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Molecular simulation of orthobaric isochoric heat capacities near the critical point
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A molecular simulation strategy is investigated for detecting the divergence of the isochoric heat capacity
(Cy) on the vapor and liquid coexistence branches of a fluid near the critical point. The procedure is applied to
the empirical Lennard-Jones potential and accurate state-of-the-art ab initio two-body and two-body + three-
body potentials for argon. Simulations with the Lennard-Jones potential predict the divergence of Cy, and the
phenomenon is also observed for both two-body and two-body + three body potentials. The potentials also
correctly predict the crossover between vapor and liquid Cy values and the subcritical liquid Cy minimum,
which marks the commencement C\ divergence. The effect of three-body interactions is to delay the onset of

divergence to higher subcritical temperatures.

DOI: 10.1103/PhysRevE.99.012139

I. INTRODUCTION

The critical point is reached when all of the physical
properties of coexisting phases become identical [1,2]. For
one-component fluids there is a unique critical point between
vapor and liquid phases, whereas two-component fluids can
exhibit both vapor-liquid and liquid-liquid critical points for
a range of different compositions. In two-component fluids,
the critical points form distinct critical lines that can be used
to classify the different types of phase behavior [3]. A critical
surface can be envisaged for three-component fluids [1]. The
most common critical point involves only two phases, but
tricritical points involving three phases and other higher order
critical phenomena [4] are possible.

From a theoretical perspective, it has been established
[5-7] that some key thermodynamic properties, such as the
isochoric heat capacity (Cy) diverge at the critical point,
ie,Cy > o00asT — T,, p— pe, p—> pPe, X = X, Where
T, p, p, and x denote temperature, pressure, density, and
composition (for mixtures), respectively, and the ¢ subscript
indicates a critical property. This behavior has also been
observed from experimental data [8], including experiments in
microgravity [9]. Recently, some theoretical studies [10—12]
for one-component systems have suggested that thermody-
namic properties do not diverge at a single critical point, but
this alternative perspective is not widely accepted [13,14].

Molecular simulation [15] is usually the preferred theo-
retical method for evaluating statistical mechanical properties
because it can be used to both rigorously and unambiguously
determine the behavior of a specified intermolecular potential.
However, issues such as the correlation length and finite size
effects mean that it is difficult to apply to critical phenomena.
Special finite size scaling algorithms [16,17] have been devel-
oped for phase behavior in the vicinity of the critical point.
However, computational procedures are invariably designed
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to yield finite values and divergences are often only detected
indirectly as computing failures.

Even if the weaknesses of the molecular simulation ap-
proach at the critical point could be addressed fully, it would
not be easy to observe Cy — oo because of the way that Cy
is calculated from ensemble fluctuations. This work addresses
this issue, demonstrating the usefulness of an alternative ap-
proach and reporting results from empirical, semiempirical,
and ab initio two-body and three-body intermolecular poten-
tials.

II. THEORY

A. Calculation of Cy from statistical ensembles

For the microcanonical (NVE), canonical (NVT), and grand
canonical (uVT) ensembles, we obtain [15]
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where the angled brackets denote ensemble averages, N is the
number of particles, T is the temperature, V is the volume,
w is the chemical potential, E is the total energy, Epy is the
potential energy, and k is Boltzmann’s constant. In Eq. (1), §
denotes a fluctuation from the ensemble average, e.g., SN? =
N? — (N?). The nature of these ensemble definitions means
that it would be difficult to observe Cy — oo. It would require
the fluctuations in either Epy or N to be infinite for the
NVT and pVT ensembles, which is very unlikely to occur
in a conventional molecular simulation. Irrespective of the
fluctuations in Ej, it is impossible to observe Cy — oo from
the above NVE ensemble definition.
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Lustig [18-20] has proposed alternative methods for ob-
taining thermodynamic quantities from ensemble averages,
which do not require fluctuation formulas. Molecular dy-
namics (MD) in the NVE ensemble normally also conserves
total linear momentum (P) and, as such, is more accurately
described as a NVEP ensemble. Lustig [18] identified that
the NVEP ensemble also conserved another quantity (G)
related to the motion of the particles. This insight permits
the calculation of thermodynamic quantities, without using
fluctuation formulas. Cy for the NVEPG ensemble is given
by
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and K is the kinetic energy. It is evident from Eq. (2) that
Cy — oo means 2 — 0, which is computationally much
easier to both evaluate and monitor.

