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Quantum Ising model on the frustrated square lattice
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We investigate the role of a transverse field on the Ising square antiferromagnet with first (J1) and second
(J2) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the
frustration effects on the phase boundaries and entropy accumulation process emerging from the interplay
between quantum and thermal fluctuations. We found that the paramagnetic (PM) and antiferromagnetic phases
are separated by continuous phase transitions. On the other hand, continuous and discontinuous phase transitions,
as well as tricriticality, are observed in the phase boundaries between PM and superantiferromagnetic phases. A
rich scenario arises when a discontinuous phase transition occurs in the classical limit while quantum fluctuations
recover criticality. We also find that the entropy accumulation process predicted to occur at temperatures close
to the quantum critical point can be enhanced by frustration. Our results provide a description for the phase
boundaries and entropy behavior that can help to identify the ratio J2/J1 in possible experimental realizations of
the quantum J1-J2 Ising antiferromagnet.
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I. INTRODUCTION

Quantum phase transitions arise when tuning a non-
thermal parameter introduces a competition between ground
state phases. Despite these phenomena occurring only at zero
temperature, when quantum fluctuations drive a continuous
phase transition, underlying signatures of quantum criticality
can be observed even at finite temperatures [1]. This scenario
is even richer in the presence of frustration—the inability to
simultaneously satisfy all the interactions—that can play a
significant role in the phase transitions as well as the system
entropy [2,3]. In addition, entropy accumulation is expected at
finite temperatures in the proximity of a quantum critical point
[4]. Therefore, a worthwhile subject concerns the subtleties
of systems hosting frustration and both thermal and quantum
fluctuations.

From the theoretical point of view, the transverse Ising
model on the square lattice is the simplest model to exhibit
both classical and quantum phase transitions. For instance,
when first-neighbor (J1) antiferromagnetic (AF) interactions
are considered, increasing a transverse magnetic field can
change the ground-state of this model from a Néel AF long-
range order to a polarized paramagnetic (PM) state at a quan-
tum critical point [5]. By considering also second-neighbor
antiferromagnetic interactions (J2), the model becomes the
so-called J1-J2 Ising model, in which frustration can be intro-
duced by tuning g ≡ J2/J1. In this case, the AF ground state
persists for g < 0.5, while a superantiferromagnetic (SAF)
ground state (characterized by alternated ferromagnetic rows
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or columns) occurs for g > 0.5 [6]. Moreover, in the absence
of transverse fields, the nature of the phase transitions has
been clarified only recently, indicating that the model shows
continuous and discontinuous phase transitions as well as
tricriticality [6–14]. In particular, the thermally driven phase
transitions between SAF and PM states are discontinuous for
0.5 < g < g∗ and continuous for g > g∗, where g∗ locates the
tricriticality.

The phase diagram in the classical limit indicates that the
quantum J1-J2 Ising model can show a variety of interesting
phenomena. A natural question that arises is whether the
quantum fluctuations can change the nature of the phase tran-
sitions. For instance, several systems are known for exhibiting
phase transitions that are continuous when driven by thermal
fluctuations and become discontinuous when the quantum
fluctuations are increased [15]. On the other hand, it has
been pointed that some ferroelectric systems show quantum
criticality, despite that thermally driven transitions are dis-
continuous [16]. This has motivated recent theoretical efforts,
suggesting the possibility of a quantum annealed criticality in
this class of systems [17]. Therefore, the study of transverse
field effects in the J1-J2 Ising model can also contribute to
the understanding of the role of quantum fluctuations and
competing interactions on the phase transitions.

Despite several studies having addressed the magnetic
behavior of the classical J1-J2 Ising model, only a few efforts
have been made to understand the effect of transverse fields
in this model [5,8,18]. Recently, a cluster operator approach
was used to describe the highly frustrated limit (g = 0.5) of
the quantum J1-J2 Ising model at zero temperature [18]. It
was found that a string valence-bond-solid state occurs at
weak transverse fields. Very recently, a single-site effective
field theory was proposed to analyze the quantum J1-J2
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Ising model [8]. The authors reported discontinuous phase
transitions between the AF and PM states. However, several
approaches indicated that only continuous phase transitions
are expected between the AF and PM phases in the classical
regime [7,10,11]. Moreover, the analysis in Ref. [8] is con-
strained to g � 0.5 due to the inability of the technique in
reproducing the expected ground-state ordering for g > 0.5.

