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Random deposition with a power-law noise model: Multiaffine analysis
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We study the random deposition model with power-law distributed noise and rare-event dominated fluctuation.
In this model instead of particles with unit sizes, rods with variable lengths are deposited onto the substrate. The
length of each rod is chosen from a power-law distribution P (l) ∼ l−(μ+1), and the site at which each rod is
deposited is chosen randomly. The results show that for μ < μc = 3 the log-log diagram of roughness, W (t ),
versus deposition time, t , increases as a step function, where the roughness in each interval acts as Wloc(t ) ≈
tβloc . The local growth exponent, βloc, is zero for μ = 1. By increasing the μ exponent, the value of βloc is
increased. It tends to the growth exponent of the random distribution model with Gaussian noise, β = 1/2, at
μc = 3. The fractal analysis of the height fluctuations for this model was performed by multifractal detrended
fluctuation analysis algorithm. The results show multiaffinity behavior for the height fluctuations at μ < μc and
the multiaffinity strength is greater for smaller values of the μ exponent.
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I. INTRODUCTION

Recently there has been increasing attention to the study of
morphology and dynamics of growing rough surfaces in the
field of nonequilibrium statistical physics [1–3]. This interest
is due to the challenge for the experimental physicist to shape
rough surfaces with desired interfaces and for the theoretical
physicist to model the geometrical and dynamical properties
of interfaces during growth phenomena [4–6]. Exploring and
modeling growth phenomena have considerable importance in
the control of interfaces in industries and most research areas
such as crystal growth [7,8], fluid flows [9], fire fronts [10],
and biological and bacterial growth [11]. It has been observed
that the mentioned interfaces and complex structures show
some common features such as self-similarity or self-affinity
that makes their study more easier [1–4].

To analyze the nonequilibrium growth phenomena one
needs to combine insights from theoretical analysis and com-
putational simulation to obtain favorite results. The fluctu-
ations obtained during growth process are often character-
ized by statistical discrete models in which the complex
interactions of atoms or molecules are replaced by simple
deposition and relaxation rules implemented in kinetic Monte
Carlo algorithms [12,13]. There are some statistical models
that characterize many properties by ignoring the microscopic
details of the rough surfaces during growth processes. Ran-
dom deposition (RD) [14], random deposition with surface
relaxation [15], ballistic deposition [16], Eden models [17],
and solid-on-solid model [18,19] are examples of these statis-
tical models that are useful for describing some properties of
nonequilibrium growth phenomena.
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The random deposition model is the simplest surface
growth model, which has been discussed in various versions
such as a random deposition-like model for two kinds of inter-
acting particles [20], on-top site random-deposition model for
epitaxial growth on a cubic substrate [21], random deposition
for particles with different sizes [22], and multifractal scaling
analysis of random deposition with varied sizes [23]. The
differential equation that describes the variation of the height
h(x, t ) with time t at any position x in the RD model is given
by

∂h(x, t )

∂t
= F + η(x, t ), (1)

where F is the average number of particles arriving at site x

and η(x, t ) is a Gaussian distributed noise which denotes the
random fluctuations in the deposition process. The value of
η(x, t ) is chosen as an uncorrelated random number with zero
average

〈η(x, t )〉 = 0 (2)

without any correlation in space and time as

〈η(x, t )η(x ′, t ′)〉 = 2Dδ(x − x ′)(t − t ′). (3)

In this model the lateral correlations between depositing par-
ticles are completely inconsiderable.

In the most studies, it has been discussed how Gaussian and
correlated noises can affect the roughness and dynamic expo-
nents in discrete growth models [1,16–19]. On the other hand,
there are events in which the amplitude of the noise changes
as a power-law distribution. For example, such a power-law
distributed noise has been observed in investigation of fluid
flow in porous environments as well as the quenched noises
resulting in evidence of a power-law distribution [1,24]. For

2470-0045/2019/99(1)/012130(7) 012130-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.012130&domain=pdf&date_stamp=2019-01-17
https://doi.org/10.1103/PhysRevE.99.012130


S. HOSSEINABADI AND A. A. MASOUDI PHYSICAL REVIEW E 99, 012130 (2019)

such a noise, the probability of an event of size η occurring is

P (η) ≡
{

μη−(μ+1) [η > 1]

0 [η < 1]
, (4)

where μ is an exponent which characterizes the decay of the
noise amplitude. In the case of power-law noises, the events
occur independently and are uncorrelated in space and time.
In other words, very small and large events (rare events) in
each site appear independently from the neighbors. In the
case of Gaussian noises, the probability of the appearance
of a rare event decreases exponentially with the size of that
event. But for a power-law distributed noise, a decrease of
this probability is much more slower than the exponential and
the Gaussian ones. Therefore, the probability of evidence of
a noise with very large amplitude is non-negligible. Further-
more, by decreasing the exponent μ the uniformity of the
power-law noise is decreased. As μ increases the power-law
noise approaches the Gaussian one, and the probability of
appearing a large event becomes very small.