B. Intermolecular potentials

The energy of interaction [u(r)] between particles as a
function of distance () can be simply obtained using the
Lennard-Jones (LJ) potential [21],

o)) e

where o and ¢ are the collision diameter and minimum well
depth, respectively. The origin of the LJ potential is mainly
empirical. It is an effective multibody potential, which is not
specific to any atom, although it is widely believed to be most
suitable for noble gases, such as argon.

In contrast, accurate ab initio two-body potentials have
been developed specifically for argon. Jiger, Hellmann, Bich,
and Vogel (JHBV) developed [22] an ab initio potential for
argon using a modified version of the Tang-Toennies [23]
function,
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where R =r/o, ¢/k = 143.123 K, and 0 = 0.336 nm. The remaining terms are constants required to obtain optimal agreement

with the energy curve and are given elsewhere [22].

Patkowski and Szalewicz (PS) reported [24] an ab initio pair interaction potential for argon, using basis sets with higher
cardinal numbers. The attractive contribution was fitted to the same function as the JHBV potential, but the repulsive term is

different, i.e.,
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for which ¢/k = 142.944 K and o0 = 0.336 nm. The meaning
and values of the remaining parameters are the same as
reported elsewhere [24].

It is of interest to contrast these ab initio potentials with the
semiempirical potential for argon reported by Barker, Fisher,
and Watts (BFW) [25]. The BFW potential was designed to
fit solid, liquid, and gas data by combining the Barker-Pompe
(upp) [26] and Bobetic-Barker (upg) [27] potentials,

UBFW = 0.75”33 + 0.25MBP, (7)

which have the same analytical form, but different parameter-
ization. The overall expression for the BFW potential is
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where R = r/rmin and rpi, defines the interatomic separation
at which the potential has a minimum. The characteristic pa-
rameters of the BFW potential for argon are ¢/ k = 142.095K
with its position at rp;, = 0.376 nm. The values of the other
coefficients are as summarized in the literature [25].

The LIJ potential incorporates the effective multibody
contributions required for the calculation of thermodynamic
properties and fluid phase equilibria. In contrast, the two-body
potentials will often require additional higher-body terms to
improve their accuracy. It has been well established [28-31]
that the addition of the Axilrod-Teller-Muto (ATM) [32,33]
three-body term is often sufficient:

V(1 + 3 cos6; cos; cosb)
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where v is the nonadditive coefficient, which can be deter-
mined experimentally [34] from dipole oscillator strengths.
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TABLE I. Summary of literature values [35-39] of the orthobaric densities for the Lennard-Jones potential and corresponding 2 and
isochoric heat capacity data obtained in this work from NVEPG MD simulations with N = 2000 particles.

T* o* (Liquid) N (Liquid) Cy (Liquid) Jmol ! K~! 0* (Vapor) N (Vapor) Cy(Vapor)Jmol~! K™!
0.75 0.819 0.400 20.8 0.00350 0.650 12.8
0.8 0.801 0411 20.2 0.00591 0.640 13.0
0.833 0.786 0.418 19.9 0.00807 0.631 13.2
0.909 0.752 0.436 19.1 0.0151 0.620 13.4
1.0 0.704 0.462 18.0 0.0284 0.595 14.0
1.08 0.658 0.478 174 0.0480 0.558 14.9
1.15 0.630 0.486 17.1 0.068 0.536 15.5
1.2 0.560 0.484 17.2 0.099 0.503 16.5
1.24 0.523 0.483 17.2 0.124 0.472 17.6
1.25 0.516 0.472 17.6 0.148 0.454 18.3
1.27 0.496 0.476 17.5 0.178 0.418 19.9

For argon, v = 7.3382 x 107 Jcm® [34]. The angles and
separations in Eq. (9) refer to a triangular configuration of
atoms. Combining Eq. (9) with the two-body potentials yields
JBHV + ATM, PS + ATM, and BFW + ATM potentials.

