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Customarily, the Kirkendall effect is associated with the vacancy-mediated balance of diffusion fluxes of atoms
at the interface between two metals. Nowadays, this effect attracts appreciable attention due to its crucial role in
the formation of various hollow nanoparticles via oxidation of metal nanocrystallites. The understanding of the
physics behind this effect in general and especially in the case of nanoparticles is still incomplete due to abundant
complicating factors. Herein, the Kirkendall effect is illustrated in detail at the generic level by performing
two-dimensional (2D) lattice Monte Carlo simulations of diffusion of A and B monomers with attractive nearest-
neighbor interaction for times up to 107 Monte Carlo steps. Initially, A monomers are considered to form a
close-packed array, while B monomers are in the 2D-gas state. The A-B interaction is assumed to be stronger
compared to the other interactions, so that thermodynamically the c(2 × 2) A-B phase is preferable compared
to the close-packed A phase (as in the case of metal oxidation). Depending on the relative rate of the diffusion
jumps of A and B monomers, the patterns observed at the late stage of the formation of the mixed phase are
shown to range from a single array without voids to those with appreciable disintegration of the initial array. In
this way, the model predicts a single array with numerous small voids, a few moderate voids, or a single large
void inside.

DOI: 10.1103/PhysRevE.99.012132

I. INTRODUCTION

The diffusion fluxes of two metals during their contact
and formation of an alloy layer at the contact interface can
be different. This difference is compensated by diffusion of
vacancies and accompanied by the formation of voids in one
of the metals near the newly formed metal-alloy interface.
These features of diffusion were first observed by Kirkendall
in the 1940s [1,2] and since then have been associated with his
name (as reviewed in Ref. [3]). In metallurgy, the formation of
voids is undesirable, and from this perspective the Kirkendall
effect is considered to be negative. During the past decade, this
effect was found to be behind the formation of various hollow
nanoparticles, e.g., during oxidation of metal nanocrystallites
or deposition of one metal on nanoparticles composed of
another metal (see the seminal study by Alivisatos et al.
[4], reviews [5–7], recent experiments [8–11], and references
therein). Such nanoparticles are of high current interest in
the context of catalysis, photochemistry, nanosensors, and
drug delivery. The corresponding experimental studies are
numerous, and accordingly the Kirkendall effect is now often
associated with hollow nanoparticles and viewed positively
from the latter perspective.

The full-scale interpretation of the formation of voids via
the Kirkendall pathway is far from straightforward irrespec-
tive of whether the process occurs during contact of macro-
scopic samples or in nanoparticles. For example, the diffusion
of metal or oxygen ions via the oxide layer during oxidation
of metal nanoparticles is influenced by (i) the electric field
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generated due to the charge located at the interfaces, (ii) lattice
strain arising due to the lattice expansion during the oxide
formation, (iii) evolution of the oxide structure, e.g., via the
grain growth, and (iv) generation of cracks in the oxide (see,
e.g., Refs. [12–16] and references therein). The role of all
these factors is often appreciable, and the understanding of
their interplay is still incomplete.

One of the ways to clarify complex phenomena is to
construct and analyze generic models by focusing on some of
the corresponding ingredients and ignoring other ingredients.
This approach is widely employed in physics in general and
statistical physics in particular. For example, the generic sta-
tistical models (e.g., the Ising and lattice gas models models
focused on phase transitions [17], various kinetic models of
epitaxial growth [18], or Ziff-Gullari-Barshad (ZGB) model
of kinetic phase transitions in catalytic reactions [19]) are
highly simplified and despite or due to this feature are instruc-
tive and form a firm conceptual basis for the understanding
of very different phenomena. From this perspective, it seems
to be reasonable to identify the simplest statistical model pre-
dicting the Kirkendall effect. Following this line, I present and
analyze here a simple two-component two-dimensional (2D)
lattice-gas model exhibiting features which are reminiscent
of those observed during oxidation of metal nanocrystallites.
Basically, I illustrate the Kirkendall effect in the 2D lattice
gas by using Monte Carlo (MC) simulations. In fact, the
simulations presented show that this effect can be reproduced
without various complications which are inherent for oxida-
tion of metal nanocrystallites. Thus, the complicating factors,
despite their importance, are not crucial for the observation of
the Kirkendall effect. In a more general context, the patterns
predicted by the model are more complex than one might
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expect, and this finding validates the report of the results
obtained.