Every random process in nature generates fractal structures
in which any irregularity could result in multifractal behav-
ior [25–28]. A monofractal structure is uniform and free of
irregularities and could be parameterized by a single scaling
exponent in all scales, namely, the Hurst exponent H . The
value of the Hurst exponent varies in the range of 0 < H <

1.0. The value of H = 0.5 indicates a noncorrelated structure,
while the exponents of H < 0.5 and H > 0.5 demonstrate
anticorrelated and correlated systems, respectively. A rough
surface with a greater value of the Hurst exponent seems
locally smoother than the surface with a smaller one [25,26].
The concept of multiaffinity has provided deep insight
into the complex nature of numerous important phenom-
ena from the surface and interface sciences to cosmology
[29–33]. The appearance of infinite different numbers of scal-
ing exponents h(q ), where q is a real number, for a multifrac-
tal structure results in a much more appropriate description
for it than the fractal dimension alone. In the multifractal
structures, various regions of the system have different scaling
features, and changing one of the h(q ) values could yield
different properties of the system. It makes the theoretical and
numerical investigation of multifractal structures more com-
plicated than those of monofractal ones. Amitrano et al. [34]
calculated the growth probability distribution in the kinetic
aggregation process using the Green’s function technique
and investigated the multifractality behavior. Furthermore,
the multifractal properties of diffusion-limited aggregation
surfaces [35,36], the solid-on solid model [37], ballistic depo-
sition with power-law noise [38], and the random-deposition
model [23] have been investigated through multifractal scal-
ing analysis.

The studies of the surfaces and the growth models obey-
ing the Edward-Wilkinson and Kardar-Parizi-Zhang (KPZ)
equations with Gaussian noise have presented a monofractal
structure and a constant Hurst exponent [1]. Furthermore,
Barabasi et al. [38] presented numerical evidence of mul-
tiaffine scaling for the KPZ model with power-law noise.
Their calculations were based on the normalized qth-order
correlation function of the height differences. On the other
hand, Buldyrev et al. [39] investigated the ballistic deposition
model with power-law noise and calculated the roughness

and growth exponents via the Family-Vicsek scaling relation.
Furthermore, they obtained the critical value μc = 5 for the
one-dimensional version of this model.

In this study, we have applied multifractal detrending
fluctuation analysis (MF-DFA) to the growing surfaces of
random deposition model with power-law distributed noise.
We have studied in particular how the rare events appearance
and the exponent of power noise decay, μ, could affect the
growth exponent β and strength of multiaffinity. The paper is
organized as follows. In Sec. II the method of generation of
rough surfaces is presented, and Sec. III gives the details of
the multifractal scaling analysis. In Sec. IV we present and
discuss the results. Conclusions are given in Sec. V.

II. MODEL

In this study, the random deposition with power-law noise
(RD-PLN) model is investigated. In the simple form of this
model, particles fall down vertically onto a smooth surface.
A site of the surface with linear size of L is randomly
chosen, and then a particle falls in a straight-line trajectory
and deposits onto the top of the column under it. Therefore,
the height of the selected site, h(x), is increased by one. There
is no correlation between two neighboring sites in this model.
Here we generate in 1 + 1 dimensions the height fluctuation
of h(x, t ) on a substrate with size L in different growth times
t for the RD model with power-law chosen noise η(x, t ).
Starting from a flat interface h(x, t ) = 0 for all x at t = 0, the
height growth proceeds up to time t , by the following rules:

(1) A position x is chosen randomly in the range of [1, L]
in which a rod will be deposited.

(2) The length of the rod is chosen as

l = int(r− 1
μ ), (5)

where r is a random variable chosen uniformly in the range
of (0,1) and the rod length l will be the largest integer number
less than or equal to r

− 1
μ [39].

(3) Finally the rod with the given length is deposited onto
the chosen site, and the height is increases as

h(x, t + 1) = h(x, t ) + l. (6)

Each time step in our Monte Carlo simulation was consid-
ered equal to L so that exactly L rods are deposited in each
time step. We carried out simulations for different values of
parameters L, t , and μ.

