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Log-log growth of channel capacity for nondispersive nonlinear optical fiber channel in
intermediate power range: Extension of the model
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In our previous paper [Terekhov et al., Phys. Rev. E 95, 062133 (2017)] we considered the optical channel
modeled by the nonlinear Schrödinger equation with zero dispersion and additive Gaussian noise. We found
per-sample channel capacity for this model. In the present paper we extend the per-sample channel model by
introducing the initial signal dependence on time and the output signal detection procedure. The proposed
model is a closer approximation of the realistic communications link than the per-sample model where there
is no dependence of the initial signal on time. For the proposed model we found the correlators of the output
signal both analytically and numerically. Using these correlators we built the conditional probability density
function. Then we calculated an entropy of the output signal, a conditional entropy, and the mutual information.
Maximizing the mutual information we found the optimal input signal distribution, channel capacity, and their
dependence on the shape of the initial signal in the time domain for the intermediate power range.
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I. INTRODUCTION

Nonlinear communication channels have received a lot of
attention in the last twenty years due to the development of
fiber optical communication systems. In these communication
systems the Kerr nonlinearity in the optical fiber becomes
important when one increases the power of the transmitted
signal. The problem of capacity finding was considered an-
alytically and numerically in a series of papers; see, e.g.,
[1–11] and references therein. In spite of a lot of publications
this problem has not been solved for the case of arbitrary
Kerr nonlinearity and the second dispersion parameter of
an optical fiber. The nondispersive model is much simpler
than the case with nonzero dispersion but it catches-up the
main features connected with nonlinearity. Also this model
is more convenient for understanding the dependence of the
capacity on the channel nonlinearity. So the analytical form
of the conditional probability density function P [Y |X], i.e.,
the probability density function (PDF) to receive the output
signal Y if the input signal is X, for nondispersive per-sample
channel was first obtained in Ref. [12]. The upper bound for
the capacity at very large input signal power for the model was
obtained in Refs. [13,14]. The capacity of the channel was
found in Ref. [1] in the intermediate power range implying
both large signal-to-noise ratio (SNR) and the condition for
the next-to-leading corrections in the noise power to be small;
see Eq. (23) in Ref. [1].
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The per-sample model assumes that the input signal does
not depend on time. In a realistic communication channel the
transmitted signal does depend on time. In the recent paper
[15] the influence of the receiver, signal, and noise bandwidth
on the autocorrelation function and the capacity was discussed
within the filter-and-sample model for the channel with zero
dispersion. In our opinion, one of the important results of the
paper [15] is understanding that the conditional PDF depends
significantly on the properties of the receiver.

In this paper we consider the nondispersive channel in the
intermediate power range in the case where the initial signal
depends on time and has a bandwidth much less than the noise
bandwidth. We also introduce a detection procedure which
takes into account the time resolution characteristics of the
detector and we demonstrate the influence of the detector and
the noise bandwidth on statistical properties of the channel.
Therefore this paper is a generalization of the previous results
of Refs. [1,2] for the per-sample model to the time-dependant
signal.

The paper is organized in the following way. In Sec. II we
present the model of the signal propagation, the input signal,
and the receiver model. In Sec. III we obtain the conditional
probability density function for the introduced model. In
Sec. IV we present numerical results for the correlators and
compare these results with analytical ones. And in Sec. V we
calculate the optimal input signal distribution and the channel
capacity in the intermediate power range. In the conclusion
we discuss our results.

II. MODEL OF THE SIGNAL PROPAGATION
AND DETECTION

In our model the propagation of the signal ψ (z, t ) is
described by the stochastic nonlinear Schrödinger equation
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(NLSE) with zero dispersion:

∂zψ − iγ |ψ |2ψ = η(z, t ), (1)

where γ is the Kerr nonlinearity coefficient, the function
ψ (z, t ) obeys the input and output conditions ψ (z = 0, t ) =
X(t ) and ψ (z = L, t ) = Y (t ), respectively; L is the length of
the signal propagation; η(z, t ) is an additive complex noise
with zero mean, 〈η(z, t )〉η = 0, and the correlation function
in the frequency domain,

〈η(z, ω)η̄(z′, ω′)〉η = 2πQδ(ω − ω′)θ
(

W ′

2
− |ω|

)
× δ(z − z′), (2)

where the bar means complex conjugation; Q is a power of
the noise per unit length and per unit frequency, θ (ω) is the
Heaviside theta function, δ(ω) is the Dirac delta function,
and W ′ is the bandwidth of the noise. The noise η(z, ω) is
not white due to limited bandwidth. In the time domain this
correlator has the form

〈η(z, t )η̄(z′, t ′)〉η = Q
W ′

2π
sinc

(
W ′(t − t ′)

2

)
δ(z − z′). (3)

One can see that if the time difference t − t ′ = 2nπ/W ′ then
the correlator (3) is equal to zero; here n is an integer. Thus
we can solve Eq. (1) independently for parameters tj = j�

for different integer j , where � = 2π/W ′ is the time grid
spacing. Therefore instead of the continuous time model (1)
we will consider the following discrete model:

∂zψ (z, tj ) − iγ |ψ (z, tj )|2ψ (z, tj ) = η(z, tj ) (4)

for any time moment tj . This means that we obtain the set of
independent time channels since the noise in these moments
is not correlated. We present the input and output conditions
in the discrete form as well: ψ (z = 0, tj ) = X(tj ) and ψ (z =
L, tj ) = Y (tj ). Note that the solution �(z, tj ) of Eq. (4) with
zero noise which obeys the input condition �(z = 0, tj ) =
X(tj ) has the form

�(z, tj ) = X(tj )eiγ z|X(tj )|2 . (5)

Below we assume that the frequency bandwidth W ′ of the
noise is much broader than the frequency bandwidth W of
the input signal X(t ) and the frequency bandwidth W̃ of the
function �(z = L, t ).

