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Hydrogen self-dynamics in diluted liquid mixtures with neon: An inelastic neutron scattering study
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We have measured the dynamic structure factor of liquid neon-hydrogen mixtures (T = 30.1 K) at two
different H2 concentration levels (namely, 3.4% and 10%) making use of inelastic neutron scattering. This
system has been selected since the presence of heavy Ne atoms strongly influences the self-dynamics of the
H2 centers of mass via the formation of short-lived cages, which act both on the vibrational and the diffusive
parts of the single-particle motion. After operating a standard data reduction and the subtraction of the Ne signal,
experimental neutron spectra were analyzed through a generalization of the Young and Koppel model, and the H2

center-of-mass self-dynamic structure factor was finally extracted for the two liquid samples. Important physical
quantities (namely, single-particle mean kinetic energy and self-diffusion coefficient) were estimated from the
experimental data and then compared with quantum dynamical calculations, which also provided simulations of
the velocity autocorrelation functions for Ne atoms and H2 centers of mass. The latter estimates, in the framework
of the well-known Gaussian approximation, were used to simulate the H2 center-of-mass self-dynamic structure
factor in the same kinematic range and thermodynamic conditions of the neutron scattering one. The comparison
between measured and calculated spectra turned out to be qualitatively good, but some discrepancies, especially
in the low-frequency part, seem to reinforce the idea of the existence of relevant non-Gaussian effects as in the
case of pure hydrogen and H2-D2 mixtures.
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I. INTRODUCTION

Understanding the microscopic dynamics of semiquantum
liquids, i.e., liquid systems exhibiting moderate quantum ef-
fects, such as H2, D2, and Ne, is still considered to be an
interesting (and partially unsolved) problem in condensed
matter physics [1]. In general, semiquantum liquids do not
freeze at temperatures lower than their Debye temperature [2].
However, differently from the extreme quantum fluids (e.g.,
superfluid He isotopes, ultracold atoms, etc.), quantum statis-
tics plays no important role in the translational dynamics of
the particles composing these systems [2], so that it is possible
to make use of the Maxwell-Boltzmann statistics to describe
most of the properties of semiquantum liquids. Given this
situation, any precise experimental determination of dynamic
quantities (i.e., time-correlation functions or their frequency
spectra) related to these liquids that can be compared to
corresponding theoretical predictions becomes quite valuable,
like, for instance, recent neutron scattering experiments on hy-
drogen [3] and its isotopic mixtures [4]. In these two studies,
the authors have obtained experimental estimates of the self-
dynamic structure factor [5] of H2 centers of mass (CMs) in
pure bulk liquid and mixed with liquid deuterium, both at low
temperature. These systems were selected because the inter-
action between thermal neutrons and H2 makes it possible to
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single out the self-dynamics (i.e., incoherent) of the molecular
CMs [5]. This is because the coherent cross section of neutron
scattering from H2 is much smaller than the incoherent one so
contributions to the inelastic neutron scattering signal from
correlated motions are negligible. Now, it is common practice
to connect the mentioned self-dynamic structure factor (also
known as self-scattering law) to the power spectrum of the
velocity autocorrelation function (VACF). This connection is
generally attempted by means of the so-called Gaussian ap-
proximation (GA) [6], which owes its name to the assumption
that the self-intermediate scattering function [5] is given by

Is (Q, t ) = exp
[− 1

3Q2w(t )
]
, (1)

where w(t ) is the time-dependent mean squared displacement
of the scattering nucleus. In this respect, the cited works on
H2 and H2-D2 [3,4] provided clear experimental evidences of
a GA failure rather larger than in liquid argon [7], possibly
due to the more quantum delocalized nature of the hydrogen
molecule. Thus, the purpose of this study is to investigate
the GA when applied to hydrogen impurities in Ne. A low-
concentration H2 solution in liquid Ne shows an equation of
state quite different from the pure hydrogen one and much
closer to that of pure neon. In particular, it is possible to
achieve high molecular densities remaining in the liquid state.
In addition, the system is interesting from the microscopic
point of view: the H2-H2 and Ne-Ne pair potentials are very
similar to each other, so it is not incorrect to think of a
hydrogen molecule as a sort of “light” neon atom, at least from
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the center-of-mass point of view. In this way, our solution may
be seen as a collection of similar particles, a small fraction
of which is more quantum delocalized than the rest. Here,
the quantum character of H2 is even stronger than in the two
previous cases (i.e., H2 and H2-D2), as shown by a higher
zero-point CM mean kinetic energy [8,9]. As a matter of fact,
a typical quantum feature of these systems is represented by
the value of single-particle mean kinetic energy: due to the
zero-point particle motion, one observes that the ground-state
component of the kinetic energy is not negligible if compared
to the thermal component of the same quantity [10]. In ad-
dition, one can hypothesize a higher value of the activation
energy [11] of the hydrogen self-diffusion coefficient since the
diffusional motion of H2 could be hindered by an increased
particle density and, moreover, by the possible formation
of Ne pseudocages around the hydrogen molecule. These
short-lived structures might be more effective in the Ne case
than in the D2 one due to the much larger particle mass.
Last but not least, it is worth noting that there already exist
preliminary neutron spectra [9,12] on some neon-hydrogen
liquid mixtures, recorded at high resolution but at constant
scattering angle (i.e., with a variable momentum transfer)
on the TOSCA-II spectrometer. They actually exhibit large
deviations from the GA (see Fig. 2 in Ref. [12]), at least at a
semiqualitative level, in a narrow momentum transfer interval.

The rest of this paper will be organized as follows: The
experimental procedure will be described in detail in Sec. II,
while in Sec. III we will determine the self-dynamic structure
factor of H2 CMs, starting from the experimental neutron
spectra. Section IV will be fully devoted to the computa-
tional details concerning the quantum dynamics simulations
performed on the Ne-H2 mixtures under investigation, in
order to extract their VACFs. In Sec. V, we will discuss the
obtained results and will check the validity of the GA: the
physical quantities derived from the experimental spectra will
be compared to their estimates obtained from the aforemen-
tioned quantum simulations. Finally, Sec. VI will be devoted
to conclusions and perspectives.

II. EXPERIMENTAL DETAILS

Inelastic neutron scattering measurements were performed
on MARI [13], a spectrometer installed at the ISIS Neutron
and Muon Source (Rutherford Appleton Laboratory, United
Kingdom). MARI is a direct-geometry spectrometer based
on the time-of-flight technique: the incoming neutron energy
E0 is selected by a Fermi chopper prior to the scattering
event, while the final neutron energy E1 is determined from
the time of arrival of the neutrons which are first scattered
and then detected. The angular range available on the instru-
ment (3.43◦ < θ < 134.13◦) is almost continuously covered
by 3He-gas detectors in steps of 0.43◦. Using an appropriate
value of the incident energy E0 = 62.0 meV, we have been
able to explore a wide zone of the (Q,ω) kinematic plane,

namely, 2.0 Å
−1 � Q � 8.5 Å

−1
, h̄ω � 60.0 meV, with h̄ω

being the energy transfer and h̄Q the momentum transfer
modulus. The MARI energy transfer resolution (�h̄ω) is
determined by the frequency and the type of Fermi chopper
employed in the measurements. In our case, a medium reso-
lution option (i.e., a Gd-slits chopper spinning at 400 Hz) was

TABLE I. Thermodynamic conditions of the measured liquid
samples, including sample number, species, temperature T , hydro-
gen concentration c[H2], pressure p, total molecular density n, and
integrated proton current IC. Estimated uncertainties are reported in
parentheses.

No. Species T c[H2] p n IC

(K) (%) (bar) (nm−3) (μA h)

1 Vanadium 293(1) 904.2
2 Empty can 30.08(3) 3478.0
3 Pure Ne 30.2(3) 2.27(4) 34.3(2) 2147.8
4 Ne-H2 30.1(1) 10(1) 7.1(3) 31.0(4) 4157.5
5 Ne-H2 30.08(3) 3.4(3) 4.7(2) 33.1(2) 5464.0

selected, resulting in values of �h̄ω at zero energy transfer
(i.e., at the so-called elastic line) ranging from 2.02 meV at the
lowest scattering angles to 3.20 meV at the highest one, exper-
imentally determined via standard vanadium measurements.
Since the measured data concerning the elastic line zone and
actually used in the rest of this study come from detectors
placed at θ � 60.4◦, we have always employed an averaged
value of the resolution at ω = 0, namely, �h̄ω(ω = 0) = 2.37
meV, unless explicitly stated in the text. As for the �h̄ω values
at ω > 0, estimates obtained from routines available on the
spectrometer were considered.

A comprehensive description of the samples (including
species, temperature, hydrogen concentration, pressure, total
molecular density, and integrated proton current) can be found
in Table I. Temperature and pressure were monitored during
the measurements, and the total molecular density calculated
from these and various thermodynamic data available in the
literature: Ref. [14] for pure neon, Ref. [15] for pure hydro-
gen, and Refs. [16,17] for neon-hydrogen mixtures. Another
important issue was the rotational population (labeled by the
quantum number j ) of the hydrogen molecules composing the
experimental samples, namely, either ortho-hydrogen (o-H2,
odd j ) or para-hydrogen (p-H2, even j ) species. As it will
be made clear later, normal hydrogen (n-H2) has been always
employed in this experiment. This is hydrogen in which the
ortho-para distribution is not in thermodynamic equilibrium
at the actual (low) temperature of the sample (like, on the
contrary, for the so-called equilibrium hydrogen e-H2), but is
still in equilibrium at room temperature: c[o-H2]/c[n-H2] =
75% [15]. This is possible since spontaneous low-temperature
ortho-para conversion proceeds very slowly (typical time of
the order of several days [18]) in the liquid phase, if an
appropriate catalyst is not present. The choice to employ n-H2

instead of pure p-H2 was dictated by experimental reasons
linked with the long preparation time of the Ne-H2 mixture
at room temperature in the gas phase. As a matter of fact,
p-H2 would have been potentially unstable (back conversion
from p-H2 to o-H2) giving rise to a condensed mixture with an
unknown ortho-para ratio. The method used to experimentally
check this ratio during the experiment will be explained later.

