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Microreversibility, fluctuations, and nonlinear transport in transistors
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We present a stochastic approach for charge transport in transistors. In this approach, the electron and hole
densities are governed by diffusion-reaction stochastic differential equations satisfying local detailed balance
and the electric field is determined with the Poisson equation. The approach is consistent with the laws of
electricity, thermodynamics, and microreversibility. In this way, the signal amplifying effect of transistors is
verified under their working conditions. We also perform the full counting statistics of the two electric currents
coupled together in transistors and we show that the fluctuation theorem holds for their joint probability
distribution. Similar results are obtained including the displacement currents. In addition, the Onsager reciprocal
relations and their generalizations to nonlinear transport properties deduced from the fluctuation theorem are
numerically shown to be satisfied.
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I. INTRODUCTION

Transistors are the main compounds of semiconductor
electronic technology. The core of transistors is composed
of three semiconducting materials concatenated in series,
thus forming double junctions. The middle semiconductor is
doped with charged impurities different from those in the two
other semiconductors. Since transistors have three ports and
currents flow between pairs of ports, two electric currents are
coupled together inside transistors, enabling the amplification
of signals [1–6].

The fundamental issue is that the coupling between the
electric currents is ruled by microreversibility, as in any type
of device or process. In linear regimes close to thermody-
namic equilibrium, microreversibility implies the Onsager-
Casimir reciprocal relations [7–9]. However, transistors are
functioning in highly nonlinear regimes beyond the domain
of application of the Onsager-Casimir reciprocal relations.
Remarkably, the generalizations of these relations beyond the
linear regime are known today [10–14]. They can be deduced
from the fluctuation theorem for currents, which is based
on the time-reversal symmetry of the microscopic dynamics
of electrons and ions [15–21]. The fluctuation theorem is
valid not only in the linear regimes, but also in the nonlinear
regimes, and can thus be used to investigate the nonlinear
transport properties of transistors.

In our previous paper [22], the fluctuation theorem was
considered for diodes that are also nonlinear electronic de-
vices. Here, our purpose is to extend these considerations to
transistors. The novel aspect is that two currents are flowing
in transistors, instead of only one in diodes. As a consequence
of the nonlinear coupling between the two currents, the
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generalizations of Onsager-Casimir reciprocal relations to
nonlinear transport can be tested in transistors.

For this purpose, the stochastic approach of Ref. [22]
is extended from the single junction of diodes to the dou-
ble junction of n-p-n transistors. The approach is based
on diffusion-reaction stochastic partial differential equations
for electrons and holes, including their Coulomb interaction
described by the Poisson equation. This scheme satisfies local
detailed balance in consistency with microreversibility. The
stochastic description is presented in Sec. II. The functionality
of transistors is studied in Sec. III. Section IV is devoted to
the fluctuation theorem for the two currents of the transistor.
Section V shows that the linear response coefficients obey
the Onsager-Casimir reciprocal relation and the fluctuation-
dissipation theorem, and that the next-order nonlinear
response coefficients satisfy higher-order generalizations.
Section VI gives concluding remarks.

II. STOCHASTIC DESCRIPTION OF TRANSISTORS

A. The bipolar n- p-n junction transistor

There exists many types of transistors [3–6]. The bipolar
n-p-n junction transistor (BJT) is one of the most common of
them. BJTs consist of three small doped regions of a piece
of silicon, respectively typed as n, p, and n, thus forming
two junctions, as shown in Fig. 1. The electrons e− and
holes h+ are the two mobile charge carriers across the bipolar
n-p-n junction, with electrons being the majority ones in
n-type semiconductor, and holes the majority ones in p-type
semiconductor. The positively charged donors and negatively
charged acceptors are, respectively, anchored in n-type semi-
conductors and p-type semiconductors. Each doped region
has a port and the three ports are in contact with some charge
carrier reservoir. They are, respectively, called collector, base,
and emitter (see Fig. 1).

To model the transistor, a Cartesian coordinate system
is associated with the system. As shown in Fig. 1(b), the
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FIG. 1. Schematic representation of (a) the transistor and (b) the bipolar n-p-n double junction. In panel (b), the black (respectively, white)
dots represent electrons (respectively, holes). The three reservoirs, called collector, base, and emitter, fix the values of the electron density, the
hole density, and the electric potentials at their contact with the transistor.

semiconducting material extends from x = −l/2 to x = +l/2
and is divided into three parts. The part from x = −l/2 to
x = −lp/2 is of n-type, the one from x = −lp/2 to x =
+lp/2 of p-type, and the one from x = +lp/2 to x = +l/2
of n-type. The three parts are, respectively, of lengths ln =
(l − lp )/2, lp, and ln = (l − lp )/2. The collector is in contact
at x = −l/2, the emitter at x = +l/2, and the base along a
length lB symmetrically located around the origin x = 0. The
length of the contact with the base is smaller than the one
of the p-type part: lB < lp. The geometry is chosen to be
symmetric with respect to x = 0 for simplicity.

In addition, the bipolar n-p-n double junction has the
section area � in the transverse y- and z-directions. The
section areas of the contacts with the collector and emitter
are assumed to be equal: �C = �E = �. Accordingly, the
semiconducting material extends over a domain of volume
V = l�. Moreover, we denote �B the section area of the
contact with the base.

The donor density d(r) and acceptor density a(r) are sup-
posed to be uniform in the different types of semiconductor.
Therefore, they can be expressed as

d(r) = d θ (−x − lp/2) + d θ (x − lp/2), (1)

a(r) = a θ (x + lp/2) θ (−x + lp/2), (2)

in terms of two constant values a and d, combined with
Heaviside’s step function θ (x) defined such that θ (x) = 1 if
x > 0 and θ (x) = 0 otherwise. The charge density is thus
given by

ρ = e(p − n + d − a) , (3)

with the elementary electric charge e = |e|, and the densities
of holes p, electrons n, donors d, and acceptors a. Here, we
have assumed that every donor gives one electron and every
acceptor one hole. Because of the electrostatic interaction
between the charges, these densities are coupled to the electric
potential φ(r).

The electron and hole densities as well as the electric
potential have fixed boundary values at the contacts with the
three reservoirs. They are, respectively, given by nC, pC, φC

at the collector; nB, pB, φB at the base; and nE, pE, φE at
the emitter.

If the transistor is at equilibrium without flow of
charge carriers, detailed balance between the generation and

recombination of electron-hole pairs requires that neqpeq =
ν2, where ν is called the intrinsic carrier density. Moreover,
the electron and hole densities are given at equilibrium by

neq(r) ∼ e+βφeq (r) and peq(r) ∼ e−βeφeq (r) (4)

in terms of the electric potential determined across the whole
system by the Poisson equation and the boundary conditions
at the contacts with the three reservoirs. If the BJT is at
equilibrium, the inhomogeneous distributions of the charge
carriers thus produce the Nernst potentials

(φC − φE )eq = 1

βe
ln

nC

nE

= 1

βe
ln

pE

pC

(5)

and

(φB − φE )eq = 1

βe
ln

nB

nE

= 1

βe
ln

pE

pB

, (6)

where β ≡ (kBT )−1 is the inverse temperature.
The transistor is driven out of equilibrium by applying

voltage differences with respect to the Nernst potentials

VC = φC − φE − 1

βe
ln

nC

nE

, (7)

VB = φB − φE − 1

βe
ln

nB

nE

, (8)

which induce currents across the BJT. In the following, we use
the associated affinities or thermodynamic forces

AC ≡ βeVC and AB ≡ βeVB , (9)

which are dimensionless. The equilibrium state is recovered
if they vanish, i.e., if the applied voltages are equal to zero
VC = VB = 0.

B. Stochastic diffusion-reaction equations

The thermal agitation inside the BJT generates incessant
erratic motion for the electrons and holes, in turn causing
local fluctuations in the currents and reaction rates. These
fluctuations can be described within the stochastic approach
by introducing Gaussian white noise fields in the diffusion-
reaction equations for the electron and hole densities. The
advantage of this approach is that the usual phenomenological
parameters suffice for the stochastic description.
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The mobilities of electrons and holes are related with their
diffusion coefficients through Einstein’s relations

μn = βeDn and μp = βeDp. (10)

Besides, the electron-hole pairs are randomly generated and
recombined according to the reactions

e− + h+ k−−⇀↽−
k+

∅, (11)

where k+ and k− are, respectively, the generation and recom-
bination rate constants. In general, the quantities Dn, Dp, and
k± are spatially dependent in an inhomogeneous medium.
However, for simplicity, we assume that they are uniform
across the whole BJT.