In our model the input signal X(t ) has the form

X(t ) =
N∑

k=−N

Ck f (t − kT0), (6)

where Ck are complex random coefficients with some prob-
ability density function PX[{C}], {C} = {C−N, . . . , CN }; the
pulse envelope f (t ) is the real function which is normal-

ized as
∫∞
−∞

dt

T0
f 2(t ) = 1. The pulse envelope f (t ) has the

following properties: the overlapping of the functions f (t −
kT0) and f (t − mT0) for k �= m is negligible:

∫∞
−∞ dtf (t −

kT0)f (t − mT0) ≈ 0. This means that the function f (t ) has
almost the finite support [−T0/2, T0/2], and the input signal
X(t ) is defined on the interval T = (2N + 1)T0. Thus the
frequency support of the function X(t ) is infinite. But we im-
ply that

∫
W

|X(ω)|2dω ≈ ∫
W ′ |X(ω)|2dω, where X(ω) is the

Fourier transformation of X(t ). The last relation means that
T0W � 1.

In our consideration the average input signal power P is
fixed:

P =
∫ ( N∏

k=−N

d2Ck

)
PX[{C}]

∫ ∞

−∞

dt

T
|X(t )|2, (7)

where d2Ck = d Re Ckd Im Ck , and the input signal probabil-
ity density function PX[{C}] is normalized as follows:∫ ( N∏

k=−N

d2Ck

)
PX[{C}] = 1. (8)

Using the properties of the function f (t − kT0) we can rewrite
Eq. (7):

P =
∫

d2CmP
(m)
X [Cm]|Cm|2, (9)

where

P
(m)
X [Cm] =

∫ ⎛⎝ N∏
k=−N,k �=m

d2Ck

⎞⎠PX[{C}], (10)

and we imply that the distribution P
(m)
X [Cm] does not depend

on m.
Let us describe the output signal detection procedure.

Our detector recovers the information which is carried by
the coefficients {Ck}. First, the detector receives the signal
ψ (z = L, tj ) at the discrete time moments tj = j�; here j =
−M, . . . , M − 1, where M = T/(2�) � N . This means that
the time resolution of the detector coincides with the time dis-
cretization �. Since � 	 1/W̃ our detector can completely
recover the input signal in the noiseless case. Second, the
detector removes the nonlinear phase to obtain the recovered
input signal X̃(t ) in the following form:

X̃(tj ) = ψ (z = L, tj )e−iγL|ψ (z=L,tj )|2 . (11)

And finally, using X̃(t ) the detector recovers the coefficients
C̃k by projecting on the basis functions f (t − kT0):

C̃k = 1

T0

∫ ∞

−∞
dtf (t − kT0)X̃(t )

≈ �

T0

M−1∑
j=−M

f (tj − kT0)X̃(tj ). (12)

One can check that in the case of zero noise X̃(t ) = X(t ) and
C̃k = Ck .

III. STATISTICS OF ˜Ck

In the previous paper [1] we obtained the conditional
probability function P [Y |X] for the case where input X and
output Y signals do not depend on time (per-sample condi-
tional PDF). In the previous section we extend our model [1]
by including the detector procedure and time dependence of
the input signal X(t ). Our goal is to obtain the conditional
probability function P [{C̃}|{C}], i.e., the probability to detect
the set of coefficients {C̃} if the transmitted set is {C}. Using
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the function P [{C̃}|{C}] we can calculate the probability
density function Pout[{C̃}] as

Pout[{C̃}] =
∫ N∏

k=−N

d2CkP [{C̃}|{C}]PX[{C}]. (13)

Since the propagation of the signal in the different time
moments tj is independent and noise is not correlated, the
conditional probability function P [Y (t )|X(t )], i.e., the prob-
ability density to obtain the output signal Y (t ) for the given

input signal X(t ), can be presented in the factorized form:

P [Y (t )|X(t )] =
M−1∏

j=−M

Pj [Yj |Xj ], (14)

where Xj = X(tj ), Yj = Y (tj ), and Pj [Yj |Xj ] is per-sample
conditional PDF obtained in Ref. [1]. The function Pj [Yj |Xj ]
in the leading and next-to-leading order in parameter

√
Q can

be deduced from the results of Ref. [1], where we have to
replace parameter Q by Q/�:

Pj [Yj |Xj ] = �

exp

{
−�

(
1 + 4μ2

(j )/3
)
x2

(j ) − 2μ(j )x(j )y(j ) + y2
(j )