After performing the calibration measurement at room
temperature making use of an appropriate vanadium annulus,
we inserted the sample container (i.e., the scattering cell) into
the instrumental sample chamber equipped with a closed cycle
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refrigerator, we cooled it down to the desired temperature (i.e.,
T = 30 K), and then we measured the empty cell neutron
spectrum for a counting time of about 19.5 h. The cell was
made of an aluminum alloy with a circular-slab geometry
(annulus) and consisted of two concentric cylinders giving
rise to a 2.0-mm void to be filled with the liquid mixture
sample exhibiting an average diameter of 42.0 mm. Unlike
other neutron spectrometers, the MARI detectors lie below
the sample in a vertical scattering plane. Thus, the annulus
axis was perpendicular to the neutron beam, but horizontal
rather than vertical as usual. The external diameter of the
container was almost coinciding with the vertical beam size
(about 50 mm, including penumbra), while the container total
length (70.0 mm) was rather bigger than the horizontal beam
size (still about 50 mm, including penumbra), so the cell
was masked with boron nitride ceramics in order to exclude
its bulky ends which contained screws, seals, and no liquid
sample. In this way, the portion of cell irradiated by neutrons
was reduced to approximately 45 mm in length.

Subsequently, the temperature of the cell was increased
to T = 33 K and neon gas (CK Special Gases, 99.997%
assay) was allowed to condense in it. The pressure of the
gas handling system was initially set to about p = 4.5 bar
(somewhat larger than the corresponding saturated vapor pres-
sure SVP = 2.2381 bar [14]). Then, the cell temperature was
slowly (in order to prevent the formation of solid plugs in the
tubes) decreased to T = 15 K where the pressure reached the
final value of p = 0.354 bar with Ne frozen in the sample
container. At this stage, knowing the exact initial volume of
the neon gas in the handling system, we were sure that the cell
was completely filled with the sample. Later, the temperature
was raised again to 30 K, the pressure was adjusted to p =
2.3 bar, and a neutron measurement of sample No. 3 was
started (see Table I), lasting for about 15 h. The stability of
the thermodynamic conditions during this measurement was
not perfect although still fully acceptable: temperature and
pressure uncertainties were estimated to be around 0.3 K and
0.04 bar, respectively.

As for the mixed samples No. 4 and No. 5 (see again
Table I), they were obtained in a different and more elaborate
way. Let us summarize the main steps of the procedure
followed to produce the No. 4, c[H2] = 10%, liquid mixture,
recalling that the No. 5, c[H2] = 3.4%, one was prepared
similarly. An appropriate amount of normal hydrogen gas (CK
Special Gases, 99.99% assay) was mixed with the aforemen-
tioned neon gas in a buffer volume at room temperature under
a total pressure of about 4.13 bar. The exact amount of gaseous
mixture needed to fill up the sample cell (identical to the
can already used for pure Ne) with liquid was condensed in
it at T = 28 K. Then, the cell was slowly cooled down to
T = 4 K, so to decrease the vapor pressure of the gas handling
line to an extremely low value of few mbar. This step was
regarded as very important in order to prevent an undesired
separation of the mixture, where the more volatile gas (i.e.,
H2) could concentrate in the buffer volume, while the less
volatile (i.e., Ne) condensed in the coldest point of the gas
line, namely, in the sample cell. This would have altered the
mixture composition in quite a noticeable way. At the end,
the sample can was isolated from the rest of the gas handling
line and warmed up to the requested experimental temperature

(i.e., 30 K) where an internal pressure, oscillating in the
range 6.5–7.5 bar, built up spontaneously. This instability was
considered as fully natural since the sample had necessarily
to cross a narrow two-liquid zone [19] before reaching, at
T = 29.00 K, the single-liquid zone, safely stable for all
hydrogen concentrations [17]. Thus, after a long equilibration
time of the order of 2 h (carefully monitored through the
sample pressure), the neutron measurement of sample No. 4
started, lasting for about 35 h, divided in two equal subruns.
Finally, sample No. 5 was prepared, condensed, stabilized,
and measured for 40.75 h, still divided in two equal subruns.

III. DATA ANALYSIS

At the end of the neutron scattering experiment on MARI,
raw time-of-flight data were normalized to the incoming neu-
tron counts of the monitor, purged of contributions from noisy
tubes, and corrected for detector efficiency. Subsequently,
processed time-of-flight data were transformed into energy
transfer spectra, removing the well-known kinematic factor
(E1/E0)1/2 [5] and performing the appropriate rebinning.
Finally, the usual vanadium spectra normalization was per-
formed, taking into account the minute angular effect due
to the Debye-Waller factor of this metal. The outputs of this
part of the data analysis procedure were the so-called �(θ, ω)
spectra, particularly suitable for the following operations:
(i) empty can scattering subtraction after considering sample
attenuation; (ii) sample self-shielding evaluation and correc-
tion. Both points (i) and (ii) were implemented using nu-
merical integration routines which approximately calculated
the scattering attenuation from the sample cell in the two
conditions: empty and filled with the three mentioned sam-
ples, namely, Nos. 3–5. In the last two of these calculations,
concerning the total cross section of the respective Ne-H2

mixture, a proper linear combination of the total scattering
cross section of neon [20], σt, Ne, with that of liquid normal
hydrogen at T = 16 K [21], σt, n-H2 (E0), was assumed to be
accurate enough for the self-shielding correction. As for the
possible multiple scattering contaminations, considering the
high values of the liquid sample transmission at E0 = 62 meV
(namely, 94.7%, 86.5%, and 91.6%, respectively, for Nos. 3,
4, and 5), no correction was performed.

At this stage, �(θ, ω) spectra were transformed into
constant-Q data, �(Q,ω), through standard binning rou-
tines. This transformation made possible the determination
of inelastic spectra at Q values approximately ranging in

the interval 2.0 Å
−1

< Q < 8.5 Å
−1

in steps of 0.5 Å
−1

. The
following phase of the data reduction procedure included the
subtraction of the scattering due to neon from the spectra of
samples No. 4 and No. 5. This was accomplished making use
of the experimental pure neon spectrum (i.e., sample No. 3),
properly scaled to account for sample molecular densities
and Ne concentrations, as carefully explained in Appendix A.
After this subtraction, processed neutron spectroscopic data
essentially contained only scattering from n-H2 and so could
be dubbed as �n-H2 (Q,ω) and, in the present energy transfer
range, included only six relevant rotational terms, which were
related to the j = 0, 1 → j ′ = 0, 1, 2 hydrogen transitions.
Neglecting the small coherent scattering contribution due to
the so-called distinct term (as shown in Appendix A), one
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FIG. 1. Example of subtraction of the unwanted rotational con-
tributions from the experimental n-H2 spectrum derived from a neon-
hydrogen liquid mixture (sample No. (4), c[H2] = 10%, T = 30.1 K).

All plotted data have been measured at Q = 3.25 Å
−1

. The full black
line represents the original spectrum (including various rotational
contributions together with the j = 1 → j ′ = 1 one), dotted blue
line stands for all the unwanted rotational contributions, while the
dashed red one is their difference amounting to the j = 1 → j ′ = 1
contribution only.

could relate the experimental �n-H2 (Q,ω) to the self-part
of the H2 CM dynamic structure factor Ss,CM(Q,ω) making
use of the so-called “generalized Young and Koppel model”
[22–24]:

�n-H2 (Q,ω) =
1∑

j=0

xj

2∑
j ′=0

(
σj,j ′

4π

)
fj,j ′ (Q) Ss,CM(Q,ω)

⊗ δ(h̄ω − Ej,j ′ ), (2)

where xj is the relative population of the rotational species
j , σj,j ′ is the neutron scattering cross section for the j → j ′
rotational transition, while fj,j ′ (Q) and Ej,j ′ are the molec-
ular form factor and the energy shift for this transition, re-
spectively. This model, which does not include semiclassical
approximations, is based on the assumption that the free
rotational dynamics of H2 may be separated from the many-
body CM one. Although this assumption might generally
sound rather peculiar as far as neutron scattering from H2

and D2 is concerned, it has been successfully applied in a
large number of condensed matter systems (see Refs. [25,26]
for two early examples). As a matter of fact, our neutron
experimental spectra could be understood as a “comb” of
replicas of Ss,CM(Q,ω), shifted by Ej,j ′ and weighted by
the population and cross-section terms xj σj,j ′ , as well as
by the Q-dependent form factor fj,j ′ (Q). While transitions
j = 0 → j ′ = 0, 2 are intrinsically rather weak [22–24] for
all the momentum transfer values experimentally available,
the other four transitions, i.e., j = 0 → j ′ = 1 and j = 1 →
j ′ = 0, 1, 2, were actually directly visible in the �n-H2 (Q,ω)
spectra (as shown in the example reported in Fig. 1) with

j = 1 → j ′ = 1 being clearly the strongest up to about 4 Å
−1

in both mixtures. In this way, it was possible to single out

FIG. 2. Experimental self-scattering law for H2 centers of mass
in the neon-hydrogen liquid mixture of sample No. 4 (c[H2] = 10%,

T = 30.1 K). Reported spectra range from Q = 2.25 Å
−1

(lowest

black line) to Q = 5.25 Å
−1

(upmost orange line) with a 0.5-Å
−1

step. Curves have been vertically shifted for graphic reasons.

the j = 1 → j ′ = 1 term through a two-step procedure: first,
a simple multi-Gaussian fit to work out the ratio RQ(ω)
between the unwanted rotational contributions and the orig-
inal spectrum (including all the mentioned rotational terms);
second, the product between �n-H2 (Q,ω) and [1 − RQ(ω)]
to obtain the difference spectrum amounting to the j = 1 →
j ′ = 1 contribution only. This procedure (an example of
which can be found in Fig. 1) was accomplished starting

from the data set with 2.0 Å
−1

< Q < 2.5 Å
−1

(i.e., average

Q = 2.25 Å
−1

) up to that with 5.0 Å
−1

< Q < 5.5 Å
−1

(i.e.,

average Q = 5.25 Å
−1

) for both mixtures. Final CM spectra
have been reported in Figs. 2 and 3 for samples No. 4 and 5,
respectively.