The interface width or the rms roughness of the height
fluctuations in different time steps of t was determined by the
following relation:

W (L, t ) ≡
〈[

1

L

∑
x

[h(x, t ) − h(t )]2

]1/2〉
, (7)

where h(t ) is the spatial average of height at time t . In short
times, the interface width increases as a power of time:

W (L, t ) ≈ tβ . (8)

Here the exponent β is called the growth exponent and
characterizes the time-dependent dynamical behavior of the
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FIG. 1. The height profile obtained for different exponents of μ

at the time step t = 3000. (a) μ = 1, (b) μ = 2, and (c) μ = 3.
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FIG. 2. Log-log diagram of roughness, W (t ), versus deposition
time, t . For μ < μc = 3, W (t ) is increased as a step function where
in each interval, Wloc(t ) ≈ tβloc . The exponent βloc = 0, for μ = 1.
Increasing the μ exponent leads to enhancement of βloc so that for
μ � μc = 3, βloc → β = 1/2.

growth process. The exact value of β = 1
2 has been obtained

analytically and numerically for the random deposition model
with Gaussian noise distribution. Now in this study it has been
investigated how the rare events due to the power-law dis-
tributed noise could affect the roughness and growth exponent
of the model.

III. MULTIFRACTALITY OF SYNTHETIC
ROUGH SURFACE

There are various methods to distinguish the multiaffinity
in complex structures such as spectral analysis [40], fluc-
tuation analysis [41], detrended fluctuation analysis (DFA)
[42,43], and wavelet transform module maxima [44,45]. How-
ever, in the case of noisy data, it has been shown that the
MF-DFA algorithm despite a bit more effort in programming
gives very reliable results [42]. The MF-DFA method has
became a widely used technique for the determination of
(multi-) fractal scaling properties in noisy, nonstationary time
series [46,47]. It has successfully been applied to diverse
fields such as DNA sequences [48], heart rate dynamics [49],
cloud structure [50], solid state physics [51], sunspot time
series [52], and experimental data from rough surfaces [53].

In this study, we rely on MF-DFA to characterize the
height fluctuations generated during the RD growth model
with power-law noise. In this method, we denote the height
of the fluctuations by H(i). The MF-DFA in one dimension
has the following steps [42]:

(1) Consider an array H(i) where i = 1, 2, . . . , M . Divide
the H(i) into Ms nonoverlapping segments of equal sizes s,
where Ms = [M

s
]. Each segment can be denoted by Hν such
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FIG. 3. The qth-order fluctuation function, Fq (s ), with respect to segment size, s, for different values of q and the exponents of μ = 1
(a) and μ = 3 (b). We shifted the y axis vertically.

that Hν (i) = H(n + i) for 1 � i � s, where n = (ν − 1)s
and ν = 1, . . . ,Ms .

(2) For each nonoverlapping segment, the cumulative sum
is calculated by

Yν (i) =
i∑

k=1

Hν (k), (9)

where 1 � i � s.
(3) Calculate the local trend for each segment by a least-

square fit of the profile:

Bν (i) = ai + b. (10)

Then determine the variance for each segment as follows:

Dν (i) = Yν (i) − Bν (i), (11)

F 2
ν (s) = 1

s

s∑
i=1

D2
ν (i). (12)

(4) Average over all segments to obtain the qth-order
fluctuation function

Fq (s) =
{

1

2Ms

2Ms∑
ν=1

[
F 2

ν (s)
]q/2

}1/q

, (13)

where Fq (s) depends on scale s for different values of q. It is
easy to see that Fq (s) increases with increasing s. Notice that
Fq (s) depends on the order q. In principle, q can take any real
value except zero. For q = 0, Eq. (13) becomes

F0(s) = exp

[
1

4Ms

2Ms∑
ν=1

ln F 2
ν (s)

]
. (14)

For q = 2 the standard DFA in one dimension will be re-
trieved.

(5) Finally, determine the scaling behavior of the fluctua-
tion functions by analyzing log-log plots of Fq (s) versus s for

each value of q:

Fq (s) ∼ sh(q ) (15)

It has been shown that for FBM nonstationary signals, the
Hurst exponent is given by

H ≡ h(q = 2) − 1. (16)

Using standard multifractal formalism [42] we have

τ (q ) = qh(q ) − 1. (17)

The singularity spectrum, f (α), of a multifractal rough
surface is given by the Legendre transformation of τ (q )
as [54]

f (α) = qα − τ (q ), (18)

where α = ∂τ (q )
∂q

. It is well known that for a multifractal sur-
face, various parts of the feature are characterized by different
values of α causing a set of Hölder exponents instead of a
single α. The interval of a Hölder spectrum, α ∈ [αmin, αmax],
can be determined by [54]

αmin = lim
q→+∞

∂τ (q )

∂q
, (19)