QL
(
1 + μ2

(j )/3
) }

πQL
√

1 + μ2
(j )/3

×
{

1 − μ(j )/ρ(j )

15
(
1 + μ2

(j )/3
)2 [μ(j )

(
15 + μ2

(j )

)
x(j ) − 2

(
5 − μ2

(j )/3
)
y(j )
]− μ(j )�

135QLρ(j )
(
1 + μ2

(j )/3
)3

× [μ(j )
(
4μ4

(j ) + 15μ2
(j ) + 225

)
x3

(j ) + (23μ4
(j ) + 255μ2

(j ) − 90
)
x2

(j )y(j )

+μ(j )
(
20μ4

(j ) + 117μ2
(j ) − 45

)
x(j )y

2
(j ) − 3

(
5μ4

(j ) + 33μ2
(j ) + 30

)
y3

(j )

]}
. (15)

Here ρ(j ) = |Xj |, Xj = ρ(j )e
iφ(j ) , μ(j ) = γLρ2

(j ), x(j ) =
Re[Yje

−iφ(j )−iμ(j ) − ρ(j )], and y(j ) = Im[Yje
−iφ(j )−iμ(j )

− ρ(j )]. The expression (15) was obtained in Ref. [1] on
the condition that the average input signal power P lies in the
intermediate power range:

QL

�
	 P 	 �/(QL3γ 2), (16)

where P = 2π
∫∞

0 dρρ3P [ρ], and P [ρ] is the distribution
function of the quantity ρ; see Ref. [1]. Therefore, our con-
sideration is restricted by the condition (16). The factorization
of P [Y (t )|X(t )] in the form (14) means that there are 2M

independent “subchannels.” Note that the signal X(t ) is com-
pletely defined by 2N + 1 coefficients Ck; i.e., there are only
2N + 1 independent Xj , but all 2M quantities Yj are indepen-
dent. However, our detector reduces the function Y (t ) to the
set of 2N + 1 coefficients {C̃k} by the procedure (11) and (12).
Therefore we have to reduce the function P [Y (t )|X(t )] to
the function P [{C̃k}|{Ck}] by integrating over 2M − 2N − 1
redundant degrees of freedom. Using the conditional PDF
P [Y (t )|X(t )] in the form (14) one can calculate all correlators
of the coefficients C̃k: 〈C̃k1〉, 〈C̃k1C̃k2〉, 〈C̃k1 . . . C̃kn

〉. Here

〈
C̃k1 . . . C̃kn

〉 = ∫ M−1∏
j=−M

d2YjP [Y (t )|X(t )]C̃k1 . . . C̃kn
,

(17)

where d2Yj = d Re Yjd Im Yj ; C̃k is defined in Eq. (12), and
in the discrete form it reads

C̃k = �

T0

M−1∑
j=−M

f (tj − kT0)Yje
−iγL|Yj |2 . (18)

To recover the function P [{C̃k}|{Ck}] in the leading ap-
proximation in parameter Q it is necessary to know only

three correlators: 〈C̃k〉, 〈C̃kC̃m〉, 〈C̃kC̃m〉. After substitution
of Eqs. (14), (15), and (18) into Eq. (17) and performing
the integration we obtain in the leading order in the noise
parameter Q

〈C̃k〉 = Ck − iCk QL2γ

�

(
1 − iγL|Ck|2n4

3

)
, (19)

〈(C̃m − 〈C̃m〉)(C̃n − 〈C̃n〉)〉

= −iδm,n

C2
mQL2γ

T0

(
n4 − 2in6

3
γL|Cm|2

)
, (20)

〈(C̃m − 〈C̃m〉)(C̃n − 〈C̃n〉)〉

= δm,n

QL

T0

(
1 + 2n6

3
γ 2L2|Cm|4

)
, (21)

where δm,n is Kronecker symbol and

ns =
∫ T0/2

−T0/2

dt

T0
f s (t ). (22)

Note that for the first correlator (〈C̃k − Ck〉) is proportional
to QL/� = QLW ′/(2π ), i.e., it is proportional to the total
noise power, whereas the correlators (20) and (21) are pro-
portional to QL/T0 and do not depend on the discretization
parameter � only in leading order in parameter Q and depend
on the parameter � in higher order corrections in parameter
Q; see the Appendix.
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Using the correlators (19)–(21) we obtain the conditional PDF P [C̃|C] in the leading order in parameter Q:

P [C̃|C] =
N∏

m=−N

Pm[C̃m|Cm], (23)

where

Pm[C̃m|Cm] ≈ T0

πQL
√

1 + ξ 2μ2
m/3

exp

[
−T0

[
1 + 4n6μ

2
m/(3)

]
x2

m + 2xmymμmn4 + y2
m

QL
(
1 + ξ 2μ2

m/3
) ]

. (24)

Here we have introduced the notations

xm = Re

{
e−iφm

[
C̃m − Cm + iCm QL2γ

�

(
1 − iγL|Cm|2n4

3

)]}
, (25)

ym = Im

{
e−iφm

[
C̃m − Cm + iCm QL2γ

�

(
1 − iγL|Cm|2n4

3

)]}
, (26)