II. MODEL

The analysis is focused on diffusion of A and B monomers
on a square L × L lattice. This process is considered to occur
via activated jumps of monomers to nearest-neighbor (nn)
vacant sites. In the framework of the transition state theory,
the corresponding jump rate constants are determined by the
preexponential factors, and the activation energy is identified
as usual with the difference of the monomer energies in the ac-
tivated state, i.e., at the saddle points of the potential barriers,
and in the ground state, i.e., near the bottom of potential wells
[20]. A monomer performing a jump interacts laterally with
neighbors, which are in the ground state. Depending on the
location of a jumping monomer, there are lateral interactions
in the ground and activated states, εX,i and ε∗

X,i , where X char-
acterizes the monomer type (X ≡ A or B) and i characterizes
the arrangement of neighbors. The difference of these energies

(a)

(b)

FIG. 1. Snapshots of the central 200 × 160 strip of the 200 ×
200 lattice during conversion of the A (1 × 1) phase (with l = 100)
into the A-B c(2 × 2) phase with p◦

A = p◦
B = 1 at t = 0 (a) and

107 MCS (b). Initially, the A l × l array is located in the center of
the lattice. A and B monomers are shown by filled and open circles
respectively.

determines the contribution of lateral interactions to the jump
activation energy. In particular, the rate constant of a jump in
one direction is represented as (see Eq. (7.3.15) in Ref. [20])

kX,i = k◦
X exp[−(ε∗

X,i − εX,i )/kBT ], (1)

where k◦
X is the corresponding jump rate in the absence

of neighbors. In real systems, the lateral interaction in the
activated state is often weaker compared to that in the ground
state, and accordingly I neglect the former interaction, i.e.,
set ε∗

i = 0. The latter interaction is represented as a sum
of the attractive pairwise nn interactions, εAA < 0, εBB < 0,
and εAB < 0. In particular, the interaction εA,i is identified
with nεAA + mεAB, where n and m are the numbers of nn
A and B monomers for a jumping A monomer with a given
arrangement in the adjacent sites. By analogy, the interaction
εB,i is identified with nεBB + mεAB, where n and m are the
numbers of nn B and A monomers for a jumping B monomer.
With this specification, expression (1) is reduced to

kA,i = k◦
A exp[(nεAA + mεAB)/kBT ],

kB,i = k◦
B exp[(nεBB + mεAB)/kBT ], (2)

where n and n are the numbers corresponding to a jumping A
or B monomer and given i.

To perform MC simulations, one needs dimensionless
probabilities (pi � 1) of possible events. To get such proba-
bilities, the rate constants are usually normalized to a suitably
chosen rate constant which is larger than or equal to the rate
constants of all the possible events. After such normalization,
expressions (2) for monomers with attractive nn interactions
can be replaced by

pA,i = p◦
A exp[(nεAA + mεAB)/kBT ],

pB,i = p◦
B exp[(nεBB + mεAB)/kBT ], (3)

where p◦
A � 1 and p◦

B � 1 are the jump probabilities in the
absence of neighbors.

Expressions (1)–(3) based on the transition state theory
satisfy the detailed balance principle at the level of single
jumps back and forth. This principle can be satisfied by

FIG. 2. As in Fig. 1(b) but for p◦
A = 0.1 and p◦

B = 1.
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FIG. 3. Snapshots of the central 200 × 160 strip of the 200 × 200 lattice during conversion of the A (1 × 1) phase (with l = 100) into the
A-B c(2 × 2) phase with p◦

A = 1 and p◦
B = 0.3 at t = 104 (a), 105 (b), 106 (c), and 107 MCS (d). Initially, the A l × l array is located in the

center of the lattice. A and B monomers are shown by filled and open circles respectively.

other choices of the monomer-monomer interactions and/or
expressions for the jump rates [21] (the corresponding liter-
ature is extensive and can be tracked over several decades;
see, e.g., Refs. [22–24]). One of the options is, e.g., to use
the conventional Metropolis dynamics. The latter dynamics is
faster compared to that defined by (3). It predicts, however,
equal rates of jumps of monomer in the dilute phase and holes
in the dense phase. In reality, the former jumps are usually
much faster. This is also the case according to expressions
(1)–(3). From this perspective, the dynamics defined by (3)
is preferable.

