLEDGMENTS

This research has been supported by the Ministerio de
Economia y Competitividad through Grant No. CGL2016-
78156-C2-2-R.

APPENDIX: ASYMPTOTIC ANALYSIS

In this Appendix we derive the results in Eqgs. (19) and
(25) about the asymptotic behavior of the MSD Eq. (A1) and
the survival probability Eq. (A2), respectively, for a motion
process with resets. Concretely, we compute them for motion
MSD as in Eq. (16) and the survival probability as in Eq. (24).
Also, in Eq. (A3) we compute the MFAT for an exponentially
decaying motion survival probability.

1. Mean-square displacement of a free process with resets

We start by rewriting the general expression for the MSD
in Eq. (4) as
T (s)
Ty(s)’
with Ti(s) = LIgz(1)(x*(1))p] and Tr(s) = 1 — @g(s). To
study the long ¢ limit of the MSD, in the Laplace space we
must study the small s limit. Let us start by 7>(s). In the

Laplace space, the Mittag-Leffler distribution can be seen [34]
to be

(X(s)) = (Al)

1
0 = A2
%) = T (A2)
from which
1 (Ts)?R
T =1—- — ~ VR A3
) e e e TR

in the small s limit. Let us proceed now with 7 (s). In the long
t limit, the Mittag-Leffler survival probability in Eq. (18) can
be seen [34] to behave as

1R, for
e t/™m  for

yr < 1

AT (Ad)

Pr(t) ~ {
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Then, with Eq. (16) it follows that

L[P77E] ~ g7 for  yp <1
Ti(s) {E[r”e"/’"’] ~ 59 for yr=1" (AS)
Putting the elements together,
R s~=P  for yp <1
um»~{fh for 1 (A6)

Finally, applying the inverse Laplace transform one finds

ua»~ﬁ? oo (A7)

, for yp=1

2. Survival probability of a free process with resets

We proceed similarly to the MSD case. Here we start from
Eq. (25) and we rewrite it as

Lo T
)= Ty

with 77 (s) = LIgx(1)0x(1)] and T;(s) = LIgr(1)Qx(1)]. Let
us start for the latter. As in the previous case, we study the
small s limit, where we have that

(A8)

[e.¢]

gr()dt = 1.  (A9)

o0

7,(0) = / Pr(1Q(1)dt < f

0 0

In the second step we have used that the survival probability

0,(t) < 1, Vt > 0, and in the last step the normalization of

@gr(t) is used. Then, the denominator of Eq. (A8) is strictly

positive when s — 0, which implies that the decaying of &,(s)

when s — 0 is exclusively determined by the decaying of the
numerator 7 (s), i.e.,

HONS

)~ TG

T/ (s) (A10)

for small s. Applying the inverse Laplace transform to this
expression one gets the equivalent relation

ox(t) ~ LTI ()] = ()0 (1)

for long ¢. If the survival probability of the motion process
decays as Q,(t) ~ ¢4, g > 0, as assumed in the main text,
and @x(t) is again the Mittag-Leffler survival probability,

(Al1)

which decays as in Eq. (A4), we have that

o (t) ~ 17 7r1 (A12)

asymptotically. On one hand, if yg + ¢ < 1, then the mean
first-arrival time is infinite. On the other hand, if yg + ¢ > 1,
which includes exponentially distributed reset times for ygx =
1, then the mean first-arrival time is finite and can be found as

Jo7 @p)0x(t)dt
- fOOO (pR(t)Qx(t)dt .

Finally, taking a Mittag-Leffler reset-time distribution, one
recovers the result in Eq. (13) of the main text.

Tr(x) = 6x(0) =

(A13)

3. MFAT for exponential motion survival probability

Here we show that when the motion survival probability
is of the form Q.(t) = e, the overall process MFAT
is always finite. In this particular case and from Eq. (10),
the overall survival probability in the Laplace space can be
written as

Llpg(t)e "] Prls +r(x)]

6.(s) = - . (Al4
O = Ll = T s +ro)” Y
Taking the limit s — 0 one can get the MFAT:
Tp = lim 6,(s) = — PRI (A15)
s—0 1 — @rlr(x)]

The Laplace transform of the survival probability can be
expressed as

¢%m>=£[fm¢mfmf]=}él@§9,
t S

thus,
1
@)’

which is of course finite for all r(x) and independent of g ().
In fact, this result is obvious because the completion rate of a
process with Q,(¢) = e~"™ is constant in time and, therefore,
resetting it does not modify its completion time. Regarding the
motion survival probability of the process in Sec. IV, since the
finiteness of the MFAT is determined by the long ¢ behavior
of the survival probability, when only the asymptotic decay is
exponential, the mean first-arrival time is also finite.
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