C. Simulation details

We performed MD simulations in the NVEPG ensemble
[18,19] to determine €2 for the LJ potential along saturated
vapor and liquid densities [35-39]. The NVEPG ensemble
simulations involve implementing a conventional NVEP sim-
ulation while keeping track of the volume derivatives of the
intermolecular potential and K. The initial configuration for
all simulations was a face centered cubic lattice structure.
The equations of motion were integrated using a five-value
Gear predictor-corrector scheme [15] with a reduced time
step of T = 0.001. A total of N = 2000 particles was used.
For each state point, simulation trajectories were commonly
run for 2 x 10° time steps with 1 x 10° time steps used to
equilibrate the system. The cutoff radius was half of the box
length and long-range corrections were applied. To calculate
the standard error, the postequilibration data were divided into
10 equal blocks. The calculated standard errors are typically
either less than or slightly larger than the size of the symbols
used in the figures and, as such, are not shown. It will often be
convenient to use reduced temperature (7T* = kT /e = Qqo/¢)
and reduced density (p* = po?). In contrast to T and p,
which can only be evaluated from the specified intermolecular
parameters, Cy = kCy.

III. RESULTS AND DISCUSSION

We have specifically chosen to determine 2 along the
saturated (orthobaric) liquid and vapor densities because
many well-documented state points are available from ei-
ther potential-based simulations [35-39] or experimental [8]
studies. This means we can have confidence in the trend in
2 values. In contrast, calculating 2 along either the critical
isochor or critical temperature is likely to have greater uncer-
tainty because it would depend on the accuracy of the single
critical datum point. Except for the LJ potential, which has
been studied extensively [17], the critical point predicted by
the potentials studied here has not been determined accurately.

The orthobaric densities used for the LJ calculations are
summarized in Table L.

The variation of 2 with respect to 7* along the saturated
vapor and liquid curves of the LJ fluid is illustrated in Fig. 1
and the numerical values are summarized in Table I. The sat-
urated vapor €2 values decline with increasing 7. The rate of
decline of the vapor phase €2 increases with increasing 7* and
itis likely that @ — O as T* — T*., which means that Cy —
oo as T* — T*.. This is in contrast to other works [10-12],
which failed to detect the divergence of Cy . In contrast to the
vapor phase, the saturated liquid €2 values initially increase
with increasing T*. At T* > 1.15, Q appears to attain a
maximum value, followed by lower values as 7* — T*.. The
liquid values appear to cross the vapor values, which is usually
indicative of Cy divergence in real fluids, as discussed below.
It is also likely that @ — 0 (Cy — oo) as T* — T*, for the
liquid branch, although the evidence is not as compelling.
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FIG. 1. The variation of 2 with respect to temperature along the
coexisting vapor (O) and liquid (@) phases of the LJ potential (N =
2000) showing divergence when approaching the critical temperature
(marked by a dashed line).
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FIG. 2. The variation of 2 with respect to temperature along the
coexisting vapor (O) and liquid (@) phases of the two-body JHBV
potential for argon (N = 500) showing divergence in the vicinity of
the critical temperature (marked by a dashed line). The maximum in
the liquid 2 value corresponds to a Cy minimum.

Recently, orthobaric Cy simulation data [40] for argon
potentials using Lustig’s approach for the NVT ensemble [21]
have been reported. The principle of equivalence [15,41] be-
tween statistical ensembles means these data can be analyzed
to yield values of Q2. Results for the JHBV, PS, and BFW
potentials are illustrated in Figs. 2—4.