Considering the diffusion and generation-recombination
processes as well as the electrostatic interaction between the
charges, we have the following stochastic partial differential
equations for the charge carrier densities coupled to the Pois-
son equation for the electric potential,

∂tn + ∇ · jn = σn, (12)

∂tp + ∇ · jp = σp, (13)

∇2φ = −ρ

ε
, (14)

where

σn = σp = k+ − k−np + δσ , (15)

jn = −μnnEEE − Dn∇n + δjn, (16)

jp = +μppEEE − Dp∇p + δjp, (17)

EEE = −∇φ, (18)

are the reaction rates, the current densities, and the elec-
tric field, while ρ is the charge density given by Eq. (3)
and ε the dielectric constant of the material [22]. The fluc-
tuations δjn, δjp, and δσ are Gaussian white noise fields
characterized by

〈δjn(r, t )〉 = 〈δjp(r, t )〉 = 0, (19)

〈δjn(r, t ) ⊗ δjn(r′, t ′)〉 = �nn(r, t ) δ3(r − r′) δ(t − t ′) 1,

(20)

〈δjp(r, t ) ⊗ δjp(r′, t ′)〉 = �pp(r, t ) δ3(r − r′) δ(t − t ′) 1,

(21)

〈δjn(r, t ) ⊗ δjp(r′, t ′)〉 = 0, (22)

〈δσ (r, t )〉 = 0, (23)

〈δσ (r, t ) δσ (r′, t ′)〉 = �σσ (r, t ) δ3(r − r′) δ(t − t ′), (24)

〈δσ (r, t ) δjn(r′, t ′)〉 = 〈δσ (r, t ) δjp(r′, t ′)〉 = 0, (25)

where 1 is the 3 × 3 identity matrix and

�nn(r, t ) ≡ 2 Dn n(r, t ), (26)

�pp(r, t ) ≡ 2 Dp p(r, t ), (27)

�σσ (r, t ) ≡ k+ + k−n(r, t )p(r, t ) (28)

are the noise spectral densities associated with the electron
and hole diffusions, and the reaction.

Because of Eqs. (19) and (23), we recover the mean-field
equations of the macroscopic description by averaging the
stochastic partial differential equations over the noises.

C. Numerical method for simulating the transistor

For the numerical simulation of the transistor, a Markov
jump process is associated with the stochastic partial differ-
ential Eqs. (12)–(18), as described in detail in Appendix A.
Space is discretized into L cells of length �x = l/L, section
area �, and volume � = ��x, located at the coordinates
xi = (i − 0.5)�x − l/2 (i = 1, 2, . . . , L). Consistently with
Fig. 1(b), there are Ln = ln/�x cells in both parts of n-type,
Lp = lp/�x cells for the part of p-type, and LB = lB/�x

cells in contact with the base. The numbers of electrons,
holes, acceptors, and donors in each cell of the BJT are
related to the corresponding densities by Ni = n(xi )�, Pi =
p(xi )�, Ai = a(xi )�, and Di = d(xi )�. The state of the
discretized BJT is fully characterized by the electron num-
bers N = (Ni )Li=1 and the hole numbers P = (Pi )Li=1 in the
cells. The master equation ruling the time evolution of their
probability distribution P (N, P, t ) is given in Appendix A 1.
Moreover, the Poisson Eq. (14) is also discretized along the
chain of L cells forming the system, taking into account the
electric potentials of the collector, the base, and the emitter, as
explained in Appendix A 2. The resulting stochastic process
can be simulated numerically by Gillespie’s algorithm [23],
which is an exact method for generating random trajectories
in this case.

To speed up the simulation, the Markov jump process is
approximated by a Langevin stochastic process under the
assumption that the numbers of electrons and holes are large
enough in every cell, Ni 
 1 and Pi 
 1. Accordingly, these
numbers obey stochastic differential equations expressed in
terms of the fluxes of particles between the cells, the reaction
rates, and Gaussian white noises for their fluctuations, as
shown in Appendix B.

At the contacts with the three reservoirs, the boundary con-
ditions on the charge carrier densities determine the boundary
values for the corresponding particle numbers:

N̄C = nC�, P̄C = pC�, (29)

N̄B = nB�, P̄B = pB�, (30)

N̄E = nE�, P̄E = pE�. (31)

Furthermore, the three parts of the transistor are supposed to
be doped from a semiconducting material of uniform intrinsic
density ν, so that the boundary values of the electron and hole
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TABLE I. The values of dimensionless physical quantities and parameters used in simulating the BJT model in rescaled units.

Quantity Value Quantity Value

Permittivity ε = 0.01 Length of each cell �x = 0.1
Elementary charge |e| = 1.0 Width of each cell �y = 0.2
Inverse temperature β = 1.0 Number of cells in both n-type regions Ln = 10
Diffusion coefficient for electrons and holes D = 0.01 Number of cells in the p-type region Lp = 3
Generation and recombination rate constants k+ = k− = 0.01 Number of cells in contact with the base LB = 1

densities should satisfy the conditions

nCpC = nBpB = nEpE = ν2. (32)

We further set

nC = nE , pC = pE , (33)

to have a system that is symmetric with respect to x = 0, as
depicted in Fig. 1(b).

In numerical simulations, the statistical averages of any
observable quantity X can be evaluated by the time aver-
age 〈X〉 = limT →∞(1/T )

∫ T

0 X(t ) dt , which is equivalent by
ergodicity to the ensemble average 〈X〉 = ∑

N,P XPst (N, P)
over the stationary probability distribution Pst. In the con-
tinuum limit, the volume of the cells is supposed to vanish
together with the particle numbers, so that the electron and
hole densities can be recovered as n(xi ) = Ni/� and p(xi ) =
Pi/�.

We assume for simplicity that the electron and hole dif-
fusion coefficients are equal Dn = Dp ≡ D. As done in our
previous paper [22], the quantities of interest may be rescaled
using the intrinsic carrier density ν, the intrinsic carrier life-
time τ = 1/(k−ν), the intrinsic carrier diffusion length before
recombination � = √

Dτ , the inverse temperature β, and the
elementary electric charge. After this rescaling, the quantities
of interest become dimensionless. Table I gives the values
of the so-rescaled quantities used in the following numerical
simulations of the BJT model.

III. THE FUNCTIONALITY OF TRANSISTORS

The purpose of this section is to show that the properties
characterizing the functionality of transistors can be described
within the stochastic approach.

In electronic technology, transistors are primarily used to
amplify signals in electric circuits. This amplification results
from the coupling between the two electric currents, JC and
JB . By this coupling, one current can serve as input and the
other as output. The amplification factor is defined as the ratio
of these two currents, JC/JB . We may also introduce the
differential amplification factor as follows. When the affinity
AC is fixed, the variation of the other affinity AB leads to
variations of JC and JB . The amplification factor is defined
as the ratio between these two variations,

α =
(

∂JC

∂JB

)
AC

, (34)

under specific working conditions. To achieve the functional-
ity of signal amplification, the transistors should satisfy the

following requirements:
(1) The concentration of the majority charge carriers

in the collector region should be overwhelmingly
larger than the concentration of minority charge car-
riers in the base region.

(2) The concentration of the majority charge carriers
in the emitter region should be overwhelmingly
larger than the concentration of minority charge car-
riers in the base region.

(3) The collector-base junction should be reverse biased.
(4) The emitter-base junction should be forward biased.
(5) The base region should be very thin so that the ma-

jority charge carriers in the emitter region can easily
get swept to the collector region.

(6) The contacting section areas �C and �E should be
larger than �B .

Table II gives a set of parameter values approaching these
requirements to show that the present stochastic model can
describe transistors in such regimes. The first two conditions
are satisfied since N̄C = N̄E 
 N̄B , and the last one because
� = �C = �E > �B .

If the transistor was at equilibrium without applied voltage
(AC = AB = 0), the Nernst potentials Eqs. (5) and (6) would
take the values (φC − φE )eq = 0 and (φB − φE )eq = −11.5
with the parameter set of Table II. At equilibrium, the electric
field would have a symmetric profile around x = 0 with (φC −
φB )eq = (φE − φB )eq = 11.5.