Therefore, the effect of transverse fields for a larger range
of g in this model still lacks a proper description. In the
present work we address this issue, by analyzing the interplay
of thermal and quantum fluctuations in the J1-J2 Ising model
within the cluster mean-field (CMF) theory. In this technique,
the intracluster interactions are incorporated exactly and the
couplings between clusters are approximated by mean fields.
The CMF framework has been considered in many recent
investigations of spin models [6,7,19–23] in which frustration
and quantum fluctuations are often present. In particular, this
method was applied to the Ising [6] and Heisenberg [23]
versions of the J1-J2 model, providing a description for the
nature of the magnetic phase boundaries in agreement with
state-of-art numerical and analytical calculations. In addition,
this approach goes beyond single-site approximations, allow-
ing to incorporate short-range correlations and improving the
description of thermodynamic quantities [22]. It means that
the technique can provide insights into the frustration outcome
on the entropy accumulation in the verge of quantum phase
transitions [4], a topic that is also addressed in the present
work.

The paper is organized as follows. The model and the CMF
theory are described in Sec. II. In Sec. III, we present the re-
sults obtained, discussing the role of frustration and transverse
field in the phase diagrams of the model. In addition, our find-
ings indicate that the entropy accumulation phenomenon can
be enhanced by frustration. Finally, in Sec. IV, we summarize
the paper and present the conclusion.

II. MODEL AND METHOD

The transverse Ising model is given by the Hamiltonian

H = −
∑

i,j

Jij σ
z
i σ z

j − �
∑

i

σ x
i , (1)

where σ l
i is the l component of the Pauli matrices at site i.

Jij and � are the exchange coupling between pairs of spins
and the transverse magnetic field, respectively. We assume
AF first-neighbor (J1 < 0) and second-neighbor (J2 < 0) ex-
change interactions.

An exact solution for the model is still unavailable at
a nonzero � and/or J2. In this case, the CMF theory can
provide a reputable framework. In fact, CMF approaches have
been adopted in several recent studies in condensed matter
physics and statistical mechanics [6,7,19–23]. The technique
consists in dividing the lattice in Ncl equivalent clusters with
ns sites each. The couplings inside the clusters are evaluated
by exact diagonalization and the intercluster interactions are
replaced by the mean-field approximation: σ l

i σ
l
j ≈ σ l

i m
l
j +

ml
iσ

l
j − ml

im
l
j . Minimization of free-energy leads to the stan-

dard mean-field self-consistent equations ml
i = 〈σ l

i 〉, where
〈· · · 〉 accounts for the thermodynamic average.

One of the main motivations for choosing this approach
is the qualitative agreement of its results when compared to
Monte Carlo studies [13,14] in the classical limit (� = 0)
of the J1-J2 Ising model. Although it fails by showing an
ordering temperature in the highly frustrated point (g = 0.5),
the technique leads to accurate estimates of g∗, providing a
good description for the nature of the phase transitions. For
example, for clusters with four sites, the CMF theory yields
g∗ = 0.66, which agrees very well with the most recent Monte
Carlo results (g∗

MC = 0.67) [13,14]. It is worth mentioning
that this CMF result is also robust under cluster size increase,
as shown for a 16-site cluster approximation [7]. It indicates
that the nature of the phase transitions is already incorporated
within a four-site approximation, allowing to explore trans-
verse field effects without appealing to the exact diagonaliza-
tion of larger matrices, which would become computationally
expensive taking into account the self-consistent procedure.
In addition, intermediary cluster sizes (4 < ns < 16) can lead
to clusters that are incompatible with the SAF state [7,24].
Therefore, in the present work we adopt the four-site CMF
approach, which is described in the following.