FIG. 3. Experimental self-scattering law for H2 centers of mass
in the neon-hydrogen liquid mixture of sample No. 5 (c[H2] = 3.4%,

T = 30.08 K). Reported spectra range from Q = 2.25 Å
−1

(lowest

black line) to Q = 5.25 Å
−1

(upmost orange line) with a 0.5-Å
−1

step. Curves have been vertically shifted for graphic reasons.
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Before concluding this section, it is worthwhile to spend
a few words on a by-product of the Eq. (2) implementation.
From the mentioned fitting procedure it was possible to es-
timate the experimental values of xj=0,1 (i.e., c[p-H2]/c[H2]
and c[o-H2]/c[H2] in our case), not only for the two summed
runs on the mixture samples, but also for the four partial
subruns cited in Sec. II. So, we could verify that the H2

rotational population contained in the two mixtures was essen-
tially stable during the measurement, with just a small trend
towards a low-temperature ortho-para conversion for the latter
subrun compared with the former.

IV. QUANTUM DYNAMICS SIMULATIONS

In order to provide the H2-CM VACFs required for the
analysis of the experimental spectra from samples No. 4 and
No. 5, we performed a series of centroid molecular dynamics
(CMD) simulations [27]. In these simulations, the interactions
have been taken to be strictly pairwise additive according to
the following scheme:

(a) those between two Ne atoms were modeled by a spher-
ically symmetric Aziz HFD-B potential [28];

(b) those between an H2 CM and a neon atom were
modeled by the orientation-dependent semiempirical potential
developed by Faubel et al. [29]; however, in order to deal
with the H2 CM rather than a molecular dumbbell, a spherical
average was performed following the procedure devised by
Challa and Johnson [30] for a path integral Monte Carlo
(PIMC) calculation on hydrogen-neon mixtures;

(c) those between two H2 CMs were modeled by the
spherically symmetric Silvera-Goldman potential [31].

Further details about the Ne-Ne pair potential have been
reported in Appendix B.

In our calculations, the total number of molecules was kept
at N = N [Ne] + N [H2] = 256. Since most of the simulations
were performed before the experiments, when the exact exper-
imental conditions were still unknown, we initially decided to
investigate a series of thermodynamic states in the range of
4%–20% H2 concentration, in steps of 4%, corresponding to
H2 particle numbers 10, 20, 31, 41, and 51, plus simulations
of pure Ne and H2 as reference systems. These were later
complemented by runs with N [H2] = 6, 9, 22, 26, and 27, in
order to better approximate the actual experimental conditions
of Nos. 4 and 5 in Table I. Finally, two smaller-volume simula-
tions (N = 108) with N [H2] = 4 and 11 were also performed
to check possible finite size effects. Their importance has
been found to be rather modest. All our simulations were
performed at a uniform temperature of T = 30 K and at
the total molecular densities listed in Table II, which were
obtained by interpolating the concentration-density data of
Güsewell et al. [16] by a polynomial fit.

Since CMD is basically a classical molecular dynamics
technique in a quantum mechanical force field, we have
calculated these forces by very short PIMC simulations at
each time step, using the so-called primitive algorithm [32]
and a Trotter number of P = 64 for the number of beads on
the classical ring polymers replacing the quantum particles
in PIMC. Although more time consuming than the usual
implementation, this avoids sampling problems due to the stiff
internal modes of the polymers and allowed us to use a time

FIG. 4. Simulated spectral functions fx (ω) for x = CM (hydro-
gen centers of mass, lower panel) and for x = Ne (neon atoms, upper
panel) in some selected neon-hydrogen mixtures reported in Table II,
from bottom to top at low frequency, according to the following color
code: (i) magenta, (iv) blue, (vi) orange, (ix) green, and (xi) red.
In the inset, following the same color code, the canonical velocity
autocorrelation functions for the H2 center of mass have been plotted
after performing a standard normalization procedure (i.e. equal to 1
at t = 0).

step �t = 0.005 ps. The classical dynamics was kept at a tem-
perature T = 30 K by means of a Gaussian thermostat [33],
and the total molecular densities of the mixtures were taken
from Ref. [16], as explained above. At each thermodynamic
state we have performed 10 independent runs of 105 time steps
(500 ps) each, in order to get an estimate of the statistical
uncertainty of the results. The VACFs were calculated up to a
maximum time lag of 5 ps and multiplied by a Welch window
[34] before Fourier transforming. The evolution of the VACF
for the H2 CM as a function of the hydrogen concentration is
plotted in the inset of Fig. 4 for some selected thermodynamic
conditions among those listed in Table II: as the mixture
molecular density decreases because of the H2 concentration
growth, the negative dip of the normalized (i.e., equal to one
at t = 0) VACF becomes shallower and shallower.

Since a CMD simulation yields the canonical or Kubo
transformed [35] 〈�v(0) · �v(t )〉(k)

x (with x = “Ne” or “CM”),
rather than the proper quantum mechanical VACF for Ne
atoms and H2 CMs, the spectral functions fx (ω) were ob-
tained from the relationship

fx (ω) = mx

3πkBT

∫ ∞

−∞
exp(−iωt )〈�v(0) · �v(t )〉(k)

x dt, (3)

where mx represents the particle mass (i.e., either the neon or
the H2 mass). So, except for the mx/(3πkBT ) factor, which
guarantees an appropriate normalization, fx (ω) is simply
given by the Fourier transform of the canonical VACF. These
physical quantities, both for Ne and H2 CM, are plotted in
Fig. 4 for some selected thermodynamic conditions among
those listed in Table II. The distinct vibrational behavior
of Ne with respect to the H2 CM one is clearly visible in
this figure and is very roughly accountable via a simple
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TABLE II. Thermodynamic conditions of the liquid samples simulated at T = 30.0 K and computational results, including simulation
number, total number of particles N , number of H2 molecules N [H2], hydrogen concentration c[H2], total molecular density n, self-diffusion
coefficient Ds for H2 CM and Ne, mean kinetic energy 〈Ek〉(sp) from VACF spectra for H2 CM and Ne, mean kinetic energy 〈Ek〉(po) from
PIMC “polymers” for H2 CM and Ne. See main text for details.

No. N N [H2] c[H2] n Ds,CM Ds,Ne 〈Ek〉(sp)
CM 〈Ek〉(sp)

Ne 〈Ek〉(po)
CM 〈Ek〉(po)

Ne

(%) (nm−3) (10−5 cm2 s−1) (10−5 cm2 s−1) (K) (K) (K) (K)

i 256 0 0.00 34.44 2.111(4) 54.31(1) 54.18(1)
ii 256 6 2.34 33.48 2.58(2) 2.284(8) 93.8(2) 53.95(1) 94.3(1) 53.83(1)
iii 256 9 3.52 33.07 2.71(4) 2.36(1) 92.6(2) 53.82(1) 93.1(2) 53.69(1)
iv 256 10 3.91 32.94 2.76(2) 2.377(8) 92.3(1) 53.78(1) 92.8(1) 53.65(1)
v 256 20 7.81 31.66 3.42(2) 2.653(6) 88.8(1) 53.36(1) 89.2(1) 53.25(1)
vi 256 22 8.59 31.42 3.53(3) 2.69(1) 88.4(1) 53.29(1) 88.79(8) 53.18(1)
vii 256 26 10.16 30.94 3.78(4) 2.82(1) 87.4(1) 53.15(1) 87.8(1) 53.03(1)
viii 256 27 10.55 30.82 3.86(5) 2.845(8) 87.1(2) 53.09(1) 87.5(2) 52.98(1)
ix 256 31 12.11 30.36 4.15(4) 2.93(1) 85.7(2) 52.97(1) 86.2(2) 52.86(1)
x 256 41 16.02 29.23 4.93(6) 3.24(1) 83.5(1) 52.64(1) 83.9(1) 52.53(1)
xi 256 51 19.92 28.15 5.57(4) 3.54(1) 81.65(7) 52.29(1) 81.98(6) 52.20(1)
xii 256 256 100.00 16.08 25.73(4) 63.34(1) 63.50(1)
xiii 108 4 3.70 33.01 2.59(1) 2.29(1) 93.48(6) 53.80(1) 93.98(7) 53.62(1)
xiv 108 11 10.19 30.93 3.50(1) 2.73(1) 88.34(4) 53.08(1) 88.71(3) 52.94(1)

mass-ratio scaling applied to the abscissa axis: ωCM/ωNe ≈
(mNe/mCM)0.5 = 3.164 since the respective (i.e., Ne-Ne and
CM-Ne) interparticle potentials are quite similar (see below
for details). However, after taking a closer look, one can see
that the low frequency parts of the hydrogen and neon data
sets are indeed quite different: H2 CM spectra appear almost
solidlike with fCM(ω) growing from low values at ω ≈ 0 to
a clear maximum (possibly the “cage rattling” frequency),
and then slowly decreasing to zero with a long tail. On the
contrary, Ne exhibits the typical diluted-fluid behavior, which
is almost monotonic, as the maximum of fNe(ω) (at ω > 0)
is very weak or even completely missing. In addition, the
decrease of the system total molecular density n, induced by
the increase of the hydrogen concentration, acts on the two
types of fx (ω) in a dissimilar way: in H2 CM this effect is
clearly visible both in the change of fCM(0) and in a general
frequency variation via a large kinetic-energy Grüneisen pa-
rameter γ = (n/〈Ek〉)(∂〈Ek〉/∂n) [γCM = 1.16(6)], while in
Ne this frequency variation is more modest [γNe = 0.88(1)]
and the main change is restricted to the area around ω ≈ 0,
which has a clear diffusional character [6]. Surely, the feature
we have just mentioned [i.e., the marked peak in the spectral
function fCM(ω) interpreted as an effect of “caging”] is not
specific to the quantum nature of diluted solutions of H2 in
liquid Ne. On the contrary, it is generally exhibited by all
dense fluids (either classical or quantum) when their molec-
ular density approaches the value pertaining to the liquid
at the triple point ntp. For instance, a detailed description
of this phenomenon has been recently shown in Fig. 11 of
Ref. [36], dealing with supercritical classical Lennard-Jones
fluids. However, our present systems have their own specific
behavior: first, the molecular density of the two samples (see
Table I) is not very close to the ntp of pure neon (namely,
37.21 nm−3 [14]). Even getting rid of the system “swelling”
due to hydrogen (i.e., reducing the H2 amount to zero), the
liquid Ne molecular density (at T ≈ 30 K and relatively low
pressure) grows only to about 34.3 nm−3. Under these condi-
tions, it is not surprising that the Ne self-dynamics is far from

that of a dense liquid as shown in the upper panel of Fig. 4,
where the fNe(ω) spectra of the Ne velocity autocorrelation
function do not exhibit the strong peak mentioned above. Just
the magenta line (i.e., that at c[H2] = 0%) shows a very weak
trend in this direction. Second, the physical picture we have
just described, which applies to Ne atoms, is not valid for
H2 centers of mass. This fact can be rationalized considering
that the normal hydrogen ntp (which amounts to 23.06 nm−3

[15]) is much smaller than the molecular density of our
samples. This means that our solution samples are an artificial
environment for H2 corresponding to “superdense” liquids
which do not exist in the pure H2 phase (at T = 30 K) since
the maximum molecular density of liquid normal hydrogen is
only about 29.31 nm−3 (on the freezing line at p = 733.5 bar
[15]).