Figure 2 shows that vapor 2 values obtained for the
JHBV potential decline with increasing 7*. Significantly, as
T* — T*,,therate of this decline increases, providing a clear
indication that 2 — 0. For the orthobaric liquid, €2 initially
increases with increasing 7%, passing through a maximum
value before rapidly diverging to lower values as 7" — T*,.
Therefore, we can infer that Q — 0 as T* — T*_. for both
the vapor and liquid phases. Figure 2 shows that the vapor
and liquid phase €2 values cross in the vicinity of 7*.. This
is consistent with experimental Cy vapor and liquid values
[8], which also cross before diverging. Qualitatively identical
behavior was also observed for the ab initio PS (Fig. 3) and
semiempirical BFW (Fig. 4) two-body potentials for argon. It
is of particular interest to note that the semiempirical BFW
potential yields similar results to the more recent ab initio
JHBYV and PS two-body potentials.

It is apparent from Figs 2—4 that the two-body potentials
clearly display the crossover of € values and 2 — 0 as
T* — T*. for both the liquid and vapor phases. Comparing
Figs 24 to Fig. 1 suggests a possible phenomenological
explanation for the failure of some LJ potential simulations
to correctly predict the divergence of Cy. The onset of Cy
divergence is linked to the crossover of the liquid and vapor
phase properties. For the JHBV, PS, and BFW potentials,
both the maximum in the liquid phase €2 (Cy minimum) and
crossover of the liquid and vapor curves occurred well before
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FIG. 3. The variation of 2 with respect to temperature along the
coexisting vapor (O) and liquid (@) phases of the two-body PS
potential for argon (N = 500), showing divergence in the vicinity
of the critical temperature (marked by a dashed line). The maximum
in the liquid €2 value corresponds to a Cy minimum.

T*.. In contrast, for the LJ potential (Fig. 1), the crossover
behavior occurs at values of 7* that are noticeably closer to
T*.. The near-critical region is challenging for conventional
simulations, which means that calculations for the LJ potential
are arguably more prone to error because of the greater
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FIG. 4. The variation of 2 with respect to temperature along the
coexisting vapor (O) and liquid (@) phases of the two-body BFW
potential for argon (N = 500), showing divergence in the vicinity of
the critical temperature (marked by a dashed line). The maximum in
the liquid €2 value corresponds to a Cy minimum.
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FIG. 5. The variation of 2 with respect to temperature along the
coexisting liquid phase for the JHBV + ATM (@), PS + ATM (A),
and BFW + ATM (@) potentials for argon (N = 500), showing
divergence in the vicinity of the critical temperature (the different
dashed lines reflect differences in ¢ values for the potentials). The
maximum in the liquid €2 value corresponds to a Cy minimum.

proximity of this phenomenon to the critical point. The incor-
rect near-critical behavior of some LJ potential calculations
may be caused by the failure to detect the liquid phase €2
maximum (Cy minimum) at subcritical temperatures. Our
method does not exhibit these limitations.

The LJ potential is an effective multibody potential,
whereas the JBHV, PS, and BFW potentials only consider
two-body interactions. To investigate whether the absence
of higher-body contributions was a factor in the results, we
extended the analysis to include ATM interactions reported
elsewhere [40]. The liquid €2 values as a function of 7* for
the JHBV + ATM, PS + ATM, and BFW + ATM potentials
are illustrated in Fig. 5. It is apparent that the results for JHBV

+ ATM and PS 4+ ATM potentials are quantitatively similar
for most temperatures, whereas the BFW + ATM potential
predicts a higher € maximum than the other potentials. In
common with the two-body calculations, in all cases a maxi-
mum £2 is observed, following which @ — Oas T* — T*,.

The addition of the ATM potential to the two-body po-
tentials (Fig. 5) increases the 2 maximum, which occurs at
higher T*. The LJ potential (Fig. 1) also yields a larger 2
maximum for the liquid phase than the two-body potentials
(Figs. 2—4). This means that the crossover between the liquid
and vapor phase 2 values will most likely occur at a higher
subcritical temperature than is observed for the two-body
potentials.