The fundamental advantage of the CMF procedure is to
decouple the clusters in such a way that the many-body
problem [see Eq. (1)] becomes a single-cluster one. In the
four-site approximation, the CMF Hamiltonian (see Fig. 1) is
given by

HCMF = Hintra + H ′ − �

ns=4∑

i

σ x
i , (2)

where the intracluster term is given by

Hintra = −J1
(
σ z

1 + σ z
4

)(
σ z

2 + σ z
3

) − J2
(
σ z

1 σ z
4 + σ z

2 σ z
3

)
, (3)

and the mean-field contribution can be written as

H ′ = −J1
[(

σ z
1 + σ z

4

)(
mz

2 + mz
3

) + (
σ z

2 + σ z
3

)(
mz

1 + mz
4

)]

+ J1
(
mz

2 + mz
3

)(
mz

1 + mz
4

) − 3J2
[
σ z

1 mz
4 + σ z

2 mz
3

+ σ z
3 mz

2 + σ z
4 mz

1

] + 3J2
(
mz

1m
z
4 + mz

2m
z
3

)
. (4)

After evaluating the on site magnetizations, mz
i , one can

compute the thermodynamics from the free-energy per spin,

f = −kBT

ns

ln Z, (5)

where T is the temperature, kB is the Boltzmann constant—
assumed to be one—and the partition function is given by
Z = Tr e−βHCMF , with β = 1/T . The entropy per site is then
given by

S

ns

= u − f

T
, (6)

where

u = 〈HCMF〉/ns = TrHCMF e−βHCMF

nsZ
(7)

is the internal energy per spin.
The AF and SAF long-range orders (see Fig. 1) are de-

scribed by the order parameters

mAF = ∣∣mz
1 − mz

2 − mz
3 + mz

4

∣∣/4 �= 0 (8)
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FIG. 1. Schematic view of the four-site cluster mean-field ap-
proximation. First-neighbor and second-neighbor interactions, in-
cluding mean fields, are depicted in (a) and (b), respectively. The
mean fields acting on the central cluster are denoted by arrows and
the intracluster couplings are represented by solid lines. For clarity,
the first-neighbor intracluster couplings are shown in (b). Solid and
open circles denote different ordering structures, in which (a) and (b)
represent AF and SAF configurations, respectively.

and

mSAF = (∣∣mz
1 − mz

4

∣∣ + ∣∣mz
2 − mz

3

∣∣)/4 �= 0, (9)

respectively. The PM state occurs when mAF = mSAF = 0
and the location of discontinuous phase transitions are done
by comparing the free energies [Eq. (5)] of the different
solutions.

III. RESULTS

In Fig. 2, we present the global phase diagram of the
frustrated square lattice in a transverse field. In the absence
of transverse fields, when J2/J1 → 0.5, a reduction of the
phase transition temperature is observed. While the PM-AF
phase boundary is only continuous, the transitions between
AF and SAF phases are discontinuous. Moreover, lines of
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4 0
0.5
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1

2

3
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FIG. 2. Global phase diagram for the frustrated square lattice
in a transverse field. Solid and dashed lines indicate continuous
and discontinuous phase transitions, respectively. The black circles
denote the tricritical points.

continuous and discontinuous phase transitions between the
PM and SAF phases are separated by a tricritical point. These
results recover those of Refs. [6,7]. In particular, clusters with
ns = 4 and ns = 16 were considered in Ref. [7], but the nature
of the phase transitions remained unchanged with the increase
of cluster size.1

It is worth stressing that the nature of the phase transitions
in this model is a topic of current debate. For instance, an
effective field-theory study using clusters of up to nine sites
indicated the presence of a discontinuous phase transition
between PM and AF states [24]. However, our results indi-
cating only continuous phase transitions for the PM-AF phase
boundary are in agreement with Monte Carlo simulations [11]
and cluster variation method calculations [10]. The nature
of the transitions between the AF and SAF states is also in
good agreement with very recent numerical results for this
model. In particular, our approach indicates that tricriticality
occurs at g∗ = 0.66 [6,7], which is much closer to the Monte
Carlo simulations (g∗

MC ≈ 0.67) [13,14] than the effective
field theory predictions (g∗

EFT = 0.97) for the largest cluster
considered in Ref. [24]. It reinforces that the present approach
incorporates important geometrical features of the model,
providing an appropriate starting point to study the role of
transverse field.