Figure 2 shows the profiles of charge carrier densities and
current densities together with the electric potential under
nonequilibrium conditions with applied voltages correspond-
ing to AC = 20 and AB = 6. In Fig. 2(a), we see that the
base region is thin in the model, so that the fifth condition
is satisfied. As observed in Fig. 2(b), the current densities
are non-vanishing because the transistor is out of equilibrium.
According to Eqs. (7) and (8), we here have that φC −
φE = 20 and φB − φE = −5.5, so that φC − φB = 25.5 and
φE − φB = 5.5, in agreement with the electric field plotted in
Fig. 2(c). Since φC − φB = 25.5 is larger than (φC − φB )eq =
11.5, the collector-base junction is reverse biased, as it should
by the third condition. Moreover, φE − φB = 5.5 is smaller
than (φE − φB )eq = 11.5, so that the emitter-base junction
is forward biased and the fourth condition is also satisfied.
Under these conditions, the transistor can indeed achieve
signal amplification, as demonstrated in Fig. 3. The currents
JC and JB are shown in Fig. 3(a) as functions of AB , with AC

fixed. Since the current JC is greater than JB , the amplification
factor JC/JB is larger than unity, as expected. Furthermore,
Fig. 3(b) depicts how the current JC increases with the other
current JB and the associated affinity AB . For AB = 6, the
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TABLE II. The set of parameter values used in Sec. III.

Parameter Value Parameter Value

Volume of each cell � = 109 Section area � = 1010, �B = 5 × 109

Number of electrons for the collector N̄C = 1013 Number of holes for the collector P̄C = 105

Number of electrons for the base N̄B = 108 Number of holes for the base P̄B = 1010

Number of electrons for the emitter N̄E = 1013 Number of holes for the emitter P̄E = 105

differential amplification factor Eq. (34) is evaluated to be

α(AC = 20, AB = 6) � 4.278, (35)

which is also larger than unity, as required. It should be
noticed that the amplification factors can take different values
for different working conditions of the transistor.

These results show that the stochastic approach is relevant
to study transistors in their regimes of signal amplification. We
proceed in Secs. IV and V with the study of their fluctuation
properties.

IV. FLUCTUATION THEOREM FOR CURRENTS

A. Generalities

We consider the fluctuating electric currents flowing, re-
spectively, across the contact with the collector and the con-
tact with the base. These electric currents are due to the
random motion of electrons and holes crossing the contact
sections between the transistor and the corresponding reser-
voirs. The instantaneous electric currents are thus defined as

IC (t ) =
+∞∑

n=−∞
q (C)

n δ
(
t − t (C)

n

)
, (36)

IB (t ) =
+∞∑

n=−∞
q (B )

n δ
(
t − t (B )

n

)
, (37)

where t (C)
n (respectively, t (B )

n ) are the random times of the
crossing events and q (C)

n (respectively, q (B )
n ) are the transferred

charges equal to ±e depending on whether the carrier is an
electron or a hole and if its motion is inward or outward
the transistor. The corresponding random numbers of charges

accumulated over the time interval [0, t] are defined as

ZC (t ) = 1

e

∫ t

0
IC (t ′) dt ′, ZB (t ) = 1

e

∫ t

0
IB (t ′) dt ′.

(38)

We also define the instantaneous total electric currents
including the contribution of displacement currents as

ĨC (t ) = IC (t ) − ε ∂t∂xφ �C , (39)

ĨB (t ) = IB (t ) − ε ∂t∂yφ �B , (40)

which are the experimentally measured electric currents
[16,22,24–26], as well the corresponding accumulated charge
numbers Z̃C (t ) and Z̃B (t ) with definitions as in Eq. (38).

The mean values of the charge currents are given by

JC ≡ lim
t→∞

1

t
〈ZC (t )〉 = lim

t→∞
1

t
〈Z̃C (t )〉, (41)

JB ≡ lim
t→∞

1

t
〈ZB (t )〉 = lim

t→∞
1

t
〈Z̃B (t )〉, (42)

and the corresponding electric currents by IC = eJC and
IB = eJB . The equality between the mean values without and
with the displacement currents comes from the fact that the
displacement currents are given by a time derivative.

The diffusivities of the currents are defined as

DCC ≡ lim
t→∞

1

2t
varZCZC

(t ) = lim
t→∞

1

2t
varZ̃CZ̃C

(t ) , (43)

DBB ≡ lim
t→∞

1

2t
varZBZB

(t ) = lim
t→∞

1

2t
varZ̃B Z̃B

(t ) , (44)

DCB ≡ lim
t→∞

1

2t
covZCZB

(t ) = lim
t→∞

1

2t
covZ̃CZ̃B

(t ), (45)

(a) (b) (c)
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FIG. 2. The profiles of (a) the charge carrier densities, (b) the current densities, and (c) the electric potential across the BJT which is used
as signal amplifier under the working conditions AC = 20 and AB = 6. The collector C is located at x � −1.15, the emitter E at x � +1.15,
and the base B around x = 0. The simulations were carried out with the time step dt = 0.00015 and 106 iterates for every data point.
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(a) (b)
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JB 

AC = 20 

AB  

AC = 20 
AB = 6 

AB 

10−9 JB

10
−1
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10
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0 
J  

FIG. 3. (a) The mean currents JC and JB versus the affinity AB , with the other affinity fixed to the value AC = 20. The lines join the
numerical points depicted by the asterisks. (b) The current JC versus the other current JB . The solid line joins the asterisks. The dashed line
in the middle region is determined from Lagrange interpolation using the five asterisks of this domain. The derivative of JC with respect to
JB at the point (AC = 20, AB = 6) is evaluated giving the amplification factor Eq. (35). The simulations were carried out with the time step
dt = 0.00015 and 106 iterates for every data point.

in terms of the variances and the covariances between the
accumulated random charge numbers

varZCZC
(t ) ≡ 〈ZC (t )ZC (t )〉 − 〈ZC (t )〉2, (46)

varZBZB
(t ) ≡ 〈ZB (t )ZB (t )〉 − 〈ZB (t )〉2, (47)

covZCZB
(t ) ≡ 〈ZC (t )ZB (t )〉−〈ZC (t )〉〈ZB (t )〉 = covZBZC

(t ).

(48)

The diffusivities also take the same value whether the dis-
placement currents are included or not. Since the covariance
between two random variables is symmetric under their ex-
change, we have the symmetry DCB = DBC .

We suppose that the voltage Eqs. (7) and (8) are applied at
the boundaries of the transistor. Consequently, the transistor
is driven out of equilibrium and the stochastic process of
charge transfers between the reservoirs eventually reaches a
nonequilibrium steady state. This latter is expected to depend
on the applied voltages, or equivalently on the affinities,

AC = ln

[
P̄C

P̄E

eβe(φC−φE )

]
= ln

[
N̄E

N̄C

eβe(φC−φE )

]
= βeVC ,

(49)

AB = ln

[
P̄B

P̄E

eβe(φB−φE )

]
= ln

[
N̄E

N̄B

eβe(φB−φE )

]
= βeVB ,

(50)

which are determined by the differences of electrochemical
potentials between the corresponding reservoirs. The depen-
dencies of the mean values of the currents on the affinities de-
fine the characteristic functions of the transistor: JC (AC,AB )
and JB (AC,AB ). At equilibrium, the affinities are vanishing
together with the applied voltages and the mean values of
the currents, so that JC (0, 0) = JB (0, 0) = 0. However, the
diffusivities do not necessarily vanish at equilibrium.

Beyond the mean values of the currents and the diffusiv-
ities, the process can be characterized by higher cumulants
or the full probability distribution PAC,AB

(ZC,ZB, t ) that
ZC (t ) and ZB (t ) charges are crossing the collector and the
base during the time interval [0, t], while the transistor is

in a nonequilibrium steady state of affinities AC and AB .
This steady state is given by the stationary solution of the
master equation of the Markov jump process described in
Appendix A. Using the network representation of this Markov
jump process and its decomposition into cyclic paths [27],
the process can be shown to obey a fluctuation theorem for
all the currents as a consequence of local detailed balance
[15,16]. This theorem states that the joint distribution of
random variables ZC and ZB at time t satisfies the following
fluctuation relation

PAC,AB
(ZC,ZB, t )

PAC,AB
(−ZC,−ZB, t )

�t→∞ exp(ACZC + ABZB ). (51)

A similar fluctuation relation holds if the displacement cur-
rents are included in the accumulated charge numbers [16].