IV. CONCLUSIONS

Calculating the €2 values is an effective method for detect-
ing the divergence of Cy in the vicinity of the critical point.
MD simulations with the LJ potential indicate Cy divergence,
particularly along the saturated vapor curve. The behavior is
also observed for both the saturated vapor and liquid phase
Q values obtained from accurate two-body JHBV, PS, and
BFW potentials for argon. This is also the case when ATM
interactions are added to the two-body potentials.

Calculations with the two-body and two-body + ATM po-
tentials also correctly predict other experimentally observed
subcritical phenomena such as the crossover of vapor and
liquid Cy values and the Cy minimum. These observations
were made for simulations with a relatively small number
of particles. In other computational methods, such a small
number of particles would be considered too few to permit
definitive conclusions for properties near the critical point.
Our approach does not appear to suffer from this limitation.

The inability of some approaches to correctly predicted the
Cy behavior of the LJ potential near the critical point can be
partly attributed to the crossover between liquid and vapor
phase properties occurring relatively closer to the critical
point, which causes well-documented computational difficul-
ties for conventional simulations. In contrast, the crossover
of Cy for accurate two-body potentials commences at notice-
ably lower subcritical temperatures. The effect of three-body
interactions is to shift the Cy crossover closer to the critical
temperature.

[1] R.J. Sadus, High Pressure Phase Behaviour of Multicomponent
Fluid Mixtures (Elsevier, Amsterdam, 1992).

[2] R. J. Sadus, AIChE J. 40, 1376 (1994).

[3] P. H. van Konynenburg and R. L. Scott, Philos. Trans. R. Soc.
A (London) 298, 495 (1980).

[4] R. J. Sadus, J. Phys. Chem. 96, 5197 (1992).

[5] M. E. Fisher, in Critical Phenomena, edited by F. J. W. Hahne,
Lecture Notes in Physics (Springer, Berlin, 1982), Vol. 186,
pp. 1-139.

[6] M. E. Fisher, Rev. Mod. Phys. 70, 653 (1998).

[7] H. Behnejad, J. V. Sengers, and M. A. Anisimov, in Applied
Thermodynamics of Fluids, edited by A. R. H. Goodwin,
J. V. Sengers, and C. J. Peters (RSC, Cambridge, 2010),
pp. 321-367.

[8] E. W. Lemmon, M. O. McLinden, and D. Friend, in NIST Chem-
istry WebBook, NIST Standard Reference Database Number 69,
edited by P. J. Linstrom and W. G. Mallard (National Institute
of Standards and Technology, Gaithersburg, 2016).

[9] A. Haupt and J. Straub, Phys. Rev. E 59, 1795 (1999).

[10] L. V. Woodcock, Int. J.Thermophys. 35, 1770 (2014).

[11] L. V. Woodcock, Entropy 20, 22 (2018).

[12] S. Pieprzyk, A. C. Brarika, Sz. Mackowiak, and D. M. Heyes,
J. Chem. Phys. 148, 114505 (2018).

[13] J. V. Sengers and M. A. Anisimov, Int. J. Thermophys. 36, 3001
(2015).

[14] 1. H. Umirazkov, Int. J. Thermophys. 38, 8 (2018).

[15] R.J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms
and Object-Orientation (Elsevier, Amsterdam, 1999).