φm = arg Cm, μm = γL|Cm|2, (27)

ξ 2 = (4n6 − 3n2
4

)
. (28)

The parameter ξ 2 obeys the inequality ξ 2 > n6 > 0 due to
the Cauchy-Schwarz-Buniakowski inequality. Note that the
function P [C̃|C] has the factorized form (23) only in the lead-
ing approximation in the parameter Q. Equation (23) means
that we have 2N + 1 independent information channels, and
the channel corresponding to the time slot m is described by
the function Pm[C̃m|Cm]. The function Pm[C̃m|Cm] obeys the
normalization condition∫

d2C̃mPm[C̃m|Cm] = 1. (29)

Since there are 2N + 1 independent channels, we can choose
the input signal distribution PX[{Cm}] in the factorized form:

PX[{C}] =
N∏

k=−N

P
(k)
X [Ck], (30)

and we can consider only one channel, say the mth channel.
For this channel we can calculate the probability distribution
function of the coefficients C̃m:

P
(m)
out [C̃m] =

∫
d2CmPm[C̃m|Cm]P (m)

X [Cm]. (31)

We imply that the function P
(m)
X [Cm] is a smooth function

that changes on a scale |Cm|2 ∼ P which is much greater than
QL/�:

P � QL/� � QL/T0. (32)

In other words, the signal power is much greater than the
noise power in the channel. The variation scale of the function
Pm[C̃m|Cm] in the variable Cm is of order

√
QL/T0; therefore

we can use Laplace’s method [16] for the calculation of the
integral (31). Performing the integration in the leading order
in parameter Q we obtain

P
(m)
out [C̃m] ≈ P

(m)
X [C̃m]; (33)

for details see Appendix C in Ref. [1]. The result (33) implies
that the statistics of the coefficients C̃m coincides with the
statistics of the coefficients Cm.

IV. NUMERICAL CALCULATIONS
OF THE CORRELATORS

In order to verify the analytical results we performed
numerical simulations of pulse propagation through nonlinear
nondispersive optical fibers and calculated correlators (19),
(20), and (21). For these purposes we solve numerically
Eq. (1) for fixed input signal X(t ) and for different realiza-
tions of the noise η(z, t ). Then we numerically perform the
detection procedure described by Eqs. (11) and (12). Finally,
we average the coefficients C̃k and their quadratic combina-
tions over noise realizations. In our simulations we use two
numerical methods of the solution of Eq. (1): the split-step
Fourier method and Runge-Kutta method of the fourth order.
The results are presented in the following subsections. We
have checked that the numerical results do not depend on
the numerical method and these results are consistent with
analytical ones for different realizations of the form f (t ) of
the input pulse.

For numerical simulation we choose the following realistic
channel parameters. The duration of one pulse is T0 = 10−10

sec, the fiber length is equal to L = 800 km, and the Kerr
nonlinearity parameter is γ = 1.25 (km W)−1.

A. Split-step Fourier method

Equation (1) was integrated numerically over z from 0 up
to communication line length L using the split-step Fourier
method [17,18]:

ψ (z + h, t ) = ψ (z, t ) exp[iγ |ψ (z, t )|2h] + F̂−{δQh}, (34)

where ψ (z, t ) stands for the numerical solution of (1), h is a
step size of the z mesh, and F̂− denotes the discrete inverse
Fourier transform. The quantity δQh stands for the noise
addition per step h which is made in the frequency domain
according to

ψ (z, ωj ) → ψ (z, ωj ) +
√

hQ

T

ηX + iηY√
2

, (35)
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where j = 0, . . . , 2M − 1 stands for the index of the ω mesh,
2M is the number of t- and ω-mesh points, T is the total width
of the t mesh [we choose T = 63T0; see Eq. (36) below], ηX

and ηY are independent standard Gauss random numbers with
zero mean and σ 2 = 1, and the additive noise level is Q =
10−21 W/(km Hz).

The input signal for z = 0 has the form

ψ (z = 0, t ) = X(t ) =
31∑

k=−31

Ck f (t − kT0); (36)

here we use the pulse envelope of the Gaussian form:

f (t ) =
√

T0

T1
√

π
exp

(
− t2

2T 2
1

)
, (37)

where T1 = T0/10 = 10−11 sec stands for the characteris-
tic timescale of the function f (t ). The pulse intersection
is negligible. For such pulses coefficients ns defined in
Eq. (22) are n4 = T0/T1√

2π
≈ 3.989, n6 = (T0/T1 )2

π
√

3
≈ 18.38, n8 =

(T0/T1 )3

2π
√

π
≈ 89.79; ξ ≈ 5.08.

In the numerical simulation we vary the average power
1

63

∑31
k=−31 |Ck|2 of the input signal from 0.0177 mW up to

4.43 mW. This corresponds to the variation of the peak power
[|Ck|2f 2(0)] from 0.1 mW up to 25 mW.

Simulations are performed for different t meshes (different
grid spacing �), i.e., for different noise bandwidths and fixed
noise parameter Q. These meshes differ from each other
by time grid spacing � = T/(2M ): �1 = 9.77 × 10−14 sec,
�2 = 1.95 × 10−13 sec, and �3 = 3.91 × 10−13 sec. These
grid spacings determine the widths of conjugated ω meshes:
1/�1 = 10.26 THz, 1/�2 = 5.12 THz, and 1/�3 = 2.56
THz.