As a consequence of the fluctuation theorem, the ther-
modynamic entropy production is always non-negative in
accord with the second law of thermodynamics. The entropy
production can indeed be expressed as the Kullback-Leibler
divergence between the probability distributions of opposite
fluctuations of the currents [21], giving the dissipated power
divided by the thermal energy

1

kB

diS

dt
= ACJC + ABJB = β(VCIC + VBIB ) � 0 , (52)

as expected.
We notice that the fluctuation relation Eq. (51) holds in

the long-time limit. The convergence time is determined by
diffusion [28] and it can be estimated to range between the
time of diffusion across the middle part, tdiff ∼ l2

p/D ∼ 9, and
the one before recombination, tdiff ∼ �2/D ∼ 100.

B. Numerical results

The direct test of the fluctuation relation Eq. (51) re-
quires the availability of an overlap between the probability
distributions P (ZC,ZB, t ) and P (−ZC,−ZB, t ). Since the
maxima of these distributions move apart under nonequi-
librium conditions, the overlap rapidly decreases as time
increases. Therefore, the direct test of the fluctuation re-
lation is restricted to short times. Nevertheless, the test is
possible as shown in Fig. 4 for the joint probability dis-
tributions of the accumulated charge numbers without and
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FIG. 4. (a) Joint probability distribution P (ZC, ZB, t ) of the transferred charges ZC and ZB at time t = 20. The center of this distribution
marked with the symbol + corresponds to the mean values 〈ZB〉 = 117.43 and 〈ZC〉 = 75.21. Several contours of the distribution are also
plotted. (b) The function ln [P (ZC,ZB, t )/P (−ZC, −ZB, t )] versus ZC and ZB at the same time t = 20. Several contours are shown. The
arrows indicate the gradient of the distribution. The finite-time affinities take the values AB (t = 20) = 0.0387 and AC (t = 20) = 0.0326.
(c) Joint probability distribution P (Z̃C, Z̃B, t ) of the transferred total charges Z̃C and Z̃B including the displacement currents, at the same
time t = 20. This distribution is centered on the same mean values 〈Z̃B〉 = 117.43 and 〈Z̃C〉 = 75.21. (d) The corresponding function
ln [P (Z̃C, Z̃B, t )/P (−Z̃C,−Z̃B, t )] versus Z̃C and Z̃B at the same time t = 20, giving the finite-time affinities ÃB (t = 20) = 0.0659 and
ÃC (t = 20) = 0.0752. For both cases, the affinities are set in the simulation to the value AC = AB = 0.1. The simulation is carried out with
the time step dt = 0.1 and the statistics over 3 × 107 trajectories. The pixels in the four panels are all of size 4 × 4.

with the displacement currents using the set of parameter
values given in Table III. For the bare charge numbers,
Fig. 4(a) depicts the joint distribution itself at time t = 20,
which is roughly Gaussian and shifted with respect to the
origin because of the elapsed time. There is a significant
overlap with the opposite distribution P (−ZC,−ZB, t ) and
Fig. 4(b) shows several contours of the two-dimensional
function ln [P (ZC,ZB, t )/P (−ZC,−ZB, t )] in the plane of
the variables ZC and ZB . These contours appear straight
given the presence of statistical errors, in agreement with the
prediction of the fluctuation theorem that the function should
be linear. The function ln [P (ZC,ZB, t )/P (−ZC,−ZB, t )]
can thus be fitted to a linear function AC (t ) ZC + AB (t ) ZB ,

defining the finite-time affinities AC (t ) and AB (t ). However,
their values remain smaller than the applied affinities AC =
AB = 0.1 because convergence is expected for t 
 tdiff and
has not yet been reached in Fig. 4.

As shown in Figs. 4(c) and 4(d), similar results hold for
the joint probability distribution P (Z̃C, Z̃B, t ) of the charge
numbers with the displacement currents. As seen in Fig. 4(c),
the displacement currents have for effect that the distribu-
tion P (Z̃C, Z̃B, t ) is narrower than P (ZC,ZB, t ) depicted in
Fig. 4(a). Consequently, the finite-time affinities ÃC (t ) and
ÃB (t ) are larger than AC (t ) and AB (t ) and the convergence in
time towards the asymptotic values of the affinities should be
faster for the statistics of the transferred total charges Z̃C and
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TABLE III. The set of parameter values used in Secs. IV and V.

Parameter Value Parameter Value

Volume of each cell � = 1000 Section areas � = 10 000, �B = 5000
Number of electrons for the collector N̄C = 10 000 Number of holes for the collector P̄C = 100
Number of electrons for the base N̄B = 100 Number of holes for the base P̄B = 10 000
Number of electrons for the emitter N̄E = 10 000 Number of holes for the emitter P̄E = 100

Z̃B including the displacement currents, than for the statistics
of the transferred charges ZC and ZB . Figure 5 confirms
that the finite-time affinities ÃC (t ) and ÃB (t ) approach their
asymptotic value AC = AB = 0.1, as time increases. Since
the overlap between the opposite distributions rapidly de-
creases, statistical errors increase for t > 20. The exponential
fits of the finite-time affinities provide estimations of the
convergence times in the range of values expected by charge
carrier diffusion.

To test the convergence of the finite-time affinities towards
their asymptotic values over longer time scales, we develop a
method using the following coarse-grained model,

collector
WCE−−⇀↽−−
WEC

emitter,

base
WBE−−⇀↽−−
WEB

emitter,

collector
WCB−−⇀↽−−
WBC

base,

(53)

where the charges are supposed to be transferred between
the three reservoirs with the transition rates {Wkl}k,l=C,B,E ,
as formulated in Appendix C. This constitutes the minimal
model in the sense that the values of its rates can be fully
determined from the knowledge of the mean currents and
diffusivities, if the conditions of local detailed balance are
satisfied. This simple model is related to the Ebers-Moll
transport model of bipolar junction transistors [2,3]. Given the
values JC, JB, DCC, DBB , and DCB of the mean currents and
the diffusivities, the six rates Wkl can be determined, giving
the values of the affinities according to Akl = ln(Wkl/Wlk )

0
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FIG. 5. The finite-time affinities ÃC (t ) and ÃB (t ) versus time t

in the same conditions as in Figs. 4(c) and 4(d) for the transferred
total charges Z̃C and Z̃B including the displacement currents. These
affinities are obtained by fitting ln [P (Z̃C, Z̃B, t )/P (−Z̃C,−Z̃B, t )]
to the linear function ÃC (t ) Z̃C + ÃB (t ) Z̃B . The dashed lines show
the fits ÃC (t ) � 0.1 − 0.074 × exp(−t/16.52) and ÃB (t ) � 0.1 −
0.086 × exp(−t/20.61).

with k, l = C,B,E. Since this model results from the coarse
graining of the complete description, it has a domain of
validity limited to moderate values of the applied voltages.
In this domain, the parameter values of the model can thus be
fitted to the numerical values of the mean currents Eqs. (41)
and (42) and the diffusivities Eqs. (43)–(45) of the full model
to obtain the affinities.

Table IV shows the comparison between the numerical
affinities and the theoretical predictions for several cases.
Accurate agreement is found if the affinities remain moderate,
confirming the convergence of the finite-time affinities AC (t )
and AB (t ) towards their expected asymptotic values Eqs. (49)
and (50) within the domain of validity of the model Eq. (53).
Despite the limited scope of application of this method, the
agreement between the numerical and theoretical values of the
affinities brings further numerical support to the fluctuation
relation for the currents. In the next section, the consequences
of the fluctuation theorem on the linear and nonlinear transport
properties will be tested.