Now, we discuss quantum fluctuation effects. A weak
transverse field leads to qualitatively the same T/|J1| vs J2/J1

phase diagram obtained in the classical limit, only reducing
the phase transition temperature, as shown in Fig. 3(a). How-
ever, a strong enough � leads to the onset of a PM state
between AF and SAF phases even at zero temperature [see
Figs. 3(b), 3(c)]. An interesting result is that, for a certain

1We note that there is a disagreement between Refs. [6] and [7]
with respect to the 16-site CMF approximation. In particular, Ref. [6]
points to tricriticality in the PM-AF phase boundary while Ref. [7]
shows only continuous phase transitions. The numerical procedure is
pointed in Ref. [7] as a possible reason for this disagreement.
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FIG. 3. Phase diagrams for several values of �. It is used the
same convention as in Fig. 2.

range of the transverse field, tuning g leads to the observation
of phase transitions of different natures in the ground state.
For instance, when �/|J1| = 1.5, PM-AF phase transitions
are continuous while the PM-SAF ones are discontinuous at
low temperatures. Another scenario arises for larger trans-
verse fields, in which only continuous phase transitions are
observed, as shown for �/|J1| = 2. For sufficiently large �

both AF and SAF states disappear. In particular, the critical
transverse fields are �c/|J1| = 3.678 and �c/|J1| = 3.658 for
g = 0 and g = 1, respectively (see the zero-temperature plane
of Fig. 2).

Tuning g in materials can be an intricate task. A more
reasonable scenario is to realize a system with a certain g

and then evaluate the effect of a transverse field. Our results
indicate that depending on the ratio between first-neighbor
and second-neighbor interactions, four different types of T ×
� phase diagrams can be obtained. We can discuss these
different scenarios arising from the interplay of quantum and
thermal fluctuations by analyzing the results shown in Fig. 4.
The phase transitions between PM and AF states remain
continuous at any �, as shown in Fig. 4(a) for J2/J1 = 0.4.
This indicates that the continuous nature of the PM-AF phase
transitions is robust against quantum fluctuations. This robust-
ness seems to also occur for the J1-J2 Heisenberg model,
for which recent results indicate that PM and AF states are
separated by a continuous phase transition [23,25].

A richer scenario arises in the PM-SAF phase boundary
due to the difference between the quantum tricritical point
g∗

Q = 0.56 and the thermally driven one g∗. For instance, at
J2/J1 = 0.55 the PM-SAF phase boundary is entirely dis-
continuous [Fig. 4(b)]. A particularly interesting phenomena
occurs for a certain range of g, in which the transitions

FIG. 4. Phase diagrams for different coupling ratios J2/J1. It is
used the same convention as in Fig. 2.

become continuous when the transverse field is increased [see
Fig. 4(c)]. Finally, an entirely continuous phase boundary is
observed at sufficiently larger g, as illustrated for g = 0.70,
in Fig. 4(d).

To the best of our knowledge, the only available analysis of
the transverse field effects on the nature of the phase bound-
aries of the present model was done only recently, within a
single-site effective field theory [8]. However, the transverse
field effects were investigated only for 0 � g � 0.5. In partic-
ular, the authors found discontinuous phase transitions even
between AF and PM states, with the ground-state tricriticality
occurring at smaller values of J2/J1 when compared to the
thermally driven criticality at zero fields. It suggests that
transverse fields lead to discontinuous phase transitions in
the PM-AF phase boundary. Our findings indicate that the
opposite occurs in the PM-SAF phase boundary, where con-
tinuous phase transitions are induced by quantum fluctuations.
Nevertheless, we cannot make a direct comparison with the
single-site effective field theory, because transverse field ef-
fects on the PM-SAF phase boundary has not been considered
in Ref. [8]. We note that a cluster version of this technique
[24] can lead to a PM-SAF phase boundary consistent with
the MC simulations [13,14] and CMF theory [7] results for
the classical limit, providing a possible framework for the
inclusion of quantum fluctuation effects.