For each average power of the signal and each mesh step
size � we simulate propagation of the signal for different
realizations of the noise and then average the obtained results
for correlators over realizations. The total number of noise
realizations for fixed X(t ), see Eq. (36), is determined by the
necessary statistical relative error and is chosen as 5.0 × 104.
This number of the realizations corresponds to the statistical
relative error for correlators (20) and (21) on the level of 0.2%
(since the total number of pulses is 63 × 5.0 × 104 ≈ 3.2 ×
106). We performed simulations on z meshes with different
numbers of points (100, 200, 400, 800) and checked that the
results do not depend on step size h.

In Figs. 1–5 the numerical and analytical results for corre-
lators (19)–(21) are presented for different time grid spacings
� as a function of input signal power. In Fig. 5 the results are
presented for the grid spacings �1 and �3 because the results
for �1 and �2 almost coincide. One can see that numerical
and analytical results are in a good agreement up to 3 mW at
least. However the difference between numerical and analyt-
ical results for the smallest time grid spacing �1 is maximal.
Decreasing of the parameter � means the increasing of the
spectral bandwidth of the noise. This increasing results in the
growth of the total noise power received by the detector. Note
that the analytical expressions for correlators were obtained
using the conditional PDF P [Y (t )|X(t )] in the form (15).
This form was derived in the approximation of large signal-

0 1 2 3 4 5
0

10

30

50

|Ck|2 [mW]

1
0
3
R

e
C

k
C

k
/
C

k

FIG. 1. The real part of the relative difference of the coefficient
Ck and the correlator (19) in units of 10−3 as a function of input signal
power |Ck|2 for f (t ) from Eq. (37). The noise power parameter
is Q = 10−21 W/(km Hz). Dashed-dotted, dashed, and solid lines
correspond to analytic representation (19) for time grid spacings �1,
�2, �3, respectively. Circles, squares, and diamonds correspond to
numerical results for time grid spacings �1, �2, �3, respectively.

to-noise ratio SNR = P�/(QL). Decreasing parameter �

we diminish the parameter SNR and, as a consequence, the
accuracy of our approximation. The difference between nu-
merical and analytical results can be explained by taking into
account the next-to-leading order (NLO) corrections in noise
power parameter QL/�. The analytical results in Figs. 3–5
are shown with taking into account both leading order results
(20)–(21) and NLO corrections presented in the Appendix;
see Eqs. (A1) and (A3).

B. Runge-Kutta method

For Eq. (1) the time t is the incoming parameter. Thus the
simulation consists of the solution of the ordinary differential
equation with various initial conditions determined by the real
pulse shape f (t ), the amplitude Cm, and independent random
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FIG. 2. The imaginary part of the relative difference of the
coefficient Ck and the correlator (19) in units of 10−3 as a function of
input signal power |Ck|2 for f (t ) from Eq. (37). The noise power
parameter is Q = 10−21 W/(km Hz). Dashed-dotted, dashed, and
solid lines correspond to analytic representation (19) for time grid
spacings �1, �2, �3, respectively. Circles, squares, and diamonds
correspond to numerical results for time grid spacings �1, �2, �3,
respectively.
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FIG. 3. The real part of the correlator (20) multiplied by (−1) as
a function of input signal power |Cm|2 for f (t ) from Eq. (37). The
noise power parameter is Q = 10−21 W/(km Hz). Dashed-dotted,
dashed, and solid lines correspond to analytic representation (20)
with NLO corrections (A1) for time grid spacings �1, �2, �3,
respectively. Circles, squares, and diamonds correspond to numerical
results for time grid spacings �1, �2, �3, respectively.

noise functions η(z, t ). In the second method we used pulse
envelopes of the form

fn(t ) = An cosn(πt/T0) (38)

for n = 2, 4 and t ∈ [−T0/2, T0/2]: A2 =
√

8
3 and A4 =√

128
35 . We choose the time discretization parameter � =

T0/64. The random noise was realized as the telegraph pro-
cess with a step of the length �z = 10−4L and of the ran-
dom height with zero average and with the dispersion σ 2 =
2.38 × 10−8 W/(km2) both for real and imaginary parts.
The noise power parameter reads as Q = 2σ 2��z ≈ 5.94 ×
10−21 W/(km Hz) and it is almost six times greater than
that in the previous method. We independently control this
parameter Q by using the leading order contribution to the
correlator (21) numerically simulated for γ = 0. The noise
η is constant within the step. Within the step Eq. (1) was
solved by the Runge-Kutta method of the fourth order with
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FIG. 4. The imaginary part of the correlator (20) multiplied by
(−10) as a function of input signal power |Cm|2 for f (t ) from
Eq. (37). The noise power parameter is Q = 10−21 W/(km Hz).
Dashed-dotted, dashed, and solid lines correspond to analytic rep-
resentation (20) with NLO corrections (A1) for time grid spacings
�1, �2, �3, respectively. Circles, squares, and diamonds correspond
to numerical results for time grid spacings �1, �2, �3, respectively.
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FIG. 5. The correlator (21) as a function of input signal power
|Cm|2 for f (t ) from Eq. (37). The noise power parameter is Q =
10−21 W/(km Hz). Dashed-dotted and solid lines correspond to
analytic representation (21) with NLO corrections (A3) for time grid
spacings �1, �3, respectively. Circles and squares correspond to
numerical results for time grid spacings �1, �3, respectively.

the step h = �z/50. The recovered input signal X̃(tj ) was
calculated using Eq. (11) at the equidistant points tj . The
coefficients C̃k were calculated using Eq. (12). The average
(19) and correlators (20) and (21) were calculated over 16 384
values of C̃k which were found for various noise realizations.