V. LINEAR AND NONLINEAR RESPONSE PROPERTIES

A. Deduction of the properties from the fluctuation theorem

The fluctuation theorem provides a unified framework for
deducing the Onsager reciprocal relations and their general-
izations to the nonlinear transport properties [10–14]. For this
purpose, it is convenient to introduce the cumulant generating
function

Q(λ; A) ≡ lim
t→∞ −1

t
ln

∫
PAC,AB

(ZC,ZB, t )

× e−λCZC−λBZB dZC dZB , (54)

where λ = (λC, λB ) are the so-called counting parame-
ters and the macroscopic affinities are written in vectorial

TABLE IV. The comparison between the numerical affinities and
their theoretical expectations. The statistics used to evaluate the
numerical affinities is obtained by simulations with the time step
dt = 0.05, the total time t = 2.5 × 103, and 5 × 105 trajectories for
every case.

case A
(th)
C A

(num)
C A

(th)
B A

(num)
B

1 1.0 0.9914 ± 0.0034 0.7 0.6942 ± 0.0027
2 0.8 0.7919 ± 0.0025 0.4 0.3952 ± 0.0019
3 0.5 0.5018 ± 0.0033 1.2 1.2007 ± 0.0041
4 0.0 0.0000 ± 0.0000 0.0 0.0000 ± 0.0000
5 −0.4 −0.4002 ± 0.0018 0.6 0.5975 ± 0.0020
6 −0.5 −0.4864 ± 0.0029 −0.7 −0.6864 ± 0.0029
7 −1.0 −1.0058 ± 0.0039 0.4 0.4022 ± 0.0028
8 −1.2 −1.3924 ± 0.0084 1.3 1.4118 ± 0.0084
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AC

(a) (b)

AB A

(c)

FIG. 6. Mean charge currents versus one affinity with the other being zero: (a) The collector current JC versus the collector affinity AC ;
(b) the base current JB versus the base affinity AB ; (c) the collector (solid line) and base (dashed line) currents versus the affinity of the other
reservoir. The asterisks are the numerical data from the simulation. The lines show the polynomials obtained from Lagrange interpolations
using the data points. From the functions that are given by Lagrange polynomials, the first partial derivatives around the equilibrium point
(AC = 0, AB = 0) can be estimated, with the approximate values given in Table V. The root mean squares on the data points are evaluated to
be σJC

� 0.0020 and σJB
� 0.0021. The simulations were carried out with the time step dt = 0.05 and 109 iterates for every data point.

notation A = (AC,AB ). As a consequence of the fluctuation
theorem Eq. (51), the cumulant generating function obeys the
following symmetry relation

Q(λ; A) = Q(A − λ; A). (55)

Now, the mean currents and the diffusivities can be obtained
by taking the successive derivatives of the generating function
Eq. (54) with respect to the counting parameters:

Jα (A) = ∂Q(λ; A)

∂λα

∣∣∣∣
λ=0

, (56)

Dαβ (A) = −1

2

∂2Q(λ; A)

∂λα∂λβ

∣∣∣∣
λ=0

, (57)

for α, β = C,B. Besides, we may expand the mean currents
in power series of the affinities as

Jα =
∑

β

Lα,βAβ + 1

2

∑
β,γ

Mα,βγ AβAγ + · · · (58)

in terms of the response coefficients defined by

Lα,β = ∂Jα

∂Aβ

∣∣∣∣
A=0

= ∂2Q(λ; A)

∂λα∂Aβ

∣∣∣∣
λ=A=0

, (59)

Mα,βγ = ∂2Jα

∂Aβ∂Aγ

∣∣∣∣
A=0

= ∂3Q(λ; A)

∂λα∂Aβ∂Aγ

∣∣∣∣
λ=A=0

. (60)

The coefficients Lα,β characterize the linear response proper-
ties and the coefficients Mα,βγ the nonlinear response prop-

erties of the currents at second order in the affinities. The
coefficients of higher orders can also be introduced [12,14].

If we take the derivatives of the symmetry relation Eq. (55)
with respect to λα and Aβ , and set λ = 0 and A = 0, we obtain
the fluctuation-dissipation relations

Lα,β = Dαβ (A = 0) (61)

and the Onsager reciprocal relations

Lα,β = Lβ,α, (62)

as a consequence of the symmetry Dαβ = Dβα resulting from
the definition Eq. (57) of the diffusivities.

If we take a further derivative of the symmetry relation
Eq. (55) with respect to Aγ before setting λ = 0 and A = 0,
we find that

Mα,βγ =
(

∂Dαβ

∂Aγ

+ ∂Dαγ

∂Aβ

)
A=0

, (63)

giving the nonlinear response coefficient Mα,βγ in terms of
the first responses of the diffusivities around equilibrium. The
relations Eq. (63) as well as the Onsager reciprocal relations
Eq. (62) find their origin in the microreversibility underlying
the fluctuation theorem for currents [10,17–21].

B. Numerical test of the linear transport properties

In this subsection, we focus on the numerical test of the
fluctuation-dissipation relations Eq. (61) and the Onsager
reciprocal relation Eq. (62) for α, β = C,B. Here, we use the
methods given in Appendix D for the numerical evaluation of
derivatives and their error analysis.

TABLE V. The numerical values of the quantities used in the fluctuation-dissipation and the Onsager reciprocal relations.

Lα,β Dαβ |(0,0) Lα,β − Dαβ |(0,0)

∂JC

∂AC
|
(0,0)

= 93.106 ± 0.019 DCC |(0,0) = 92.991 ± 1.039 0.115
∂JC

∂AB
|
(0,0)

= −56.288 ± 0.019 DCB |(0,0) = −56.343 ± 0.488 0.055
∂JB

∂AC
|
(0,0)

= −56.303 ± 0.020 DBC |(0,0) = −56.343 ± 0.488 0.040
∂JB

∂AB
|
(0,0)

= 112.603 ± 0.020 DBB |(0,0) = 113.158 ± 0.487 −0.555
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FIG. 7. The mean charge currents as a function of the affinities AB and AC : (a) The current JC from the collector to BJT; (b) The current JB

from the base to BJT. The asterisks are the numerical data points from the simulation. The surfaces are obtained from Lagrange interpolation
using the data points. Furthermore, the data points are used to get the second derivatives ∂2Jα/∂Aβ∂Aγ |(0,0) around the equilibrium point
(AC = 0, AB = 0), as explained in Appendix D. The numerical values of these second derivatives are given in Table VI. The simulations were
carried out with the time step dt = 0.05 and 109 iterates for every data point.

The evaluation of the linear response coefficients relies
on the determination of the mean currents as a function of
the affinities. To achieve this evaluation, we have computed
the mean currents for several values of the affinities, as
shown in Fig. 6. We have used the Lagrange interpolation
method to obtain one-variable polynomials approximating
JC (AC,AB = 0), JC (AC = 0, AB ), JB (AC,AB = 0), and
JB (AC = 0, AB ) based on the numerical data plotted in
Fig. 6. Subsequently, the linear response coefficients
can be computed by taking the first partial derivatives
of the Lagrange polynomials at the equilibrium point
(AC = 0, AB = 0). Their numerical values are given in
the first column of Table V. This computation already
confirms that the Onsager reciprocal relation LC,B = LB,C is
satisfied within the numerical accuracy.

Furthermore, the equilibrium values of the diffusivities
are computed using Eqs. (43)–(45), giving the values in

the second column of Table V. The difference between
the linear response coefficients and the diffusivities are re-
ported in the third column of Table V, showing that the
fluctuation-dissipation relations [Eq. (61)] are also satisfied
within the numerical accuracy.

C. Numerical test of the nonlinear transport properties

The numerical values of the charge currents JC and JB

are computed for different values of the affinities AC and
AB to construct the two-variable functions JC (AC,AB ) and
JB (AC,AB ) using two-dimensional Lagrange interpolations,
as shown in Fig. 7. The values of second derivatives at the
equilibrium point (AC = 0, AB = 0),

∂2Jα

∂Aβ∂Aγ

∣∣∣∣
(0,0)

for α, β, γ = C, B, (64)

AC

D
C
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 (A

C
, A

B
 =

 0
 )

D
B

 B
 (A

C
, A

B
 =

 0
 )

D
C

 B
 (A

C
, A

B
 =

 0
 )

AB

D
C

 C
 (A

C
  =

 0
 , A

B
 )

D
B

 B
 (A

C
  =

 0
 , A

B
 )

D
C

 B
 (A

C
  =

 0
 , A

B
 )

(a) (b) (c)

(d) (e) (f)

AC

AB

AC

AB

FIG. 8. The diffusivities Dαβ versus one affinity Aγ , the other affinity being set equal to zero. The numerical data points are plotted together
with the error bars and the dashed lines give the Lagrange polynomial interpolations of the data points. These interpolations provide the first
derivatives ∂Dαβ/∂Aγ |(0,0) at the equilibrium point (AC = 0, AB = 0). Their numerical values are given in Table VI. The simulations were
carried out with the time step dt = 0.05, the total time t = 2500, and the statistics of 5 × 104 trajectories for every data point.
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TABLE VI. The numerical values of the quantities used in the nonlinear transport relations Eq. (63).