To mimic oxidation of metal nanocrystallites, I consider
that initially (at t = 0) A monomers form a close-packed
square l × l array located in the center of the L × L lattice
[like a metal nanocrystallite in the 3D space; see Fig. 1(a)].
The A-A interaction energy, εAA = −2kBT , is chosen to be
sufficiently strong for phase separation with formation of
the A (1 × 1) islands in the absence of B monomers (the
corresponding critical temperature is well known to be given
in this case by Tcr = 0.567|εAA|).

B monomers are initially considered to be distributed at
random on the sites not occupied by A monomers, and their
coverage of these sites is low, θ◦

B = 0.05. The B-B interaction
energy, εBB = −kBT , is set to be relatively weak so that these
monomers alone are in the one-phase state (i.e., T > Tcr =
0.567|εBB|).

The A-B interaction energy, εAB = −3kBT , is chosen to
be stronger than the A-A interaction, so that in the A-B

mixture the formation of the A-B c(2 × 2) phase is preferable
compared to the A (1 × 1) phase.

On the lattice boundary, I use the no-flux boundary con-
dition, i.e., the jumps of monomers out of the lattice are not
allowed. For A monomers, this condition is employed literally.
For B monomers, this condition is used in combination with
an additional condition taking into account that the initial
population of B monomers is not sufficient in order to fully
convert the A (1 × 1) phase into the A-B c(2 × 2) phase, and
accordingly additional B monomers are needed for this con-
version. In oxidation of metal nanocrystallites, the situation
is similar in the sense that the amount of oxygen located in
the gas phase near a nanocrystallite is not sufficient for its full
oxidation, and additional oxygen is supplied from the space
far from a nanocrystallite. To mimic such a supply, I employ
for B monomers the grand canonical distribution with the
initial coverage θ◦

B = 0.05 on the border sites during trials of
B jumps from the boundary sites to the interior of the lattice.

III. ALGORITHM OF SIMULATIONS

With the specification above, the algorithm of the MC
simulations is as follows:

(i) A site is chosen at random.
(ii) If the site chosen is located inside the lattice and

vacant, a trial ends.
(iii) If the site chosen is located inside the lattice and

occupied, a monomer located in this site tries to diffuse. In
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FIG. 4. Snapshots of the central 200 × 160 strip of the 200 × 200 lattice during conversion of the A (1 × 1) phase (with l = 100) into the
A-B c(2 × 2) phase with p◦

A = 1 and p◦
B = 0.1 at t = 104 (a), 105 (b), 106 (c), and 107 MCS (d). Initially, the A l × l array is located in the

center of the lattice. A and B monomers are shown by filled and open circles respectively.

particular, a nn site is randomly selected, and if the latter site
is vacant, the monomer jumps to it with probability pA,i or
pB,i [Eq. (3)].

(iv) If the site chosen is located on the boundary and
occupied by A, a nn site is randomly selected, and if this
site is vacant, the monomer jumps to it with probability
pA,i .

(v) If the site chosen is located on the boundary and not
occupied by A, a random number, 0 < ρ � 1, is generated,
and the site is considered to be vacant provided ρ > θ◦

B or
occupied by B provided ρ � θ◦

B. In the former case, a trial
ends. In the latter case, a nn site is randomly selected, and if
this site is vacant, the monomer jumps to it with probability
pB,i . (Taken together, these steps mimic the grand canonical
distribution of B monomers at the border sites.)

(vi) After each MC trial, the dimensionless time is incre-
mented by �t = | ln(ρ)|/L2, where 0 < ρ � 1 is a random
number.

On average, �t = 1 corresponds to L2 MC trials. In
the present simulations, as usual, �t = 1 is identified with
one MC step (MCS). To convert t into real time, it should be
divided by the rate constant which was used for normalization
of the jump rate constants. For my goals, the time units are not
important, and the time is below represented in MCS.

MC runs were performed on a lattice with L = 200 up to
t = 107 MCS. The size of the array of A monomers at t = 0
was l = 100 or 50.