To control the accuracy of the method we solved Eq. (1)
with zero noise from z = 0 to z = L with the step h and
then we performed the backward propagation from z = L to
z = 0 with the found solution as the initial condition. In the
procedure the input signal was recovered with the relative
precision equal to 10−6.

The analytical results in comparison with the numerical
results are presented in Figs. 6–10 for different pulse en-
velopes. The numerical results are presented by dots with
statistical errors on the level of three standard deviations. And
the curves correspond to the analytical expressions obtained
from Eqs. (19)–(21) with corrections (A1) and (A3). In Figs. 6
and 7 we plot the real and imaginary parts of the relative
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FIG. 6. The real part of the relative difference of the coefficient
Ck and the correlator (19) in units of 10−3 as a function of input
signal power |Ck|2 for f2(t ), see black solid line, and for f4(t ), see
black dashed line. The noise power parameter is Q = 5.94 × 10−21

W/(km Hz). Circles and rectangles correspond to numerical results
with statistical error on the level of three standard deviations for the
functions f2 and f4, respectively.

012133-6



LOG-LOG GROWTH OF CHANNEL CAPACITY FOR … PHYSICAL REVIEW E 99, 012133 (2019)

FIG. 7. The imaginary part of the relative difference of the
coefficient Ck and the correlator (19) in units of 10−3 as a function of
input signal power |Ck|2 for f2(t ) and f4(t ); see black solid line. The
noise power parameter is Q = 5.94 × 10−21 W/(km Hz). Circles
and rectangles correspond to numerical results with statistical error
on the level of three standard deviations for the functions f2 and f4,
respectively.

difference (Ck − 〈C̃k〉)/Ck as a function of input signal power
|Ck|2 for two envelope functions f2(t ) and f4(t ). One can see
that in Fig. 6 the curve corresponding to the envelope f4(t )
is disposed above one corresponding to the envelope f2(t ).
The reason is follows: the envelope f4(t ) is more picked than
the envelope f2(t ); this results in the integrals n4 and n6 for
f4(t ) being greater than those for the envelope f2(t ). In Fig. 7
the results for the both envelopes coincide as predicted by
Eq. (19). In Figs. 8–10 we plot the real, imaginary parts of
−〈(C̃m − 〈C̃m〉)2〉 and the absolute value of 〈|C̃m − 〈C̃m〉|2〉,
respectively. Similarly to Fig. 6 the curves corresponding to
the envelope f4(t ) are disposed above ones corresponding
to envelope f2(t ) for the same reason. One can see that
numerical and analytical results are in a good agreement.

We have checked that for the same envelope function f (t )
both numerical methods (the split-step Fourier method and
Runge-Kutta method) give the coinciding results with the
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FIG. 8. The real part of the correlator (20) multiplied by (−1)
as a function of input signal power |Cm|2 for f2(t ), see black solid
line, and for f4(t ), see black dashed line. Solid and dashed lines
correspond to the real part of leading order contribution (20) with
the next-to-leading order corrections; see Eq. (A1). The noise power
parameter is Q = 5.94 × 10−21 W/(km Hz). Circles and rectangles
correspond to numerical results with statistical error on the level of
three standard deviations for the functions f2 and f4, respectively.
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FIG. 9. The imaginary part of the correlator (20) multiplied by
(−10) as a function of input signal power |Cm|2 for f2(t ), see black
solid line, and for f4(t ), see black dashed line. Solid and dashed
lines correspond to the imaginary part of leading order contribution
(20) with the next-to-leading order corrections; see Eq. (A1). The
noise power parameter is Q = 5.94 × 10−21 W/(km Hz). Circles
and rectangles correspond to numerical results with statistical error
on the level of three standard deviations for the functions f2 and f4,
respectively.

accuracy of the statistical errors. Therefore we have presented
the numerical calculation using the split-step Fourier method
for the Gaussian envelope function f (t ), see Eq. (37), and the
Runge-Kutta method for envelope functions f2(t ) and f4(t ),
see Eq. (38).