Mα,βγ Rαβ,γ Rαγ,β Mα,βγ − Rαβ,γ − Rαγ,β

∂2JC

∂A2
C

|
(0,0)

= −67.388 ± 0.620 ∂DCC

∂AC
|
(0,0)

= −33.642 ± 9.897 ∂DCC

∂AC
|
(0,0)

= −33.642 ± 9.897 −0.104

∂2JC

∂A2
B

|
(0,0)

= −45.325 ± 0.620 ∂DCB

∂AB
|
(0,0)

= −22.474 ± 4.639 ∂DCB

∂AB
|
(0,0)

= −22.474 ± 4.639 −0.377

∂2JC

∂AC∂AB
|
(0,0)

= 68.747 ± 0.097 ∂DCC

∂AB
|
(0,0)

= 47.409 ± 9.900 ∂DCB

∂AC
|
(0,0)

= 20.992 ± 4.642 0.346

∂2JB

∂A2
C

|
(0,0)

= 42.064 ± 0.667 ∂DCB

∂AC
|
(0,0)

= 20.992 ± 4.642 ∂DCB

∂AC
|
(0,0)

= 20.992 ± 4.642 0.080

∂2JB

∂A2
B

|
(0,0)

= 90.066 ± 0.665 ∂DBB

∂AB
|
(0,0)

= 45.068 ± 4.644 ∂DBB

∂AB
|
(0,0)

= 45.068 ± 4.644 −0.070

∂2JB

∂AC∂AB
|
(0,0)

= −44.777 ± 0.107 ∂DCB

∂AB
|
(0,0)

= −22.474 ± 4.639 ∂DBB

∂AC
|
(0,0)

= −22.330 ± 4.630 0.027

are thus numerically evaluated to determine the nonlinear
response coefficients Mα,βγ , using the numerical method
explained in Appendix D. However, the diffusivities Dαβ are
again computed using Eqs. (43)–(45), but for the transistor
driven away from equilibrium. They are plotted in Fig. 8 as
functions of the affinities. Therefore, the derivatives of the
diffusivities with respect to the affinities

Rαβ,γ ≡ ∂Dαβ

∂Aγ

∣∣∣∣
(0,0)

for α, β, γ = C, B (65)

can also be evaluated numerically at the equilibrium point
(AC = 0, AB = 0). The results for the quantities Mα,βγ and
Rαβ,γ are given in Table VI where we calculate the differ-
ences, Mα,βγ − Rαβ,γ − Rαγ,β , testing the validity of the pre-
diction Eq. (63) of the fluctuation theorem beyond the linear
transport properties. We see that these differences are smaller
than the numerical errors in agreement with the predictions.

VI. CONCLUSION AND PERSPECTIVES

Using a spatially extended stochastic description of charge
transport in bipolar n-p-n junction transistors, we have shown
in this paper that a fluctuation theorem holds for the two
electric currents that are coupled together in the double
junction of the transistor. We have also shown that, as a
corollary of the fluctuation theorem for the currents, nonlinear
transport generalizations of the fluctuation-dissipation and
Onsager reciprocal relations are satisfied in the transistor. In
particular, we have verified in detail that the second-order
nonlinear response coefficients of the currents are related to
the first-order responses of the diffusivities, as predicted by
theory [11,12,14].

These results are based on stochastic partial differential
equations describing the diffusion of electrons and holes, as
well as their generation and recombination. These stochastic
diffusion-reaction equations are coupled to the Poisson equa-
tion for the electric potential and they obey local detailed
balance. The scheme is consistent with the laws of electric-
ity, thermodynamics, and microreversibility. The stochastic
process is driven out of equilibrium by boundary conditions
due to the voltages applied to the reservoirs in contact with
the three ports of the transistor. In this case, the transistor is
the stage of a nonequilibrium steady state, manifesting highly
nonlinear transport properties. The key point raised in this
paper is that, besides their amazing technological importance,

transistors can be used to address the fundamental issue of
microreversibility in nonequilibrium statistical physics.

The one-variable fluctuation theorem has already been
experimentally investigated in linear RC electric circuits
[29,30]. Our previous paper [22] has shown that the one-
variable fluctuation theorem can be studied in nonlinear de-
vices such as diodes. In transistors, the experimental test of
the two-variable fluctuation theorem can also be envisaged,
either by the direct measurement of current fluctuations, or by
testing its consequences, namely, the time-reversal symmetry
relations generalizing the fluctuation-dissipation and Onsager
reciprocal relations to the nonlinear transport properties. Such
tests would require accurate noise measurements with large
enough statistics. In this way, these symmetry relations, find-
ing their origins in the fundamental law of microreversibility,
could be tested experimentally in common devices of modern
technology.
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APPENDIX A: DISCRETIZED MARKOV JUMP PROCESS

To describe the BJT by a Markov jump process, the system
is spatially discretized into cells of volume �, each containing
some numbers Ni and Pi of electrons and holes, respectively.
These numbers are supposed to change in time because of
random transitions at rates to be specified here below. The
Markov jump process is fully defined by these transition
rates and the master equation ruling the time evolution of the
probability that the cells contain given numbers of particles.
In the continuum limit, the Markov jump process leads to
the stochastic reaction-diffusion Eqs. (12)–(28), as shown
in Appendix B. This method is similar to the one used in
Refs. [16,22,31].

1. Master equation of the process

At any time, the state of the discretized BJT is fully
characterized by the electron numbers N = (Ni )Li=1 and hole
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numbers P = (Pi )Li=1 in all the cells. The time evolution of these numbers is ruled by a Markov jump process corresponding to
the following network:

N̄B

W
(+N )
mB �� W

(−N )
mB

N̄C

W
(+N )
0−−−⇀↽−−−

W
(−N )
0

N1 · · · Nm−1

W
(+N )
m−1−−−⇀↽−−−

W
(−N )
m−1

Nm

W
(+N )
m−−−⇀↽−−−

W
(−N )
m

Nm+1 · · · NL

W
(+N )
L−−−⇀↽−−−

W
(−N )
L

N̄E

W
(+)
1 � W

(−)
1 · · · W

(+)
m−1 � W

(−)
m−1 W

(+)
m � W

(−)
m W

(+)
m+1 � W

(−)
m+1 · · · W

(+)
L � W

(−)
L

P̄C

W
(+P )
0−−−⇀↽−−−

W
(−P )
0

P1 · · · Pm−1

W
(+P )
m−1−−−⇀↽−−−

W
(−P )
m−1

Pm

W
(+P )
m−−−⇀↽−−−

W
(−P )
m

Pm+1 · · · PL

W
(+P )
L−−−⇀↽−−−

W
(−P )
L

P̄E

W
(+P )
mB �� W

(−P )
mB

P̄B

On the left-hand side, the collector C is a reservoir of electrons and holes where their numbers N̄C and P̄C take fixed values. On
the right-hand side, it is the emitter E that fixes the values of N̄E and P̄E . In the middle, similar transitions happen with the base
B, fixing the values of N̄B and P̄B . The transitions with the rates W

(±N )
i describe the diffusive transfers of electrons between the

cells, and those with the rates W
(±P )
i the diffusive transfers of holes. The transitions with the rates W

(±)
i describe the generation

and recombination of electron-hole pairs, respectively.
The probability P (N1, . . . , NL, P1, . . . , PL, t ) to find the system in a certain state is thus governed by the master equation

dP
dt

=
L∑

i=0

[
(e+∂Ni e−∂Ni+1 − 1)W (+N )

i P+(e−∂Ni e+∂Ni+1 − 1)W (−N )
i P+(e+∂Pi e−∂Pi+1 − 1)W (+P )

i P+(e−∂Pi e+∂Pi+1 − 1)W (−P )
i P

]