αmax = lim
q→−∞

∂τ (q )

∂q
. (20)

IV. RESULTS AND DISCUSSION

In this study, the RD-PLN model, as discussed in Sec. II,
was simulated, and the height fluctuations obtained for dif-
ferent exponents μ have been demonstrated in Fig. 1. As
this figure shows the rare events are dominant at smaller
values of μ exponents. At the value of μ = μc = 3, the height
fluctuation is the same as the height in the simple RD model
with a Gaussian noise distribution. The interface width in
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FIG. 4. The h(q ) and τ (q ) spectra calculated from the scaling relation (15) and Eq. (17) for different values of μ exponents.

different time steps was determined via the relation (7). The
log-log diagram of W (t ) versus t has been illustrated in Fig. 2.
Because of existence of big jumps in the height fluctuations
for small μ, the interface width does not increase continu-
ously as seen in large values of μ. This figure represents
that for μ < μc = 3 the logarithmic diagram of roughness
versus time increases as a step function where in each interval
Wloc(t ) ≈ tβloc . The local growth exponent is βloc for μ = 1.
By increasing the μ exponent, the value of βloc is increased.
It tends to the the growth exponent of the simple RD model
with Gaussian noise, β = 1/2, at μc = 3. It is notable that we
simulated our model for different system sizes, L. Figure 2
shows the results for L = 1000. The results demonstrated
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FIG. 5. The multiaffinity strength determined via the relation
(18) for the height fluctuations with different μ exponents.

that the values of βloc and β = 1/2 were independent of the
system size. The independence of β = 1/2 from the system
size for a simple RD model has been discussed in Ref. [1].
The fractal analysis of the height fluctuations in this model
was performed by the MF-DFA algorithm as discussed in
Sec. III. Figure 3 represents the qth-order fluctuation function,
Fq (s), with respect to segment size, s, for different values of
q and the exponents of μ = 1 and μ = 3. One can see that
for μ = 1, the slopes of the curves for different q are varied,
while the same diagram for μ = 3 represents the same slopes
for various q. Therefore, the height fluctuation generated via
the exponent μ = 1 in the RD-PLN model, has a multiaffine
behavior. The h(q ) spectrum calculated from the scaling
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FIG. 6. The h(q ) spectrum for the shuffled and surrogate data of
the height fluctuations with μ = 1.
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relation (15) has been illustrated in Fig. 4 for different values
of the μ exponents. As this figure shows, by enhancement of
μ exponent, the nonlinearity of the curves is decreased and
tends to a straight line with the same h(q ) = H = 1/2 in
the case of μ = μc = 3. The multiaffinity strength was de-
termined via the relation (18) for the height fluctuations with
different μ exponents. Figure 5 shows that the multiaffinity
strength is greater for smaller values of μ exponent. Regarding
the source of multiaffinity, it is notable that the quenched
noises, power-law distribution noises, and surface diffusion
in some simple models could result in multiaffine interfaces
[1]. Furthermore, in general two kinds of multiaffinity could
be distinguished as [33,55] the broadness of the probability
density function of the height fluctuations and different long-
range correlations for small and large fluctuations. In this
study, the power-law noise and the deviation of the height
fluctuations distribution from the normal one could be the
reason of multiaffinity behavior. To show this claim, the h(q )
spectrum for the shuffled and surrogate data of the height
fluctuations with μ = 1 was considered [33]. The shuffling
of the data does not change the power-law distribution, and
the h(q ) spectrum remains a nonlinear function of the q value
in Fig. 6. As this figure shows, the surrogate height fluctua-
tions with a Gaussian distribution have a nondependent h(q )
spectrum.

V. CONCLUSIONS

We studied the random deposition model with power-law
distributed noise. In this model the rods with variable lengths
are deposited onto the substrate instead of particles with unit
sizes. The length of each rod is chosen from a power-law
distribution, P (l) ∼ l−(μ+1), and the site at which the rods
are deposited is chosen randomly. The results show that for
μ < μc = 3 the log-log diagram of roughness, W (t ), ver-
sus deposition time, t , increased as a step function, where
the roughness in each interval acts as Wloc(t ) ≈ tβloc . for
μ = 1 the local growth exponent, βloc, is equal to 0. By
increasing the μ exponent, the value of βloc is increased. It
tends to the growth exponent of the RD model with Gaussian
noise, β = 1/2, at μc = 3. The fractal analysis of the height
fluctuations in this model was performed by multifractal de-
trended fluctuation analysis (MF-DFA) algorithm. The results
show multiaffinity behavior for the height fluctuations with
μ < μc and the multiaffinity strength is greater for smaller
values of the μ exponent.
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