IV. RESULTS OF SIMULATIONS

Except for the lattice and A-array sizes (L and l), the
model under consideration includes six parameters: εAA, εBB,
εAB, θ◦

B, p◦
A, and p◦

B. For the bulk of simulations shown in
Figs. 1–4, the values of four of them were fixed as already in-
dicated above (εAA = −2kBT , εBB = −kBT , εAB = −3kBT ,
and θ◦

B = 0.05), while the sizes were chosen to be L = 200
and l = 100. With this specification, there are two remaining
parameters, p◦

A and p◦
B, which where varied in order to illus-

trate qualitatively different patterns predicted by the model.
By definition, p◦

A and p◦
B represent the jump probabilities

in the absence of neighbors or, in other words, the maximum
jump probabilities. If these probabilities are equal, p◦

A =
p◦

B = 1, the conversion of the A (1 × 1) phase into the A-B
c(2 × 2) phase is accompanied by the formation of vacancies
and numerous tiny voids in the former phase [Fig. 1(b)].
One can notice that the interfaces between the c(2 × 2) and
(1 × 1) phases and between the c(2 × 2) and 2D-gas phases
are rather rough or, in other words, poorly ordered because the
temperature is only slightly above the critical ones. If at the
level of these probabilities the A jumps are slower, p◦

A = 0.1
and p◦

B = 1, the situation is qualitatively similar although
single vacancies dominate (Fig. 2). Quantitatively, one can
see that the thickness of the c(2 × 2) area is in this case
appreciably thinner and accordingly the interfaces between
the different phases are more ordered.
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FIG. 5. As in Fig. 3(d) but for l = 50.

If at the level of maximum jump probabilities the B jumps
are slower, e.g., p◦

A = 1 and p◦
B = 0.3, the conversion of the

A (1 × 1) phase into the A-B c(2 × 2) phase occurs with
the formation of numerous tiny voids and a few voids of
appreciable size (Fig. 3). First, the voids are located close
to the interface between the c(2 × 2) and (1 × 1) phases
[Figs. 3(a) and 3(b)]. With increasing time, the number of
large voids decreases while their size increases [Figs. 3(c)
and 3(d)] as one could expect bearing in mind the driving
force for Ostwald ripening. Taken together, the patterns pre-
sented in Fig. 3 clearly illustrate the Kirkendall effect in the
2D lattice-gas model. Compared to what is often observed in
metal nanocrystallites during oxidation, this effect is not fully
developed because there are a few voids. The patterns with
a single large void can be generated either by increasing the
duration of MC runs or decreasing the initial size of the A

(1 × 1) array (the latter is shown below in Fig. 5).
With decreasing the maximum jump probabilities of the

B jumps, the model predicts disintegration of the initial

FIG. 6. As in Fig. 4(d) but for l = 50.

FIG. 7. As in Fig. 3(d) but for εAB = −4kBT .

A (1 × 1) array into large separate A-B c(2 × 2) islands as
shown in Fig. 4 by using p◦

A = 1 and p◦
B = 0.1. The process

starts by the formation of tiny c(2 × 2) islands outside the
(1 × 1) array [Fig. 4(a)]. Then, these islands grow [Fig. 4(b)].
The growth is accompanied by coalescence [Fig. 4(b)]. In
the end, one can observe a poorly ordered closed structure
with a big void inside. The important point is that this whole
evolution of the patterns is also is also directly related to the
Kirkendall effect.

Comparing the patterns exhibited in Figs. 3(d) and 4(d),
one can wonder whether the former one can become similar
to the latter one with increasing time (at t � 107 MCS). The
fact that the former pattern [Fig. 3(d)] is qualitatively different
compared to those [Figs. 4(a)–4(c)] observed before the latter
one [Fig. 4(d)] is against this conjecture. With increasing
time, on the other hand, the system tends to be closer to
thermodynamic equilibrium which is independent of relative
rates of diffusion, and it is in favor of similar patterns. The

FIG. 8. As in Fig. 4(d) but for εAB = −4kBT .
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(a)

Support

(b)

Support

FIG. 9. Snapshots of the lower 200 × 160 part of the 200 × 200
lattice during conversion of the A (1 × 1) phase (with l = 100) into
the A-B c(2 × 2) phase at t = 107 with p◦

A = 1 and p◦
B = 0.3 (a) and

0.1 (b). Initially, the A l × l array is located so that one of its sides
contacts the lattice boundary. A and B monomers are shown by filled
and open circles respectively.

latter argument appears to be stronger. Thus, the response to
the question raised is expected to be positive.