An important piece of information contained in these
spectra is the self-diffusion coefficient Ds of the molecules,
which is determined, as we have just mentioned, by the
zero frequency value of fx (ω). For example, in the case of
hydrogen one reads as

Ds,CM = πkBT

2mCM
fCM(0) = 1

3

∫ ∞

0
〈�v(0) · �v(t )〉(k)

CMdt. (4)

Our CMD predictions for the self-diffusion coefficients for H2

CM, as well as for Ne, are included in Table II and in Fig. 5.
Note that the uncertainties given there are merely the statisti-
cal errors and that the actual values may be slightly different
since the self-diffusion coefficient is known to weakly depend
on the system size [37].

Another important and easily accessible physical quantity
is the mean kinetic energy of a neon atom and a hydrogen
molecule CM, 〈Ek〉x (with x = “Ne” or “CM”). Interestingly,
there are two routes to this property in CMD simulations.
As in PIMC simulations, the mean kinetic energy may be
calculated from the average potential energy stored in the
“springs” of the polymers. Although this “crude energy es-
timator” [38] of 〈Ek〉x is considered to be inferior to, e.g., the
virial estimator [39], the statistical uncertainties were quite
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FIG. 5. Data derived from the CMD simulations of liquid sam-
ples (T = 30.0 K) reported in Table II. (a) Shows the mean kinetic
energy of the H2 centers of mass evaluated according to the two dif-
ferent procedures described in the main text: VACF spectra (full blue
circles) and PIMC “polymers” (empty blue squares). (b) Exhibits
the same quantities as in (a), but for Ne atoms: VACF spectra (full
red circles) and PIMC “polymers” (empty red squares). (c) Reports
the self-diffusion coefficients of both H2 centers of mass (full blue
circles) and Ne atoms (full red squares). Full and dashed lines in the
three panels are simple polynomial fits and represent only guides for
the eyes.

small in our case and probably smaller than the systematic
error due to the finite Trotter number P . Alternatively, the
mean kinetic energy may also be calculated from the spectral
function fx (ω) [40]. In the case of the hydrogen CM, one
reads as

〈Ek〉CM = 3

4
h̄

∫ ∞

0
ω coth

(
h̄ω

2kBT

)
fCM(ω)dω. (5)

Obviously, this prediction is likewise affected by the finite
value of P , but also by the overall quality of the simulated
VACF and the specific way (such as windowing) in which
fCM(ω) is calculated via Eq. (3). Both estimates of the mean
kinetic energy of H2 centers of mass and Ne atoms are
reported in Table II and in Fig. 5 and should be contrasted
to the value of 45 K for a classical system at T = 30 K. It is
also worth noting that the H2-CM mean kinetic energy rises
to values well above 90 K as the concentration decreases,
which is much larger than in pure hydrogen, where we have
calculated a value of about 63.4 K.

FIG. 6. Simulated self-scattering law for H2 centers of mass in
a neon-hydrogen liquid mixture (sample No. 4, c[H2] = 10%, T =
30.1 K) from centroid molecular dynamics data via the Gaussian

approximation. Reported spectra range from Q = 2.25 Å
−1

(lowest

black line) to Q = 5.25 Å
−1

(upmost orange line) with a 0.5-Å
−1

step. Experimental data from Fig. 2 have been also plotted for
comparison. Curves have been vertically shifted for graphic reasons.
In the inset, same simulated data have been reported in a wider
energy transfer range (no shift applied).

Finally, the GA expression [6] for the self-intermediate
scattering function was applied to fCM(ω):

I
(GA)
s,CM(Q, t ) = exp

{
− h̄Q2

2mCM

∫ ∞

0

fCM(ω)

ω

[
coth

(
h̄ω

2kBT

)

× [1 − cos(ωt )] − i sin(ωt )

]
dω

}
, (6)

in order to yield simulated neutron scattering spectra. These,
including the instrumental energy resolution discussed in
Sec. II as well as the average over the appropriate Q slice,
were dubbed S

(GA)
s,CM(Q,ω) and are reported in Figs. 6 and 7

for samples No. 4 and No. 5, respectively, for the usual Q

values from 2.25 to 5.25 Å
−1

.

V. DISCUSSION

In order to start studying the obtained experimental CM
spectra Ss,CM(Q,ω), we have performed a normalization to
unity, which is appropriate for self-dynamics [5]. In doing so,
a high energy extrapolation has been accomplished in order
to include the small spectral zones placed out of the available
energy transfer ranges. For the last three Q values, namely,

4.25, 4.75, and 5.25 Å
−1

, this treatment was slightly more
relevant and might have induced some level of uncertainty,
even though the following careful procedure has been ap-
plied: we have started from the simulated spectra S

(GA)
s,CM(Q,ω)

(broadened by an appropriate energy resolution and reported
in Figs. 6 and 7), where we noticed that, in the entire Q

range of interest, the peak tails on the right-hand side of the
spectrum (say, from 35 to 150 meV) are accurately described
for both samples by a simple functional form A exp(−Bω −
Cω2 − Dω3) with A, B, C, and D as parameters. Thus, we
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FIG. 7. Simulated self-scattering law for H2 centers of mass in
a neon-hydrogen liquid mixture (sample No. 5, c[H2] = 3.4%, T =
30.08 K) from centroid molecular dynamics data via the Gaussian

approximation. Reported spectra range from Q = 2.25 Å
−1

(lowest

black line) to Q = 5.25 Å
−1

(upmost orange line) with a 0.5-Å
−1

step. Experimental data from Fig. 3 have been also plotted for
comparison. Curves have been vertically shifted for graphic reasons.
In the inset, same simulated data have been reported in a wider
energy transfer range (no shift applied).

have used this functional model to fit the experimental data
and, subsequently, to extrapolate them to high ω values in
order to evaluate the moments needed for our data analysis
procedure.

After this procedure, we were able to calculate the first
moments of the mentioned experimental spectra and compare
them with the theoretical predictions based on the first mo-
ment incoherent sum rule [5]:

M1(Q) =
∫ ∞

−∞
d(h̄ω)Ss,CM(Q,ω)h̄ω = h̄2Q2

2mCM
, (7)

where the last term is also known as recoil energy Er (Q).
So, it is convenient to evaluate the deviations of the nu-
merical estimates of the first spectral moments from the
corresponding recoil energy values. Results are reported in
Fig. 8, where analogous quantities obtained replacing the ex-
perimental Ss,CM(Q,ω) with the simulated S

(GA)
s,CM(Q,ω) have

been also plotted in order to assess the effects of the average
over Q in each spectral slice, and of the energy resolution
broadening being slightly variable with ω, since these two
elements are included in both types of spectra. Two things
are to be noted: First, averaging over a �Q-thick spectral
slice centered at Q, there exists an intrinsic overestimate of
M1(Q), which in the case of a uniform Q distribution is of
the order of h̄2�Q2/(24mCM) = 0.0216 meV (in our data
reduction conditions). Second, the error bars reported in Fig. 8
include only the statistical components of data uncertainties,
neglecting all the systematic contributions: not only those
coming from the average over Q in each spectral slice and
from the energy resolution broadening slightly variable with
ω, but also the effects of an approximate Ne subtraction (see
Appendix A) and, moreover, of the high energy extrapolation.
In fact, the first two sources of systematic uncertainties seem

FIG. 8. Deviations of the first spectral moment from recoil en-
ergy: experimental data are reported as full blue circles with error
bars, while simulated data are shown as empty red squares plus a
dashed-dotted line (which is only a guide for the eyes). (a) Contains
data for sample No. 4, while (b) for sample No. 5. It is worth
noting that error bars represent only the statistical component of data
uncertainties.

rather modest for all the Q values, as confirmed by the simu-
lation data also plotted in Fig. 8. So, one has to conclude that
the other two sources are indeed more relevant, but are still
of the same order of magnitude of the statistical uncertainty.
Summarizing: If compared to the corresponding recoil energy
values Er (Q), one observes a discrepancy for experimental
M1(Q) values ranging from 0.2% to 2.4% for sample No. 4,
and from 0.1% to 2.4% for sample No. 5, which are both
thoroughly satisfactory considering the complexity of the data
reduction procedure carried out in Sec. III.