+
L∑

i=1

[
(e−∂Ni e−∂Pi − 1)W (+)

i P + (e+∂Ni e+∂Pi − 1)W (−)
i P

]

+
∑
iB

[
(e−∂Ni − 1)W (+N )

iB P + (e+∂Ni − 1)W (−N )
iB P + (e−∂Pi − 1)W (+P )

iB P + (e+∂Pi − 1)W (−P )
iB P

]
, (A1)

with the transition rates given by

W
(+N )
i = Dn

�x2
ψ

(
�U

(+N )
i

)
Ni , (A2)

W
(−N )
i = Dn

�x2
ψ

(
�U

(−N )
i

)
Ni+1, (A3)

W
(+P )
i = Dp

�x2
ψ

(
�U

(+P )
i

)
Pi , (A4)

W
(−P )
i = Dp

�x2
ψ

(
�U

(−P )
i

)
Pi+1, (A5)

W
(+)
i = �k+, (A6)

W
(−)
i = �k−

Ni

�

Pi

�
. (A7)

For electrons, the transition rates at the boundaries are given
by

W
(+N )
0 = Dn

�x2
ψ

(
�U

(+N )
0

)
N̄C , (A8)

W
(−N )
0 = Dn

�x2
ψ

(
�U

(−N )
0

)
N1, (A9)

W
(+N )
L = Dn

�x2
ψ

(
�U

(+N )
L

)
NL, (A10)

W
(−N )
L = Dn

�x2
ψ

(
�U

(−N )
L

)
N̄E , (A11)

W
(+N )
iB = Dn

�y2
ψ

(
�U

(+N )
iB

)
N̄B , (A12)

W
(−N )
iB = Dn

�y2
ψ

(
�U

(−N )
iB

)
Ni , (A13)

and similar expressions for holes. We note that, in the network
shown above, the cell i = m is the only one in contact with the
base, in which case the sum

∑
iB in Eq. (A1) has the sole term

i = m.
U is the total electrostatic energy stored in the BJT and �U

is the energy difference associated with the change of the BJT
state. ψ (�U ) is a function defined by

ψ (�U ) = β�U

exp(β�U ) − 1
, (A14)

which satisfies the local detailed balance condition

ψ (�U ) = ψ (−�U ) exp(−β�U ). (A15)

2. Discretized Poisson equation

The Poisson equation is replaced by its discretized version

φi+1 − 2φi + φi−1

�x2
+ φB − 2φi + φB

�y2
χiB

= − e

ε�
(Pi − Ni + Di − Ai ) (i = 1, . . . , L), (A16)
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with the boundary conditions φ0 = φC and φL+1 = φE at
two ends of BJT, and the symbol χiB = 1 if the ith cell is
in contact with the base and χiB = 0 otherwise. This linear
system should be solved after every electron or hole transfer
between cells. We suppose that the electric potential φB of
the base is set on both sides of the chain in the transverse y

direction, to get a symmetric geometry.
The electrostatic energy is given by

U = 1

2
φφφ · C · φφφ, (A17)

where the electric potential

φφφ = (φ1, . . . , φi, . . . , φI ) (A18)

obeys the discretized Poisson equation

C · φφφ = Z, (A19)

with the symmetric matrix

(C)ij = a(−δi+1,j + 2δi,j − δi−1,j ) + 2b χiB δi,j (A20)

expressed in terms of the Kronecker symbol such that δi,j = 1
if i = j and δi,j = 0 otherwise, the coefficients

a = ε�

�x2
, b = ε�

�y2
, (A21)

and

Z = e(. . . , Pi − Ni + Di − Ai, . . . ) + a (φC, 0, . . . , 0, φE )

+ 2b (0, . . . , 0, φB, . . . , φB, 0, . . . , 0). (A22)

The change of electrostatic energy during the transfer of an
electron of charge −e from the ith to the (i + 1)th cell is
given by

�U
(+N )
i = 1

2 (Z′ · C−1 · Z′ − Z · C−1 · Z), (A23)

where

Z′
k = Zk + eδk,i − eδk,i+1, (A24)

so that

�U
(+N )
i = − e(φi+1 − φi ) + e2

2
[(C−1)i,i − 2(C−1)i,i+1

+ (C−1)i+1,i+1]. (A25)

A similar expression holds for hole transfers since they have
the charge +e,

�U
(+P )
i = + e(φi+1 − φi ) + e2

2
[(C−1)i,i − 2(C−1)i,i+1

+ (C−1)i+1,i+1]. (A26)

For electron transfers at the boundary, we have

�U
(+N )
0 = −e(φ1 − φC ) + e2

2
(C−1)1,1, (A27)

�U
(−N )
0 = e(φ1 − φC ) + e2

2
(C−1)1,1, (A28)

�U
(+N )
L = −e(φE − φL) + e2

2
(C−1)L,L, (A29)

�U
(−N )
L = e(φE − φL) + e2

2
(C−1)L,L, (A30)

�U
(+N )
iB = −e(φi − φB ) + e2

2
(C−1)i,i , (A31)

�U
(−N )
iB = e(φi − φB ) + e2

2
(C−1)i,i , (A32)

and similar expressions for holes.

APPENDIX B: LANGEVIN STOCHASTIC PROCESS

In the limit where Ni 
 1 and Pi 
 1, the Markov jump
process described here above can be replaced by a Langevin
stochastic process [22,31], which is ruled by another master
equation obtained by expanding the operators exp(±∂X ) up
to second order in the partial derivatives ∂X in Eq. (A1). In
this way, we find that the corresponding probability density
P obeys the following Fokker-Planck equation:

∂tP =
L∑

i=1

{
− ∂Ni

[(
W

(+N )
i−1 −W

(−N )
i−1 −W

(+N )
i +W

(−N )
i

)
P

]

+ ∂2
Ni

[
1

2

(
W

(+N )
i−1 + W

(−N )
i−1 + W

(+N )
i + W

(−N )
i

)
P

]

+ ∂Ni
∂Ni+1

[ − (
W

(+N )
i + W

(−N )
i

)
P

] + (N � P )

}

+
L∑

i=1

{
− (∂Ni

+ ∂Pi
)
[(

W
(+)
i − W

(−)
i

)
P

]

+ (∂Ni
+ ∂Pi

)2

[
1

2

(
W

(+)
i + W

(−)
i

)
P

]}

+
∑
iB

{
− ∂Ni

[(
W

(+N )
iB − W

(−N )
iB

)
P

]

+ ∂2
Ni

[
1

2

(
W

(+N )
iB + W

(−N )
iB

)
P

]
+ (N � P )

}
. (B1)

This shows that the variables Ni and Pi obey stochastic
differential equations of Langevin type:

dNi

dt
= F

(N )
i−1 − F

(N )
i + Ri + χiBF

(N )
iB , (B2)

dPi

dt
= F

(P )
i−1 − F

(P )
i + Ri + χiBF

(P )
iB , (B3)

with the following fluxes and reaction rates:

F
(N )
i = W

(+N )
i − W

(−N )
i +

√
W

(+N )
i + W

(−N )
i ξ

(N )
i (t ), (B4)

F
(P )
i = W

(+P )
i − W

(−P )
i +

√
W

(+P )
i + W

(−P )
i ξ

(P )
i (t ), (B5)

Ri = W
(+)
i − W

(−)
i +

√
W

(+)
i + W

(−)
i ηi (t ), (B6)

F
(N )
iB = W

(+N )
iB − W

(−N )
iB +

√
W

(+N )
iB + W

(−N )
iB ξ

(N )
iB (t ), (B7)

F
(P )
iB = W

(+P )
iB − W

(−P )
iB +

√
W

(+P )
iB + W

(−P )
iB ξ

(P )
iB (t ), (B8)
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expressed in terms of the Gaussian white noises:

〈
ξ

(N )
i (t )

〉 = 〈
ξ

(P )
i (t )

〉 = 〈ηi (t )〉 = 〈
ξ

(N )
iB (t )

〉 = 〈
ξ

(P )
iB (t )

〉 = 0,

(B9)〈
ξ

(N )
i (t ) ξ

(N )
j (t ′)

〉 = δi,j δ(t − t ′), (B10)

〈
ξ

(P )
i (t ) ξ

(P )
j (t ′)

〉 = δi,j δ(t − t ′), (B11)

〈ηi (t ) ηj (t ′)〉 = δi,j δ(t − t ′), (B12)

〈
ξ

(N )
iB (t ) ξ

(N )
jB (t ′)

〉 = δi,j δ(t − t ′), (B13)

〈
ξ

(P )
iB (t ) ξ

(P )
jB (t ′)

〉 = δi,j δ(t − t ′), (B14)

〈
ξ

(N )
i (t ) ξ

(P )
j (t ′)

〉 = 〈
ξ

(N )
iB (t ) ξ

(P )
jB (t ′)

〉 = 0, (B15)

〈
ηi (t ) ξ

(N,P )
j (t ′)

〉 = 〈
ηi (t ) ξ

(N,P )
jB (t ′)

〉
= 〈

ξ
(N,P )
i (t ) ξ

(N,P )
jB (t ′)

〉 = 0. (B16)

These Langevin stochastic equations are numerically imple-
mented by discretizing time into equal intervals �t and re-
placing the white noises by independent identically distributed
Gaussian random variables. The stochastic partial differential
Eqs. (12)–(28) are recovered in the continuum limit [22].