012139-5


https://doi.org/10.1002/aic.690400810
https://doi.org/10.1002/aic.690400810
https://doi.org/10.1002/aic.690400810
https://doi.org/10.1002/aic.690400810
https://doi.org/10.1098/rsta.1980.0266
https://doi.org/10.1098/rsta.1980.0266
https://doi.org/10.1098/rsta.1980.0266
https://doi.org/10.1098/rsta.1980.0266
https://doi.org/10.1021/j100192a001
https://doi.org/10.1021/j100192a001
https://doi.org/10.1021/j100192a001
https://doi.org/10.1021/j100192a001
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1103/PhysRevE.59.1795
https://doi.org/10.1103/PhysRevE.59.1795
https://doi.org/10.1103/PhysRevE.59.1795
https://doi.org/10.1103/PhysRevE.59.1795
https://doi.org/10.1007/s10765-013-1411-5
https://doi.org/10.1007/s10765-013-1411-5
https://doi.org/10.1007/s10765-013-1411-5
https://doi.org/10.1007/s10765-013-1411-5
https://doi.org/10.3390/e20010022
https://doi.org/10.3390/e20010022
https://doi.org/10.3390/e20010022
https://doi.org/10.3390/e20010022
https://doi.org/10.1063/1.5021560
https://doi.org/10.1063/1.5021560
https://doi.org/10.1063/1.5021560
https://doi.org/10.1063/1.5021560
https://doi.org/10.1007/s10765-015-1954-8
https://doi.org/10.1007/s10765-015-1954-8
https://doi.org/10.1007/s10765-015-1954-8
https://doi.org/10.1007/s10765-015-1954-8
https://doi.org/10.1007/s10765-017-2331-6
https://doi.org/10.1007/s10765-017-2331-6
https://doi.org/10.1007/s10765-017-2331-6
https://doi.org/10.1007/s10765-017-2331-6

RICHARD J. SADUS

PHYSICAL REVIEW E 99, 012139 (2019)

[16] N. B. Wilding, Phys. Rev. E 52, 602 (1995).

[17] J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. Phys. 109,
10914 (1998).

[18] R. Lustig, J. Chem. Phys. 100, 3048 (1994).

[19] K. Meier and S. Kabelac, J. Chem. Phys. 124, 064104 (2006).

[20] R. Lustig, Mol. Simul. 37, 457 (2011).

[21] J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).

[22] B. Jdger, R. Hellmann, E. Bich, and E. Vogel, Mol. Phys. 107,
2181 (2009).

[23] K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).

[24] K. Patkowski and K. Szalewicz, J. Chem. Phys. 133, 094304
(2010).

[25] J. A. Barker, R. A. Fischer, and R. O. Watts, Mol. Phys. 21, 657
(1971).

[26] J. A. Barker and A. Pompe, Aust. J. Chem. 21, 1683 (1968).

[27] J. A. Barker, R. O. Watts, J. K. Lee, T. P. Schafer, and Y. T. Lee,
J. Chem. Phys. 61, 3081 (1974).

[28] G. Marcelli and R. J. Sadus, J. Chem. Phys. 111, 1533 (1999).

[29] L. Wang and R. J. Sadus, J. Chem. Phys. 125, 144509 (2006).

[30] L. Wang and R. J. Sadus, Phys. Rev. E 74, 074503 (2006).

[31] M. Vlasiuk, F. Frascoli, and R. J. Sadus, J. Chem. Phys. 145,
104501 (2016).

[32] B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

[33] Y. Muto, J. Phys. Math. Soc. Japan 17, 629 (1943).

[34] P. J. Leonard and J. A. Barker, in Theoretical Chemistry:
Advances and Perspectives, edited by H. Eyring and D. Hen-
derson (Academic, London, 1975), Vol. 1, p. 117.

[35] A. Z. Panagiotopoulos, N. Quirke, M. Stapleton, and D. J.
Tildesley, Mol. Phys. 63, 527 (1988).

[36] R. J. Sadus and J. M. Prausnitz, J. Chem. Phys. 104, 4784
(1996).

[37] D. Plackov and R. J. Sadus, Fluid Phase Equilib. 134, 77 (1997).

[38] D. A. Kofke, J. Chem. Phys. 98, 4149 (1993).

[39] W. Shi and J. K. Johnson, Fluid Phase Equilib. 187-188, 171
(2001).

[40] M. Vlasiuk and R. J. Sadus, J. Chem. Phys. 147, 024505 (2017).

[41] D. A. McQuarrie, Statistical Mechanics (Harper Collins,
New York, 1976).