Given the positive fulfillment of the first moment sum rule
by our experimental spectra, we decided to further exploit this
approach studying the second moment sum rule and its link
with the CM mean kinetic energy [5]:

M̃2(Q) =
∫ ∞

−∞
d(h̄ω)Ss,CM(Q,ω)[h̄ω − Er (Q)]2

= 2h̄2Q2

3mCM
〈Ek〉CM, (8)

where M̃2(Q) is known as the second central moment, i.e.,
the second moment about the spectral mean Er (Q). However,
differently from the case of an odd moment like in Eq. (7),
for the second central moment the instrumental resolution
plays some role and has to be accounted for in an effective
way through a Q-dependent quantity V̄res(Q), which is to be
subtracted from M̃2(Q). A simple way to estimate V̄res(Q) is
the following:

V̄res(Q) ≈ h̄2

8 ln 2
[�ω(ε)]2

ε=Er (Q)/h̄, (9)

that is the variance of the instrumental resolution evaluated
at the peak mean, i.e., at the recoil energy value. Thus, in
this case it is convenient to directly calculate the following
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FIG. 9. Mean kinetic energy of the H2 center of mass from the
second central moment of the spectra: experimental data are reported
as full blue circles with error bars, while simulated data are shown as
empty red squares plus a dashed-dotted line (which is only a guide
for the eyes). (a) Contains data for sample No. 4, while (b) for sample
No. 5. It is worth noting that error bars represent only the statistical
component of the data uncertainties.

empirical function K̄ (Q):

K̄ (Q) = 3mCM

2h̄2Q2
(M̃2(Q) − V̄res(Q)). (10)

Results are reported in Fig. 9, where the analogous quantities
obtained replacing the experimental Ss,CM(Q,ω) with the
simulated S

(GA)
s,CM(Q,ω) have been also plotted as we did in

Fig. 8. The experimental estimates of the CM mean kinetic
energies, derived from a fitting procedure on K̄ (Q), turned
out to be (95 ± 2) K for sample No. 4 and (98 ± 2) K
sample No. 5, while the same approach used on simulated
spectra provided the following results: (88.84 ± 0.03) K for
sample No. 4 and (94.15 ± 0.04) K for sample No. 5. These
two pairs of values have to be contrasted to the quantum
simulated estimates of 〈Ek〉CM, which can be simply derived
by interpolating data reported in Table II. Considering the
experimental uncertainty on c[H2], one finds (87.4 ± 0.7) K
for sample No. 4 and (92.6 ± 0.3) K sample No. 5 making use
of the 〈Ek〉(sp) data column, and (87.8 ± 0.7) K for sample
No. 4 and (93.1 ± 0.3) K for sample No. 5 making use of the
〈Ek〉(po) data column.

The first remark to be made concerns the comparison
between simulated-data mean kinetic energies and 〈Ek〉(sp),
which in principle should coincide since both sets are derived
from the same CMD fCM(ω) spectra. On the contrary, one
observes a minute overestimate in the values of the former,
probably due to the average over Q in each spectral slice and
to the energy resolution broadening being slightly variable
with ω. This small disagreement sets the intrinsic accuracy
of the present M̃2(Q) method that can be assumed to be in the
interval 1.5%–1.8%. This range is actually very close to the
uncertainties of the experimental-data mean kinetic energies
(i.e., 1.7%–1.9%) resulting from the fitting procedure, giving
rise to an overall uncertainty of about 2.4%. Such a figure can
be considered as quite reasonable if compared to equivalent

〈Ek〉 results extracted through other techniques like, e.g., deep
inelastic neutron scattering [41]. However, it is fair to mention
that the present M̃2(Q) method relies heavily on the high
energy extrapolation of some spectral slices, which in the
worst case (i.e., at the highest-Q values) contributes to M̃2(Q)
for about 25%–30% of its total amount. For this reason, we
are convinced that the experimental estimates of the CM
mean kinetic energies, although 5%–8% higher than the cor-
responding quantum simulation values, are to be considered
as a positive result of the present neutron scattering study.
In addition, it is worthwhile to point out that a slightly more
satisfactory agreement between experiment and simulations
could be obtained making use of a Lennard-Jones potential
for the Ne-Ne interaction, as explained in Appendix B.

In principle, it is possible to compare simulation results
concerning the mean Laplacian of the system potential energy
with the third central moment of the center-of-mass self-
scattering law. This is generally done using the so-called
Einstein frequency [5] �E . So, on the simulation side one
writes [40]

�2
E =

∫ ∞

0
fCM(ω)ω2dω, (11)

while experimentally one has to evaluate [6]

M̃3(Q) = h̄4Q2

2mCM
�2

E

=
∫ ∞

−∞
d(h̄ω)Ss,CM(Q,ω)[h̄ω − Er (Q)]3. (12)

As for Eq. (11), there is no problem to apply it to our CMD
data, obtaining the following h̄�E estimates: (10.30 ± 0.01)
and (11.00 ± 0.02) meV for samples 4 and 5, respectively.
However, for Eq. (12) we had to face the same type of
problems we experienced in the mean kinetic energy eval-
uation, but much more severe due to the higher moment
degree. In particular, the extrapolation of the high-Q spectral
peaks plays an even larger role. For example, already at

Q ≈ 4 Å
−1

, roughly 50% of the integral above is due to the
extrapolated peak tail. In spite of these difficulties (and further
issues related to statistical uncertainties), we have attempted
the calculation of the third central moments of our experi-
mental spectra using only four data points in the Q range

2.25 Å
−1 � Q � 3.75 Å

−1
, working out the following results

for h̄�E : (10.5 ± 0.3) and (11.0 ± 0.3) meV for samples 4
and 5, respectively. Also, in this case the agreement between
experimental and simulated estimates is remarkable.

The next physical information which may be extracted
from our experimental spectra is related to the diffusional be-
havior of the H2 CMs in the two liquid mixture samples. This
task can be accomplished by studying the lowest-Q-value

data sets, namely, from Q = 2.25 Å
−1

to Q = 3.75 Å
−1

,
where incoherent neutron scattering probes spatial scales large
enough to highlight the diffusion process. However, it is very
important to stress that MARI (especially before the recent up-
grade) was not a spectrometer designed to perform quasielas-
tic neutron scattering measurements since neither its Q and
ω ranges, nor the corresponding instrumental resolutions �Q

and �ω, were optimized to accomplish such experiments. For
this reason, this study will provide only a coarse estimate of

012138-9



COLOGNESI, BAFILE, CELLI, NEUMANN, GUARINI, AND LE PHYSICAL REVIEW E 99, 012138 (2019)

FIG. 10. Ratios between the spectral full width at half maximum,
�, and 2Q2 as a function of Q2 for sample No. (4) (blue line and
plus signs) and sample No. (5) (red line and crosses). Full lines
represent the GA-simulated results at the exact Q values reported.
Symbols show the same physical quantities, but averaged over Q

slices prepared like the experimental data (see main text for details).
Experimental data are plotted as empty squares and empty circles
for sample No. (4) and No. (5), respectively (while dash-dotted
lines are only guides for the eyes). Thin dashed lines exhibit the
hydrodynamic limit values, Ds,CM, derived from Table II. In the inset,
the total static structure factors, S(Q) (see main text for details), for
sample No. (4) (blue) and sample No. (5) (red) have been plotted as
a function of Q2.

the self-diffusion coefficients since the mentioned Q range is
normally described as that of space-dependent self-diffusion
[42], where a complete and detailed theory for quantum and
semiquantum fluids does not exist yet. Given this scenario, we
will focus only on one single spectral feature, namely, the full
width at half maximum (FWHM) �(Q), of the quasielastic
peak. So, the selected Ss,CM(Q,ω) spectra have been fitted by
a heuristic multi-Voigtian model (up to four independent Voigt
function peaks) which has been analytically deconvoluted for
the effect of the instrumental energy resolution. The need to
use more than a single Voigtian profile was clearly justified
both by the presence of some inelastic features (unrelated to
the diffusion process and dealt with in detail below) and by the
strong spectral asymmetry induced by the detailed balance.
In the case of the present procedure, both the angular and
the ω dependencies of �ω have been carefully taken into
account. Subsequently, the resolution-free fitted data have
been symmetrized with respect to ω = 0, in order to counter
the detailed balance effect, and the experimental FWHM
values �ex (Q) have been determined. A comparison between
experimental FWHM results and analogous data worked out
from GA-based calculations is particularly important in the
case of self-diffusion since the long-time hydrodynamic limit
of the GA implies the so-called continuous diffusion, while,
as mentioned in the Introduction, there are some clues that
the H2 self-dynamics in heavier low-temperature liquids could
exhibit jump diffusion features, which are actually incom-
patible with the GA [43]. Experimental and GA-simulated
FWHM results for both mixture samples are plotted in Fig. 10

as ratios �/(2Q2), together with the hydrodynamic limit
values Ds,CM obtained from Table II through interpolation:
3.75(4) × 10−5 cm2 s−1 and 2.70(4) × 10−5 cm2 s−1 for
samplea No. 4 and No. 5, respectively (reported errors are
derived only from CMD statistical uncertainties and so they do
not include the additional experimental c[H2] uncertainties).

An interpretation of the GA behavior is quite straightfor-
ward: simulated data show the correct hydrodynamic limit
at low-Q values, while, for larger momentum transfers, they
exhibit a broadening which grows faster than Q2. This seems
to hold approximately in the same way for both H2 concentra-
tions. It is a known property of the GA and has been clearly
described in the scientific literature [44], where it is shown
that, at least up to σQ equal to about 15 (with σ being the
Lennard-Jones distance parameter), an overquadratic growth
of peak FWHM takes place. Since Ne and H2 have similar σ

values (i.e., 2.79 and 2.94 Å, respectively), this limit can be

easily estimated as Q ≈ 5.2 Å
−1

(i.e., Q2 ≈ 27 Å
−2

), which,
although out of the present FWHM range, seems compatible
with our findings about the GA spectra. In Fig. 10 we have
reported both single-Q GA widths and analogous quantities
averaged over the Q slices used to deal with experimental
data: it turns out that averaging has little effect on the extrac-
tion of the peak diffusional broadening in GA-simulated data.