V. ENTROPIES AND MUTUAL INFORMATION

Now we proceed to the calculation of the output signal
entropy

H [C̃m] = −
∫

d2C̃mP
(m)
out [C̃m] log P

(m)
out [C̃m], (39)

conditional entropy

H [C̃m|Cm] = −
∫

d2C̃md2CmPm[C̃m|Cm]

×P
(m)
X [Cm] log Pm[C̃m|Cm], (40)

and the mutual information

IP
(m)
X

= H [C̃m] − H [C̃m|Cm]. (41)

Our calculations of the entropies (39) and (40) and the mutual
information (41) are similar to calculations of the entropies
and the mutual information for the per-sample channel; see
Secs. III and IV of Ref. [1]. Therefore we will not repeat the
similar calculations here and present only the final results:

H [C̃m] = H [Cm] = −
∫

d2CmP
(m)
X [Cm] log P

(m)
X [Cm],

(42)

H [C̃m|Cm] = 1 + log

[
π

QL

T0

]
+ 1

2

∫
d2CmP

(m)
X [Cm]

× log

[
1 + ξ 2 γ 2L2|Cm|4

3

]
. (43)
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To calculate the optimal input signal distribution P
(m)
opt [Cm]

we calculate the mutual information substituting Eqs. (42)
and (43) into Eq. (41); then we vary the mutual information
over P

(m)
X [Cm] with taking into account the normalization

condition (8) and the fixed average power (9). Assuming the
variation of the mutual information to be zero, we obtain the
equation for the optimal input signal distribution P

(m)
opt [Cm].

We solve the equation and obtain (for details of the similar
calculations for the per-sample channel see Sec. III of Ref. [1])

P
(m)
opt [Cm] = N0

e−λ0|Cm|2√
1 + ξ 2γ 2L2|Cm|4/3

, (44)

where parameters N0 = N0(P, ξγ ) and λ0 = λ0(P, ξγ ) are
functions of the power P and modified nonlinearity parameter
ξγ by virtue of the relations (compare with Eqs. (46) and (47)
of Ref. [1])

∫
d2CmP

(m)
opt [Cm] =

∫ ∞

0
dρ

2πN0 ρ e−λ0ρ
2√

1 + ξ 2γ 2L2ρ4/3
= 1, (45)

P =
∫

d2CmP
(m)
opt [Cm]|Cm|2 =

∫ ∞

0
dρ

2πN0 ρ3e−λ0ρ
2√

1 + ξ 2γ 2L2ρ4/3
.

(46)

Note that in Ref. [14] the authors used the half-Gaussian
distribution for the input signal as the optimal one for the
per-sample channel. One can see that the result (44) for the
channel under consideration and the optimal input signal
distribution (45) in Ref. [1] for the per-sample channel differ
from the half-Gaussian distribution.

The capacity of one channel m, i.e., the mutual information
calculated using the optimal input signal distribution (44),
reads

C = IP
(m)
opt

= log

(
PT0

πeQL

)
+ Pλ0 − log [PN0]. (47)

One can see that the first term on the right-hand side of
Eq. (47) corresponds to Shannon’s result [19] for the linear
channel at large signal-to-noise ratio; the second and third
terms are related to the nonlinearity impact. The result (47)
is similar to that obtained for the per-sample model in Ref. [1]
but with modification of the Kerr nonlinearity parameter γ for
the per-sample model to parameter ξγ for the present model,
where ξ =

√
4n6 − 3n2

4 . There is no simple analytical form
for N0 and λ0, see Secs. III and IV of Ref. [1], and therefore
we present below the analytical results for the asymptotics
of the mutual information for small and large dimensionless
nonlinearity parameters ξγLP and the numerical calculations
in Fig. 11.

Performing the substitution γ → ξγ in the results of Secs.
III and IV of Ref. [1] we arrive at the following asymptotics
of the mutual information for small and large dimensionless
nonlinearity parameters γLP :

IP
opt
X [X] ≈ log

(
PT0

QL

)
− ξ 2γ 2L2P 2

3
, (48)
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FIG. 10. Correlator (21) as a function of input signal power |Cm|2
for f2(t ), see black solid line, and for f4(t ), see black dashed line.
Solid and dashed lines correspond to leading order contribution
(21) with the next-to-leading order corrections; see Eq. (A3). The
noise power parameter is Q = 5.94 × 10−21 W/(km Hz). Circles
and rectangles correspond to numerical results with statistical error
on the level of three standard deviations for the functions f2 and f4,
respectively.

for ξγLP 	 1, and

IP
opt
X [X] = log log(BξγLP/

√
3) − log(QL2ξγ e/

√
3)

+ 1

log(BξγLP/
√

3)

[
log log(BξγLP/

√
3) + 1

− log log(BξγLP/
√

3)

log(BξγLP/
√

3)

]
, (49)

for log ξγLP � 1 and P 	 �/(QL3ξ 2γ 2). Here B =
2e−γE , and γE ≈ 0.5772 is the Euler constant. Note that the
asymptotics (49) is obtained with accuracy 1/ log2(ξγLP );
see Sec. IV of Ref. [1].
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FIG. 11. Shannon capacity and the mutual information I
P

(m)
opt

for the parameters Q = 10−21 W/(km Hz), L = 800 km, γ = 1.25
(km W)−1, T0 = 10−10 sec, and for the Gaussian shape (37) of f (t ).
The black dotted line corresponds to the Shannon limit log( PT0

QL
), the

black solid line corresponds to I
P

(m)
opt

, see Eq. (47), and the black

dashed-dotted line corresponds to the asymptotics (49) for large
γLP .
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VI. CONCLUSION