APPENDIX C: COARSE-GRAINED MARKOV
JUMP PROCESS

For the simple coarse-grained model Eq. (53), the joint
probability distribution P (ZC,ZB, t ) to observe the charge
transfers ZC and ZB during the time interval [0, t] evolves
according to the following master equation:

d

dt
P (ZC,ZB, t )

= WCEP (ZC − 1, ZB, t ) + WECP (ZC + 1, ZB, t )

+ WBEP (ZC,ZB − 1, t ) + WEBP (ZC,ZB + 1, t )

+ WCBP (ZC − 1, ZB + 1, t )

+ WBCP (ZC + 1, ZB − 1, t ) − (WCE + WEC + WBE

+ WEB + WCB + WBC )P (ZC,ZB, t ). (C1)

According to the central limit theorem, the joint probability
distribution P (ZC,ZB, t ) after a long enough time interval
[0, t] becomes Gaussian of the following form:

P (Z, t ) � 1

4πt
√

det D

× exp

[
− 1

4t
(Z − J t )T · D−1 · (Z − J t )

]
, (C2)

with the vectorial and matricial notations

Z =
(

ZC

ZB

)
, J =

(
JC

JB

)
, D =

(
DCC DCB

DCB DBB

)
, (C3)

and superscript T denoting the transpose. The mean charge
currents J and the diffusivities D can be numerically evaluated
through

J = lim
t→∞

1

t
〈Z(t )〉,

D = lim
t→∞

1

2t
〈[Z(t ) − J t] · [Z(t ) − J t]T〉, (C4)

where 〈·〉 denotes the statistical average over the data sample.
For this model, the mean currents and the diffusivities can

be expressed in terms of the transition rates of the master
Eq. (C1) according to the following relations:

WCE − WEC + WCB − WBC = JC , (C5)

WBE − WEB + WBC − WCB = JB , (C6)

WCE + WEC + WCB + WBC = 2DCC , (C7)

WBE + WEB + WBC + WCB = 2DBB , (C8)

WCB + WBC = −2DCB . (C9)

By local detailed balance, the affinities are given by

ACE = ln

(
WCE

WEC

)
, (C10)

ACB = ln

(
WCB

WBC

)
, (C11)

ABE = ln

(
WBE

WEB

)
. (C12)

The natural condition

ACB + ABE = ACE (C13)

leads to

WCBWBEWEC = WBCWEBWCE . (C14)

Eqs. (C5)–(C9) and (C14) form a set of six nonlinear
equations that can be solved numerically with the Newton-
Raphson method to find the six transition rates {Wkl}k,l=C,B,E .
Thereafter, the affinities are readily evaluated by
Eqs. (C10)–(C12). Taking the emitter as the reference
reservoir, we may more shortly write ACE as AC , and ABE as
AB .

We note that these considerations lead to the Ebers-
Moll transport model of bipolar junction transistors [2,3] if
we assume that WCB = Js/βR, WEB = Js/βF , and WEC =
Js exp(βeVBC ), where Js is the reverse saturation current,
βR the reverse common emitter current gain, and βF the
forward common emitter current gain, in addition to the
local detailed balance conditions WBC = WCB exp(βeVBC )
and WBE = WEB exp(βeVBE ) given by Eqs. (C11) and (C12).
The well-known expressions for the mean currents of this
model (e.g., given Ref. [3], pp. 387–389) are thus recovered
from Eqs. (C5) and (C6) by using Eq. (C14).
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APPENDIX D: NUMERICAL DIFFERENTIATION AND ERROR ANALYSIS

The differentiation can be approximated by numerical differences using several points [32]. Given the values of the one-
variable function f (x) at the five equispaced points −2h, −h, 0, h, 2h, we have the following centered-difference formulas:

f ′(0) � −f (2h) + 8f (h) − 8f (−h) + f (−2h)

12h
, (D1)

f ′′(0) � −f (+2h) + 16f (+h) − 30f (0) + 16f (−h) − f (−2h)

12h2
, (D2)

respectively, giving the first- and second-order derivatives up to numerical errors of O(h4). These two difference formulas can
be obtained using the Lagrange polynomial

Ln(x) =
n∑

i=0

⎡
⎣ n∏

j=0,j �=i

(
x − xj

xi − xj

)⎤
⎦f (xi ), (D3)

which interpolates the five points at xi = −2h, −h, 0, h, 2h. Here, it is easy to obtain Lagrange polynomial corresponding to
the two-variable function f (x, y) using points distributed on a grid

L(x, y) =
∑
i,j

⎡
⎣ ∏

m�=i,n�=j

(
x − xm

xi − xm

)(
y − yn

yj − yn

)⎤
⎦f (xi, yj ). (D4)

The mixed second derivative of f (x, y) at the point (0, 0) can be approximated by the midpoint formula

∂2f

∂x∂y
(0, 0) � f (h1, h2) − f (h1,−h2) − f (−h1, h2) + f (−h1,−h2)

4h1h2
, (D5)

which is accurate up to O(h2
1h

2
2).

Apart from the numerical error itself, another source of errors comes from the statistical evaluation of the function at the
different points. Suppose that the variances of the numerical values of the function are denoted as σ 2[f (xi )] and σ 2[f (xi, yj )],
then the mean-square errors on the derivative Eq. (D1) can be evaluated as

σ 2[f ′(0)] � 1

144h2
{σ 2[f (2h)] + 64σ 2[f (h)] + 64σ 2[f (−h)] + σ 2[f (−2h)]}, (D6)

up to a correction of O(h8) coming from the error in the numerical differentiation. Similar expressions hold for the mean-square
errors on the other derivatives Eqs. (D2) and (D5).

Given the random sample {X1, . . . , Xn} of size n from a Gaussian distribution of mean value μ and variance σ 2, the sample
average is defined as 〈X〉 = (1/n)

∑n
i=1 Xi , having the expected value equal to μ. The sample average 〈X〉 has the mean-square

error MSE(〈X〉) = σ 2/n. The unbiased sample variance S2
n−1 = ∑n

i=1(X − 〈X〉)2/(n − 1) has the expected value σ 2 and its
mean-square error is equal to MSE(S2

n−1) = 2σ 4/(n − 1). If we define the average current J = 〈X〉/t and diffusivity D =
S2

n−1/(2t ), their mean-square errors can thus be estimated as

MSE(J ) = σ 2

nt2
� 2D

nt
, MSE(D) = 2σ 4

4t2(n − 1)
� 2D2

n − 1
. (D7)

The procedure used to estimate the error on the numerical computation of the affinities AC = ln (WCE/WEC ) and AB =
ln (WBE/WEB ) by the method of Appendix C is the following. The expressions of the affinities are differentiated with respect to
the mean values of the currents and diffusivities to obtain linear approximations such as

�AC � a �JC + b �JB + c �DCC + d �DBB + e �DCB , (D8)

in terms of some coefficients a, b, c, d, and e, which are related to the rates. Accordingly, the mean-square error is estimated as

σ 2(AC ) � a2σ 2(JC ) + b2σ 2(JB ) + c2σ 2(DCC ) + d2σ 2(DBB ) + e2σ 2(DCB ), (D9)

and similarly for the error on AB .
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