As for the experimental data, results are slightly more
difficult to be interpreted, even though their general trend
looks understandable: the FWHM grows in an underquadratic

way (i.e., FWHM/Q2 falls) for 2.25 Å
−1

< Q < 3.5 Å
−1

and
then, for higher-Q values, this trend seems reversed with
the experimental peak width proceeding parallel to the GA-
simulated one. This is in good agreement with the crossover
value σQ ≈ 11, as in Ref. [44]. However, some features
are more puzzling: data for the two mixture samples show
a strikingly similar behavior, but their separation is lower
than expected (i.e., about one third) if one considers the
respective hydrodynamic limits. In other words, the widths at
the minimum Q value do not seem to approach the CMD-
simulated Ds,CM, especially the FWHM for sample No. 5

data, which appears definitely too intense at Q = 2.25 Å
−1

.
In addition, and probably more important, the minimum value

of FWHM/Q2 is located for both samples at Q = 3.25 Å
−1

,

which is larger than the first maximum (i.e., Q ≈ 2.3 Å
−1

) of
the total static structure factor S(Q) (which has been plotted
in the inset of Fig. 10 as a linear combination of all the
partial components weighted by the appropriate concentra-
tions). This shift in Q is unexpected since the correspondence
between the minimum of FWHM/Q2 and the first maximum
of S(Q) is well established in various simple liquids (Ar,
Na, etc.) both experimentally and through simulation work
[42,44]. In addition, Wahnström and Sjögren [45] have man-
aged to theoretically reproduce these findings in a reasonably
good way using a mode coupling approach. However, it
does not look straightforward to generalize their method to
binary mixtures exhibiting relevant quantum effects like in
our case. Although at the moment we do not have a clear
physical explanation of this Q shift, we are confident about
its authenticity since, after working on equivalent data taken
from a recent H2-D2 neutron scattering study (see Fig. 9 in
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FIG. 11. Simulated pseudospectral function f̃CM(Q,ω) for H2

centers of mass in a neon-hydrogen liquid mixture (sample No. (4),
c[H2] = 10%, T = 30.1 K) from centroid molecular dynamics data
via Gaussian approximation. Reported spectra range from Q =
1.25 Å

−1
(upmost full red line) to Q = 3.25 Å

−1
(lowest full ma-

genta line) with a 0.5 Å
−1

step. The exact spectral function fCM(ω),
still from centroid molecular dynamics data, has been also plotted
(dotted line).

Ref. [12]), we have found some clues of a similar behavior
also there (despite the narrower Q range available). Surely,
as we have already mentioned above, these results, although
interesting, cannot be considered as conclusive since they are
not derived from a proper quasielastic experiment, and so they
have neither the optimal (Q,ω) range, nor the binning, nor the
resolution. However, as for the departure of the microscopic
self-dynamics from the GA in the present neon-hydrogen
mixtures, the findings plotted in Fig. 10 can be regarded as
a strong clue.

The last point to be dealt with concerning the experimental
results is the extraction of the spectral function fCM(ω)
defined in Sec. IV and related to the Kubo transform of
the VACF. A very general procedure for the extraction of
the VACF spectrum can be expressed by the two following
formulas:

fCM(ω) = lim
Q→0

f̃CM(Q,ω);

f̃CM(Q,ω) =
{

4mCM

Q2

ω2 + D2
s,CMQ4

ω

[
coth

(
h̄ω

2kBT

)
+1

]−1

× Ss,CM(Q,ω)

}
, (13)

which slightly modify the Morkel-Verkerk approach [46]
in order to correctly take into account the quantum effects
via the Bose factor n(ω, T ) = 1/[exp(h̄ω/kBT ) − 1], in
close analogy with the relationship between the density
of phonon states and the self-scattering law in the case
of low temperature solids [5]. A practical test of the
validity of Eqs. (13) is reported in Fig. 11 for simulated
data related to sample No. 4: fCM(ω) is directly obtained
from CMD as explained in Sec. IV, while the various
pseudospectral functions f̃CM(Q,ω) have been worked

FIG. 12. Experimental pseudospectral functions f̃CM(Q,ω) for
H2 centers of mass in neon-hydrogen liquid mixtures [sample No. (4)
in panel (a), sample No. (5) in panel (b)]. Spectra are plotted for Q =
2.25 Å

−1
, Q = 2.75 Å

−1
, and Q = 3.25 Å

−1
(from top to bottom

at h̄ω ≈ 10 meV, red, black and blue histograms with error bars,
respectively). The Q → 0 extrapolation (see main text for details)
of the experimental data above is also reported as a full green line.
Finally, the spectral function fCM(ω), derived from centroid molecu-
lar dynamics, has been plotted (dashed black line) after introducing
an appropriate instrumentlike frequency broadening.

through the aforementioned GA calculations, plotted in
Fig. 6, but without including any instrumental resolution
broadening. As the Q value reduces, the pseudospectral
functions f̃CM(Q,ω) smoothly approach the original VACF
spectrum fCM(ω), even in the low ω range which is generally
the most critical in this sort of scaling procedure. This positive
result is surely expected since it is straightforward to show
that the Morkel-Verkerk formulas, although far more general,
can be also derived as the low-Q limit from the GA formula
itself. To put it in another way, as shown in Fig. 11 by a
practical example, GA also complies with Eq. (13), but the
latter is much more general than the former.

The previous formulas are not strictly applicable in our
case since the present experimental spectra exhibit neither the
sufficient statistical accuracy nor the appropriate extension
of the low-Q range so to allow a direct extrapolation for
Q → 0. Nonetheless, if one tries to perform the fCM(ω)
extraction from the neutron scattering data plotted in Figs. 2
and 3, the pseudospectral functions represented in Fig. 12 are
obtained. Subsequently, a simple and rather heuristic extrap-
olation scheme was devised: for each Q value, the follow-
ing logarithmic quantity ln (h̄−1f̃CM(Q,ω) × 1.00 meV) was
polynomially fitted obtaining eight Q-dependent coefficients
C0-7(Q). These coefficient sets were extrapolated to Q → 0
using a quadratic fitting procedure, giving rise to C0-7(0),
which, in turn, were finally exponentiated and normalized to
unity in order to work out the best experimental estimate of
fCM(ω). As we have already pointed out, the two extrapolated
fCM(ω) spectra have to be considered only as tentative results;
however, looking at Fig. 12, one sees that the agreement with
the corresponding CMD data is already at a semiquantitative
level, especially dealing with sample No. 4, while sample
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No. 5 shows a certain frequency shift of the order of 2–3 meV
to the left. Surely, if a detailed observation is carried out,
two areas of particular discrepancy can be noted: first, in
the low frequency zone (below 5–7 meV) the extrapolated
data heavily underestimate the spectral intensity and, conse-
quently, cross the ω = 0 axis at very low values of fCM(0),
which entail rather small and unphysical values of the CM
self-diffusion coefficients. Second, a hump between 20 and 30
meV is clearly detected in the extrapolated fCM(ω) for both
samples, but is completely missing in the simulated spectra.

VI. CONCLUSIONS

In conclusion, in this work we have measured the neutron
scattering spectra of hydrogen mixed with liquid neon (at T =
30.1 K) for two values of H2 molar concentration (namely,
3.4% and 10%), making use of the neutron spectrometer
MARI [13]. The two double-differential neutron scattering
cross sections aimed to provide a direct access to the self-
part of the dynamic structure factor for the H2 centers of
mass in the mentioned liquid samples. In order to accomplish
this task, neutron scattering data have been corrected for
the standard experimental effects, and, after the subtraction
of appropriate neon components, have been studied in the
framework of the so-called generalized Young and Koppel
model [22–24] for removing the contributions coming from
the rotovibrational molecular dynamics. After performing this
procedure, one has approximately obtained a mapping of the
H2 center-of-mass self-dynamic structure factor in the mo-

mentum transfer interval 2.25 Å
−1

< Q < 5.25 Å
−1

and in
the energy transfer interval −20 meV < h̄ω < 60 meV, with
an average energy resolution (full width at half maximum)
ranging in the 2–2.5 meV interval. Subsequently, the quality
of these spectral data has been checked exploiting the first
incoherent sum rule [5] and found globally satisfactory. Then,
their quasielastic parts measured at low momentum transfer

(i.e., Q � 3.75 Å
−1

) have been studied in order to extract
information of the H2 diffusional motion, in spite of the fact
that MARI is not an instrument devoted to quasielastic neu-
tron scattering studies. However, after simple symmetrization
and deconvolution procedures, we managed to determine the
basic spectral feature, namely, the intrinsic peak width, which
is Q dependent and related to the H2 diffusion. These width
values turned out to be in a fair agreement with the self-
diffusion coefficients simulated via quantum calculations, but
also exhibited a peculiar nonmonotonic variation as a function
of the momentum transfer which seems compatible with what
has been observed in other simple liquids [44] and, in any
case, cannot be described by the well-known Gaussian ap-
proximation [6]. Although this result is quite remarkable since
non-Gaussian effects turned out to be strong, at the present
stage no final conclusion on this subject can be drawn given
the limitation imposed by the use of the MARI spectrometer,
in terms of both Q range and energy transfer resolution. In ad-
dition, from the first and the second moments of the processed
data, the mean kinetic energy of the H2 centers of mass has
been estimated making use of the mentioned incoherent sum
rules and then compared with accurate quantum calculation
results. The agreement was found to be reasonably good, even

though (for intrinsic instrumental kinematic reasons) some
experimental neutron spectra were not complete and had to
be extrapolated via a heuristic fitting procedure in order to
evaluate their requested spectral moments.