In the present paper we use results obtained in Ref. [1] for
the per-sample model to calculate the informational character-
istics of the channel where the input signal X(t ) depends on
time; see Eq. (6). For this channel the information is carried
by coefficients Ck . In the process of the signal propagation the
input signal is transformed by the Kerr nonlinearity and the
noise in the channel. To recover the transmitted information
we introduce the detection procedure which removes the
nonlinearity effects, see Eq. (11), and then projects X̃(t ) on
the basis functions, see Eq. (12), to obtain the coefficients C̃k .
Using the conditional probability density function for the per-
sample model obtained in Ref. [1] we calculate the correlators
of the coefficients C̃k; see Eqs. (19)–(21). We demonstrate that
these correlators depend on the noise bandwidth parameter �.
We also perform the numerical calculations of these correla-
tors using two different methods and show that the numerical
and analytical results are in agreement. Using the obtained
results for correlators we find the conditional probability
density function P [{C̃k}|{Ck}] in the leading and next-to-
leading orders in parameter QL/(�P ). Then we calculate
the informational entropies and the mutual information for
the channel in leading order in the parameter QL/(T0P ). We
perform variation of the mutual information over the input
signal distribution function and obtain the optimal input signal
distribution function which maximizes the mutual informa-

tion. We calculate the channel capacity in the leading order
in parameter QL/(T0P ) and demonstrate that the capacity
depends on the pulse envelope through one parameter ξ ; see
Eq. (28). The capacity grows as log log P for sufficiently
large average power P : (ξγQL)−1 	 P 	 �/(QL3ξ 2γ 2).
Note that the same asymptotics was obtained for the per-
sample model; therefore taking into account the time depen-
dence of the pulse envelope does not change the asymptotics
behavior and modifies only the nonlinearity parameter γ to
ξγ .
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APPENDIX: CORRELATORS (20) AND (21)
WITH NLO CORRECTIONS

Let us present the correlator (20) with next-to-leading order
(NLO) corrections in the noise power:

〈(C̃m − 〈C̃m〉)(C̃n − 〈C̃n〉)〉 = δm,n

(
〈(C̃m − Cm)(C̃m − Cm)〉 −

(
QL2γ

�

)2

C2
m

[
− 1 + n2

4

9
γ 2L2|Cm|4 + i

2n4

3
γL|Cm|2

])

= δm,n

(
QL2γ

T0
C2

m

[
−2n6

3
γL|Cm|2 − in4

]
+
(

QL2γ

T0

)2
T0

�
C2

m

×
[

− 9n4

2
+ 2n8

3
γ 2L2|Cm|4 + i

58n6

15
γL|Cm|2

])
. (A1)

Here we have used the relation

〈(C̃m − 〈C̃m〉)(C̃m − 〈C̃m〉)〉 = 〈(C̃m − Cm)(C̃m − Cm)〉 − 〈C̃m − Cm〉2, (A2)

the result (19) for 〈C̃m − Cm〉, and the calculation of 〈(C̃m − Cm)(C̃m − Cm)〉 on the base of next-to-leading order result for
P [Y |X] in Ref. [2].

In a similar manner it is easy to calculate the following corrections to correlator (21) from the results obtained in Ref. [2]:

〈(C̃m − 〈C̃m〉)(C̃n − 〈C̃n〉)〉 = δm,n

(
〈(C̃m − Cm)(C̃m − Cm)〉 −

(
QL2γ

�

)2

|Cm|2
[

1 + n2
4

9
γ 2L2|Cm|4

])

= δm,n

(
QL

T0

[
1 + 2n6

3
γ 2L2|Cm|4

]
+
(

QL2γ

T0

)2
T0

�
|Cm|2

[
n4 − 2n8

9
γ 2L2|Cm|4

])
. (A3)

Note that these NLO results (A1) and (A3) contain the time discretization parameter � related to the noise bandwidth W ′ =
2π/�. The relative importance of the NLO corrections in correlators (A1) and (A3) is governed by the dimensionless parameter
( QL

�
γL)γLP ; i.e., it increases linearly for large and increasing P . To demonstrate the importance of these corrections for our

numerical results we present Fig. 12, where for the noise power parameter Q = 5.94 × 10−21 W/(km Hz) the imaginary part
of the leading order contribution (20) and the next-to-leading order corrections (A1) are presented together with the numerical

results (Runge-Kutta method) for the envelope form f2(t ) =
√

8
3 cos2(πt/T0). One can see that our calculations, i.e., Eq. (24)
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FIG. 12. The imaginary part of the correlator (20) multiplied by (−10) as a function of input signal power |Cm|2 for f2(t ) =√
8
3 cos2(πt/T0) in the leading order (20), see black dashed-dotted line, and with the next-to-leading order corrections (A1), see the solid

line. The noise power parameter Q = 5.94 × 10−21 W/(km Hz). Circles represent the numerical results for Runge-Kutta method.

and formulas of Sec. V based on the leading order results (19)–(21), are in good agreement with the numerical calculations up
to the average power of order 4 mW for given noise and channel parameters.
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