The patterns shown in Figs. 3 and 4 were obtained for
p◦

A = 1 and p◦
B = 0.3 and 0.1. To illustrate in more detail the

evolution of patterns with decreasing p◦
B, the complementary

results for the same value of p◦
A and p◦

B = 0.25, 0.2, 0.15,
and 0.05 are presented in the Supplemental Material [25].
Taking together, these patterns show that appreciable changes
in the patterns takes place at p◦

B � 0.1. Although this apparent
critical value can easily be identified, the changes can, how-
ever, hardly be interpreted in terms of kinetic phase transitions
(Refs. [19,26]) because asymptotically (at long MC runs) the
system is close to thermodynamic equilibrium.

The snapshots exhibited in Figs. 3 and 4 are especially
interesting in the context of the Kirkendall effect, and ac-
cordingly it is instructive to show their change with variation
of some of the other parameters. Following this line, I first

present (Figs. 5 and 6) the results of simulations with the
same parameters but for a smaller array (with l = 50) of
A monomers. In another set of simulations, I kept l = 100
but increased the driving force for the formation of A-B
c(2 × 2) phase by using εAB = −4kBT instead of −3kBT

(Figs. 7 and 8). In both cases, the snapshots are basically
similar to those exhibited in Figs. 4 and 5. This means that the
features predicted are not too sensitive to variation of l or εAB.
There are, however, also some minor qualitative differences.
In particular, comparing the snapshots shown in Figs. 3(d)
and 5, one can notice that the latter one is more similar to
those observed during oxidation of metal nanocrystallites.
Comparing the snapshots shown in Figs. 3(d) and 5, one
can conclude that the latter one is less interconnected and
simultaneously is more converted to the c(2 × 2) state. With
increasing monomer-monomer interaction, the snapshots be-
come more compact (cf. Figs. 7 and 8 with Figs. 3 and 4).

In experiments, metal nanocrystallites are usually sup-
ported, and accordingly there is no oxygen supply underneath.
In the model under consideration, the latter aspect can be
mimicked by locating initially the A (l × l) array so that
one of its sides contacts one of the lattice boundaries and by
canceling item (v) in the MC algorithm for the sites located
at this boundary. The corresponding patters (Fig. 9) observed
in the end of MC runs with the same parameters as those in
Figs. 3 and 4 show that as expected the c(2 × 2) phase is not
formed near the boundary. In contrast, the formation of voids
is favorable there especially at low value of p◦

B [Fig. 9(b)].

V. CONCLUSION

The 2D MC simulations presented illustrate the specifics of
the formation of a mixed phase from a spot of a homogeneous
phase for times up to 107 MCS. MC runs with such duration
are usually considered to be long. In the model under consid-
eration, this duration was, however, not always sufficient in
order to reach the full conversion to the mixed phase. With
this reservation, the results obtained are sufficient in order
to clarify what may happen in the framework of the model
proposed.

Depending on the relative rate of the diffusion jumps of A
and B monomers, the patterns observed at the late stage of the
formation the mixed phase are shown to range from a single
array without voids to those with appreciable disintegration of
the initial array and subsequent partial backward aggregation.
In this way, the model predicts a single array with numerous
small voids, a few moderate voids, or a single large void
inside. Taken together, the patterns presented clearly illustrate
the Kirkendall effect in the 2D case. The important point is
that these patterns are more complex than one might expect.
Basically, this is the main message of this work. There are also
other less global novel results, e.g., illustration of the scale of
the fluctuations of the array shape and the type of the void
distributions.

Although this study was motivated by experiments show-
ing the formation of hollow nanoparticles via oxidation of
metal nanocrystallites, the results obtained are obviously of
interest also in other contexts. From the perspective of sta-
tistical physics, this work illustrates unconventional scenar-
ios of Ostwald ripening. MC simulations of 2D Ostwald
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ripening have a long history beginning in the 1980s (see, e.g.,
Refs. [27–30]). The bulk of such simulations are focused,
however, on one-component systems with a random initial
distribution (concerning mixed systems, see Ref. [30]).

In the context of surface science, the simulations pre-
sented show the above-described nontrivial effects (formation

of voids, appreciable disintegration, and partial backward
aggregation) which can take place during diffusion of ad-
sorbates with attractive lateral interactions (concerning 2D
diffusion, see Refs. [31–34] and references therein). With the
current development of surface science such effects can in
principle be observed experimentally.
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