The cited quantum calculations, obtained via the so-called
centroid molecular dynamics [27], provided, as in the case of
H2-D2 mixtures [4], accurate estimates of the velocity auto-
correlation function for the H2 centers of mass, as well as for
the Ne atoms. The former functions appear almost solidlike
since their spectra exhibit a clear and strong maximum at fre-
quency values larger than zero and then slowly decrease with
a long tail, while the latter ones show the typical almost mono-
tonic diluted-fluid behavior with the spectral maximum being
very weak or even absent. These simulated physical quanti-
ties, in conjunction with the Gaussian approximation [6], were
used to calculate the H2 center-of-mass self-dynamic structure
factor in the same (Q,ω) range as the experimental mapping
and at identical thermodynamic conditions. The agreement
between neutron measured and calculated spectra turned out
to be qualitatively good, even though various discrepancies
were clearly detectable, not much differently from the cases

of pure H2 and H2-D2, where in the range 1.8 Å
−1

< Q <

3.2 Å
−1

unquestionable departures from the Gaussian approx-
imation appear. These findings reinforce the conclusions of
our previous works [3,4,9,12] on various semiquantum fluids
suggesting the need to go beyond the Gaussian approximation
for accurately describing the microscopic single-particle dy-
namics in these systems. In particular, the two liquid mixtures
presently studied exhibit relevant non-Gaussian effects surely
similar, but even more intense than those revealed in the
other fluids mentioned, confirming our original idea about
the positive connection between caging effects due to heavy
atoms (i.e., Ne) surrounding diluted lightweight impurities
(i.e., H2) and the breakdown of the Gaussian approximation.
However, we have to honestly admit that our results on H2

in Ne are slightly less compelling than the previous ones on
H2 and H2-D2 because of some experimental uncertainties
related both to the statistical accuracy of the measurements
and, moreover, to the subtraction of the scattering signal due
to the neon presence. Thus, even though this study greatly
improves the quality of the available neutron spectra [9,12,47]
of H2 impurities in liquid Ne, in terms of energy resolution,
data analysis, and constant-Q cuts, further experimental effort
is surely desirable on this system as well as on analogous H2

mixtures with liquid argon [47]. In addition, it is also heartily
recommended that detailed quasielastic neutron scattering
studies on the H2 motion in various simple liquids (such as D2,
Ne, and Ar) are performed in order to clarify the nature of the
diffusion mechanism (e.g., its differences from the Gaussian
approximation and the hydrodynamic Fick regime).
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APPENDIX A

Neutron scattering from a simple-liquid binary mixture (formed by type-“1” and type-“2” atoms) can be described in various
ways, the simplest of which is probably the Faber-Ziman approach [48], where one introduces the partial components of the
so-called distinct dynamic structure factor Sd,α-β (Q,ω) (with α and β equal to 1 or 2), as well as of the self-dynamic structure
factor Ss,α (Q,ω) (with α equal to 1 or 2). In this case, the double-differential scattering cross section, including both coherent
and incoherent signal, reads as(

d2σ

d� dE′

)
1+2

= k′

k

[
c2

1(b̄1)2Sd,1-1(Q,ω) + c2
2(b̄2)2Sd,2-2(Q,ω) + 2c1c2 b̄1b̄2 Sd,1-2(Q,ω)

+ c1

(
σt,1

4π

)
Ss,1(Q,ω) + c2

(
σt,2

4π

)
Ss,2(Q,ω)

]
, (A1)

where (k′/k) is the well-known kinematic factor [5], cα are the concentrations of the two species, b̄α are their coherent scattering
lengths, and σt,α their total (coherent plus incoherent) cross sections. Needless to say, in case of a pure liquid, for example “1,”
c1 = 1 and c2 = 0, so that the previous expression reduces to the standard formula for inelastic neutron scattering:(

d2σ

d� dE′

)
1

= k′

k

[
(b̄1)2 Sd,1-1(Q,ω) +

(
σt,1

4π

)
Ss,1(Q,ω)

]
= k′

k

[
(b̄1)2 S1(Q,ω) +

(
σinc,1

4π

)
Ss,1(Q,ω)

]
, (A2)

where the dynamic structure factor S1(Q,ω) is simply given by Sd,1-1(Q,ω) + Ss,1(Q,ω). In our case, Eqs. (A1) and (A2)
have to be slightly modified to take into account that one type of molecule, namely H2, is not monatomic, but, on the contrary,
exhibits a diatomic structure and so additional rotovibrational excitations have to be included in the scattering law. It can be
shown [23,24] that, in the case of pure hydrogen, Eq. (A2) can be cast in the following form (if the high-energy H2 vibrational
excitations can be neglected), where j and j ′ are the initial and final rotational quantum numbers, respectively:

(
d2σ

d� dE′

)
H2

= k′

k

⎡
⎣u(Q) Sd,CM-CM(Q,ω) +

∑
j,j ′

a(Q; j, j ′) Ss,CM(Q,ω) ⊗ δ(h̄ω − Ej,j ′ )

⎤
⎦, (A3)

with u(Q) replacing the squared coherent scattering length, Sd,CM-CM(Q,ω) being the distinct dynamic structure factor of the
H2 CM, Ss,CM(Q,ω) being the self-dynamic structure factor of the H2 CM, a(Q; j, j ′) controlling the intensity of the rotational
transition under consideration, and Ej,j ′ being the energy shift due to this rotational transition. The u(Q) term is given by

u(Q) = 4(b̄H)2 exp[−2Wv (Q)] j 2
0 (QdH/2), (A4)

where exp[−2Wv (Q)] is the tiny internal vibrational Debye-Waller factor, while j0(x) is the zeroth order spherical Bessel
function of the first kind, and dH is the mean interatomic distance of H2. Leaving aside a(Q; j, j ′), which is clearly defined in
the mentioned literature, it is straightforward to generalize Eqs. (A1) and (A3) to our H2-containing hydrogen mixture (with
“1”= Ne and “2”= CM):

(
d2σ

d� dE′

)
mix

= k′

k

⎡
⎣c[Ne]2(b̄Ne)2 Sd,Ne-Ne(Q,ω) + c[H2]2 u(Q) Sd,CM-CM(Q,ω)

+ 4c[Ne]c[H2]b̄Neb̄He−Wv (Q)j0(QdH/2)Sd,Ne-CM(Q,ω) + c[Ne]

(
σt [Ne]

4π

)
Ss,Ne(Q,ω)

+ c[H2]
∑
j,j ′

a(Q; j, j ′)Ss,CM(Q,ω) ⊗ δ(h̄ω − Ej,j ′ )

⎤
⎦, (A5)

where the so-called “cross” dynamic structure factor Sd,Ne-CM(Q,ω) has been introduced. It describes the spectrum of the
time-dependent correlation between Ne atoms and CMs of the H2 molecules in the mixture. Since c[H2] is in our case rather
modest (not larger than 10%) and the Ne incoherent cross section is thoroughly negligible [20], it is possible to simplify Eq. (A5)
giving rise to an easier and slightly approximate form

(
d2σ

d� dE′

)
mix

� k′

k

⎡
⎣c[Ne]2

(
σt [Ne]

4π

)
SNe(Q,ω) + 4c[Ne]c[H2]b̄Neb̄He−Wv (Q)j0(QdH/2)

× Sd,Ne-CM(Q,ω) + (c[Ne] − c[Ne]2)

(
σt [Ne]

4π

)
Ss,Ne(Q,ω)

+ c[H2]
∑
j,j ′

a(Q; j, j ′)Ss,CM(Q,ω) ⊗ δ(h̄ω − Ej,j ′ )

⎤
⎦. (A6)
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It is worth commenting the third term in the formula above: it is the so-called “diffuse” scattering component, typical of the
Faber-Ziman approach to mixtures, and represents a term which is incoherent in its form (being proportional to the self-dynamic
structure factor), but purely coherent in its nature (since we have seen that the Ne incoherent cross section is negligible).

Since the final purpose of Sec. III is to isolate the scattering contribution due to the self-dynamics of the H2 molecules, the
strategy of the present approach will be to manipulate the four terms in Eq. (A6) in order to leave only the last. Rigorously
speaking, this is an impossible task since three dynamic structure factors, namely, SNe(Q,ω), Sd,Ne-CM(Q,ω), and Ss,Ne(Q,ω),
are experimentally unknown for the two mixture samples. However, looking at Table I, where temperatures, H2 impurity
concentrations, and total molecular densities are reported, it is possible to assume that, due to the small variations of n, SNe(Q,ω)
might be considered basically the same in all the three measured samples. In this way, going back to Eq. (A2), one can easily
remove the first term in Eq. (A6) by simple subtraction:

c[H2]−1

(
d2σ

d� dE′

)
mix

− c[H2]−1c[Ne]2

(
d2σ

d� dE′

)
Ne

� k′

k

⎡
⎣4 c[Ne] b̄Ne b̄H e−Wv (Q) j0(QdH/2)Sd,Ne-CM(Q,ω)

+ c[H2]−1(c[Ne] − c[Ne]2)

(
σt [Ne]

4π

)
Ss,Ne(Q,ω)

+
∑
j,j ′

a(Q; j, j ′)Ss,CM(Q,ω) ⊗ δ(h̄ω − Ej,j ′ )

⎤
⎦. (A7)

Together with the hydrogen contribution, the previous equation still exhibits two extra terms: one coherent due to the “cross”
scattering between Ne atoms and H2 molecules, and one representing the self-diffuse scattering from the system. Another strategy
could consist in performing a slightly different subtraction (with the weight c[Ne]2 replaced by c[Ne]) so to obtain

c[H2]−1

(
d2σ

d� dE′

)
mix

− c[H2]−1c[Ne]

(
d2σ

d� dE′

)
Ne

� k′

k

⎡
⎣4 c[Ne] b̄Ne b̄H e−Wv (Q) j0(QdH/2)Sd,Ne-CM(Q,ω)

+ c[H2]−1(c[Ne] − c[Ne]2)

(
σt [Ne]

4π

)
[Ss,Ne(Q,ω) − SNe(Q,ω)]

+
∑
j,j ′

a(Q; j, j ′)Ss,CM(Q,ω) ⊗ δ(h̄ω − Ej,j ′ )

⎤
⎦, (A8)

which contains an additional Ne term, but exhibiting a negative sign. Before choosing the better approach, it is crucial to
numerically compare the integrated magnitudes of the various unwanted terms with one another and with the hydrogen
contribution which will be selected (see Sec. III) for accomplishing further studies, namely, the j = 1 → j ′ = 1 transition.
Choosing the less favorable case [i.e., sample No. 4] with the higher H2 concentration c[H2] = 10%, one has to calculate the
following ω-integrated quantities for Eq. (A7):

fNe-CM(Q) = 4 c[Ne] b̄Ne b̄H e−Wv (Q) j0(QdH/2)S×(Q)