In addition, our results indicate that experimental realiza-
tions of the present model can host a version of the recently
proposed quantum annealed criticality [17]. In this case, it is
claimed that compressible systems can exhibit phase transi-
tions that are discontinuous in the classical limit and continu-
ous when these are induced by pressure at zero temperature. In
our case, for a system with an intermediary level of frustration
(g∗

Q < g < g∗), one can observe discontinuous phase transi-
tions in the absence of quantum fluctuations and criticality
driven by zero-point fluctuations. Analogous phenomena have
been observed in many materials [16], suggesting that our re-
sults can provide an interesting additional mechanism, based
on competing interactions, for quantum annealed criticality.
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FIG. 5. Normalized entropy (S/S0) as a function of transverse field (�/�c) for several values of temperature (T/TN ) and (a) J2/J1 = 0,
(b) J2/J1 = 0.4, (c) J2/J1 = 1, where S0 = S(T , J2/J1, � = 0). We analyze the temperature range from 0.25TN to TN for each J2/J1.

Underlying signatures of quantum phase transitions are
often observed in the thermodynamics properties even at
finite temperatures [1,26,27]. For instance, quantum criticality
is usually associated with accumulation of entropy at low
but nonzero temperatures [4,28]. This phenomenon can be
observed for the present model in Fig. 5, where the entropy
(S) is divided by the zero-field entropy (S0) for a given
T/|J1| and J2/J1. It means that S/S0 = 1 in the absence
of the transverse field for each temperature and coupling
ratio. As a consequence, Fig. 5 makes clear the effects of
quantum fluctuations on the entropic content. For instance,
the accumulation of entropy can be observed in the prox-
imity of the phase boundaries, with the maximum of S/S0

occurring at the phase transition. Moreover, this maximum is
enhanced as temperature is lowered, suggesting a divergence
at T → 0.

We highlight that the effect of frustration on the process
of entropy accumulation can be examined by comparing
panels in Fig. 5, where only continuous phase transitions
are depicted. Despite the three panels exhibiting results in
qualitative agreement, panel (b) shows higher values of S/S0

in the proximity of the phase transition at low temperatures
when compared with panels (a) and (c). It indicates that higher
degrees of frustration [J2/J1 = 0.4 in panel (b)] can lead to an
enhancement of the entropy accumulation phenomena. These
results suggest that a more neat signature of quantum critical-
ity can be observed in the entropy landscape of materials that
exhibit a higher degree of frustration.

IV. CONCLUSION

We study transverse field effects in the J1-J2 Ising antifer-
romagnet within a CMF approach. This technique allowed us
to evaluate phase boundaries in the full range of parameters
g ≡ J2/J1, T , and �, providing a global phase diagram for
the model (see Fig. 2). By tuning g at intermediary transverse
fields, we found a low temperature PM state separating the
AF and SAF long-range orders for g ≈ 0.5. While the phase
transitions between PM and AF states are always continu-
ous, the nature of the PM-SAF phase boundaries shows a
strong dependence with � and T . In particular, our findings
indicate that the model is a candidate to exhibit a version

of the recently proposed quantum annealed criticality [17].
We notice that for certain values of g, the PM-SAF phase
transition is discontinuous at � = 0, but a continuous quantum
phase transition is found by tuning � at zero temperature.
This brings a possible new mechanism for the quantum
annealed criticality: the presence of competing interactions.
In fact, this proposal is corroborated by very recent results
for the quantum Ising model in the antiferromagnetic hon-
eycomb lattice with interactions up to third-neighbors [29],
where analogous phenomenon was found. Moreover, our
analysis of the entropy behavior indicates that the competi-
tive scenario related to frustration can lead to an enhanced
entropy accumulation process in the verge of the critical
point.

We hope that the present work motivates further studies
of the J1-J2 quantum Ising model. For instance, the CMF
theory with larger clusters (e.g., a 16-site one) could be a
possible route to verify our findings. Moreover, the cluster
effective field theory [24] and Monte Carlo simulations [30]
can also provide insights into the physics of this model,
in particular, on the criticality induced by quantum fluctu-
ations. A starting point would be to verify the existence
and location of g∗

Q. Other interesting questions concern the
presence of disorder, which cannot be completely avoided in
physical systems. Since disorder can modify the nature of
phase transitions [31], its role in the phase boundaries can
be relevant for the quantum annealed criticality. In addition,
the combination of frustration and bond disorder can lead
this model to exhibit spin-glass freezing [32–34]. Therefore,
the presence of disorder in this quantum model with compet-
ing interactions can provide a rich phenomenology. Finally,
further thermodynamic analysis can also confirm the en-
tropy accumulation enhancement driven by frustration in this
model.
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