012139-6


https://doi.org/10.1103/PhysRevE.52.602
https://doi.org/10.1103/PhysRevE.52.602
https://doi.org/10.1103/PhysRevE.52.602
https://doi.org/10.1103/PhysRevE.52.602
https://doi.org/10.1063/1.477787
https://doi.org/10.1063/1.477787
https://doi.org/10.1063/1.477787
https://doi.org/10.1063/1.477787
https://doi.org/10.1063/1.466446
https://doi.org/10.1063/1.466446
https://doi.org/10.1063/1.466446
https://doi.org/10.1063/1.466446
https://doi.org/10.1063/1.2162889
https://doi.org/10.1063/1.2162889
https://doi.org/10.1063/1.2162889
https://doi.org/10.1063/1.2162889
https://doi.org/10.1080/08927022.2011.552244
https://doi.org/10.1080/08927022.2011.552244
https://doi.org/10.1080/08927022.2011.552244
https://doi.org/10.1080/08927022.2011.552244
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1080/00268970903213305
https://doi.org/10.1080/00268970903213305
https://doi.org/10.1080/00268970903213305
https://doi.org/10.1080/00268970903213305
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.3478513
https://doi.org/10.1063/1.3478513
https://doi.org/10.1063/1.3478513
https://doi.org/10.1063/1.3478513
https://doi.org/10.1080/00268977100101821
https://doi.org/10.1080/00268977100101821
https://doi.org/10.1080/00268977100101821
https://doi.org/10.1080/00268977100101821
https://doi.org/10.1071/CH9681683
https://doi.org/10.1071/CH9681683
https://doi.org/10.1071/CH9681683
https://doi.org/10.1071/CH9681683
https://doi.org/10.1063/1.1682464
https://doi.org/10.1063/1.1682464
https://doi.org/10.1063/1.1682464
https://doi.org/10.1063/1.1682464
https://doi.org/10.1063/1.479412
https://doi.org/10.1063/1.479412
https://doi.org/10.1063/1.479412
https://doi.org/10.1063/1.479412
https://doi.org/10.1063/1.2353117
https://doi.org/10.1063/1.2353117
https://doi.org/10.1063/1.2353117
https://doi.org/10.1063/1.2353117
https://doi.org/10.1103/PhysRevE.74.074503
https://doi.org/10.1103/PhysRevE.74.074503
https://doi.org/10.1103/PhysRevE.74.074503
https://doi.org/10.1103/PhysRevE.74.074503
https://doi.org/10.1063/1.4961682
https://doi.org/10.1063/1.4961682
https://doi.org/10.1063/1.4961682
https://doi.org/10.1063/1.4961682
https://doi.org/10.1063/1.1723844
https://doi.org/10.1063/1.1723844
https://doi.org/10.1063/1.1723844
https://doi.org/10.1063/1.1723844
https://doi.org/10.1080/00268978800100361
https://doi.org/10.1080/00268978800100361
https://doi.org/10.1080/00268978800100361
https://doi.org/10.1080/00268978800100361
https://doi.org/10.1063/1.471172
https://doi.org/10.1063/1.471172
https://doi.org/10.1063/1.471172
https://doi.org/10.1063/1.471172
https://doi.org/10.1016/S0378-3812(97)00047-2
https://doi.org/10.1016/S0378-3812(97)00047-2
https://doi.org/10.1016/S0378-3812(97)00047-2
https://doi.org/10.1016/S0378-3812(97)00047-2
https://doi.org/10.1063/1.465023
https://doi.org/10.1063/1.465023
https://doi.org/10.1063/1.465023
https://doi.org/10.1063/1.465023
https://doi.org/10.1016/S0378-3812(01)00534-9
https://doi.org/10.1016/S0378-3812(01)00534-9
https://doi.org/10.1016/S0378-3812(01)00534-9
https://doi.org/10.1016/S0378-3812(01)00534-9
https://doi.org/10.1063/1.4991012
https://doi.org/10.1063/1.4991012
https://doi.org/10.1063/1.4991012
https://doi.org/10.1063/1.4991012