� −4 c[Ne]

(√
σcoh[Ne]σcoh[H]

4π

)
e−Wv (Q)j0(QdH/2){[SNe(Q)SCM(Q)]1/2 − 1};

fs,Ne(Q) = c[H2]−1(c[Ne] − c[Ne]2)

(
σt [Ne]

4π

)
;

f11,CM(Q) = a(Q; 1, 1)

= 4 x1 e−2Wv (Q)
[
j 2

0 (QdH/2) + 2j 2
2 (QdH/2)

][(
σcoh[H]

4π

)
+ 2

3

(
σinc[H]

4π

)]
, (A9)

where S×(Q) represents the integral of Sd,Ne-CM(Q,ω) over ω, and x1 is the relative population of the rotational species j = 1.
Similarly, for Eq. (A8) one writes

gNe-CM(Q) = fNe-CM(Q);

gs,Ne(Q) = c[H2]−1(c[Ne] − c[Ne]2)

(
σt [Ne]

4π

)
[1 − SNe(Q)];

g11,CM(Q) = f11,CM(Q). (A10)

Summing all the unwanted contributions in Eq. (A9), fun(Q) = fNe-CM(Q) + fs,Ne(Q), and those in Eq. (A10), gun(Q) =
gNe-CM(Q) + gs,Ne(Q), we can finally establish a comparison with the j = 1 → j ′ = 1 hydrogen term in the whole Q range
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FIG. 13. Simulated scattering contributions (integrated over all
the energy transfer range) for sample No. (4) after subtracting the
pure neon signal. Full green line stands for f11(Q), the ortho-
hydrogen contribution related to the transition j = 1 → j ′ = 1,
dashed red line represents fun(Q), while dotted blue line gun(Q) (see
Appendix A for details). In the inset an example of the Ne signal

subtraction for sample No. (4) has been reported (Q = 3.25 Å
−1

):
full cyan line represents the signal from the mixture, dashed magenta
line that from pure Ne, and dotted black line stands for the difference
between the two, related to the n-H2 signal.

of interest (see Fig. 13). These estimates have been cal-
culated using SNe(Q) and SCM(Q) values obtained from
Refs. [49,50]], respectively (after performing the usual correc-
tions for the small molecular density differences). As for the
S×(Q), a reasonable, although highly heuristic, combination
rule for SNe(Q) and SCM(Q) has been chosen. It is straight-
forward to see in Fig. 13 that both unwanted contributions
are generally much smaller than the selected hydrogen one,
although they do not appear to be totally irrelevant, at least

for Q < 3.5 Å
−1

where gun(Q) is non-negligible. In fact, it
is interesting to note that the absolute value of gun(Q) is
much more intense than that of fun(Q) in the low-Q region

(say, for Q < 2.5 Å
−1

), while for higher momentum transfer
values the trend becomes the opposite. For this reason, in our
data reduction procedure we have applied an appropriate (and
Q-dependent) linear combination between the two Ne spectra

to be subtracted appearing in Eqs. (A7) and (A8), respectively,
setting in this way the resulting unwanted contributions to
their lowest possible values.

APPENDIX B

As mentioned in Sec. IV, the molecular model used for our
quantum CMD simulations included three pairwise additive
potentials, namely, Ne-Ne, Ne-H2 CM, and H2 CM-H2 CM,
the first being modeled via a spherically symmetric potential
proposed by Aziz and Slaman [28]. Its form is known as
HFD-B and contains Gaussian and exponential components
at low values of the Ne-Ne distance r , van der Waals ones
(proportional to r−6, r−8, and r−10) at high distance values,
and, finally, an appropriate switching function to suppress
the van der Waals part at close distances. This type of in-
teratomic interaction has been successfully used for noble
gases in a wide range of applications and compares still quite
well with the most modern ab initio potentials for Ne and
Ar [51], especially if contrasted to the old Lennard-Jones
potential schemes. However, concerning Ne, some evidences
about the superiority of the Lennard-Jones form (using, e.g.,
the Morales and Nuevo parametrization [52]) to predict the
correct system density in the liquid state (pure and mixed with
hydrogen) have been pointed out by Challa and Johnson [30]
in the context of accurate PIMC simulations devoted to the
study of the excess volume of the mentioned mixture. As a
matter of fact, these authors employed a slightly different Aziz
Ne-Ne potential, called HFD-C2 [53], rather than the HFD-B
one, but, given the strong resemblance between these two Aziz
potentials, we felt motivated to check the effect the potential
change on our CMD simulation results. To this aim, we
have replaced the Aziz HFD-B potential with a standard (i.e.,
12-6) Lennard-Jones one exhibiting the following parameters:
ε/kB = 36.83 K and σ = 2.79 Å [52]. Two thermodynamic
states have been investigated, actually those in Table II which
are closest to the experimental conditions, namely, Nos. iii
and vii, using exactly the same conditions as those applied to
the calculations described in Sec. IV. A comparison between
the obtained CMD computational results (i.e., self-diffusion
coefficients and mean kinetic energies) can be found in
Table III, where differences larger than the respective statis-
tical uncertainties are reported. In particular, hydrogen dy-
namics deserves some comments since, quite unexpectedly,
it seems the more affected by a potential change concerning

TABLE III. Thermodynamic conditions and computational results concerning the two liquid samples simulated at T = 30.0 K making use
of two distinct Ne-Ne pairwise potential, namely, Aziz HFD-B [28] (AZ) and Lennard-Jones [52] (LJ). Table includes potential form, total
number of particles N , number of H2 molecules N [H2], hydrogen concentration c[H2], total molecular density n, self-diffusion coefficient Ds

for H2 CM and Ne, mean kinetic energy 〈Ek〉(sp) from VACF spectra for H2 CM and Ne, mean kinetic energy 〈Ek〉(po) from PIMC “polymers”
for H2 CM and Ne. See main text and Appendix B for details.

Pot. N N [H2] c[H2] n Ds,CM Ds,Ne 〈Ek〉(sp)
CM 〈Ek〉(sp)

Ne 〈Ek〉(po)
CM 〈Ek〉(po)

Ne

(%) (nm−3) (10−5 cm2 s−1) (10−5 cm2 s−1) (K) (K) (K) (K)

AZ 256 9 3.52 33.07 2.71(4) 2.36(1) 92.6(2) 53.82(1) 93.1(2) 53.69(1)
LJ 256 9 3.52 33.07 2.54(3) 2.32(1) 97.6(3) 53.77(1) 98.3(3) 53.49(5)
AZ 256 26 10.16 30.94 3.78(4) 2.82(1) 87.4(1) 53.15(1) 87.8(1) 53.03(1)
LJ 256 26 10.16 30.94 3.37(1) 2.83(1) 91.6(1) 52.87(1) 92.0(1) 52.63(1)
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FIG. 14. Simulated spectral functions fCM(ω) in two selected
neon-hydrogen mixtures reported in Table II, namely, Nos. iii and vii,
and in Table III. Data obtained from the Aziz HFD-B Ne-Ne potential
[28] are plotted as full red lines, while those from the Lennard-Jones
one [52] as dotted blue lines.

the Ne-Ne interaction only. For example, while neon diffusion
coefficients are practically unchanged, the hydrogen ones
decrease in a sizable way, namely, 6% and 11% for simulated
samples No. iii and No. vii, respectively. A similar scenario
can be seen if mean kinetic energy estimates (both from VACF
spectra and from PIMC “polymers”) are taken into account:
neon values are almost insensitive to the Ne-Ne potential
change, while the H2 CM ones show an increase of about 5%
for both simulated samples.

A more complete picture of this phenomenon can be de-
rived looking at Fig. 14, where the spectral functions fCM(ω),
related to the hydrogen VACFs, have been plotted. Lennard-
Jones spectra appear blue-shifted (this explains the larger
〈Ek〉CM) and, in addition, slightly more solidlike, in agreement
with the smaller value of Ds . The physical reason of such
an effect of the Ne-Ne potential change is not easy to be
conceived since this interaction does not directly affect the

H2 molecules. One could speculate that the mentioned po-
tential influences the Ne pseudocage surrounding a hydrogen
molecule in the liquid, making it more rigid. However, a
simple inspection of the Ne-Ne pair correlation functions g(r )
(derived, as a by-product, from our quantum simulations)
does not completely support this picture since the first g(r )
maximum appears more or less at the same position in r and,
moreover, the Lennard-Jones potential slightly shifts the base
of the main Ne-Ne peak on the right, giving rise to larger, and
not narrower, pseudocages.

Moving to the comparison of the new simulated data with
our experimental results, one sees in Sec. V, where the fitted
K̄ (Q) are reported to be (95 ± 2) K for sample No. 4 and
(98 ± 2) K for sample No. 5, that the Lennard-Jones 〈Ek〉CM
values have substantially improved the agreement between
CMD and neutron estimates, although for the less diluted
sample the increase is not yet completely sufficient. From the
Lennard-Jones fCM(ω) it is possible, exploiting the GA, to
reevaluate the self-scattering laws for the H2 centers of mass
plotted in Figs. 4 and 6 (including the instrumental energy
transfer resolution) and, subsequently, to compare these spec-
tra with the neutron scattering ones reported in Figs. 2 and 3.
For the sake of brevity, this final comparison will be only
discussed verbally but not shown in figures. Dealing with the
experimental sample No. 4, which corresponds to simulation
No. vii in Table II, the agreement is deteriorated for Q =
2.25 Å

−1
, but is improved for 2.75 Å

−1 � Q � 3.75 Å
−1

. At
higher-Q values there is no appreciable change with respect to
the Aziz-based data. On the other hand, for the experimental
sample No. 5, which corresponds to simulation No. iii, the

agreement is once again deteriorated for Q = 2.25 Å
−1

data,
while elsewhere there is no appreciable change with respect
to the Aziz-based data.

In conclusion, there are some clues that the Lennard-Jones
Ne-Ne potential is slightly superior than the Aziz one in
reproducing the microscopic dynamic features probed by our
experiment, although this improvement does not seem to be
so relevant to justify a complete recalculation of all the CMD-
simulated spectral quantities.
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