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Noise-induced rectification in out-of-equilibrium structures
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We consider the motion of overdamped particles over random potentials subjected to a Gaussian white noise
and a time-dependent periodic external forcing. The random potential is modeled as the potential resulting
from the interaction of a point particle with a random polymer. The random polymer is made up, by means
of some stochastic process, from a finite set of possible monomer types. The process is assumed to reach a
nonequilibrium stationary state, which means that every realization of a random polymer can be considered as
an out-of-equilibrium structure. We show that the net flux of particles over this random medium is nonvanishing
when the potential profile on every monomer is symmetric. We prove that this ratchetlike phenomenon is a
consequence of the irreversibility of the stochastic process generating the polymer. On the contrary, when the
process generating the polymer is at equilibrium (thus fulfilling the detailed balance condition) the system is
unable to rectify the motion. We calculate the net flux of the particles in the adiabatic limit for a simple model
and we test our theoretical predictions by means of Langevin dynamics simulations. We also show that, out of the
adiabatic limit, the system also exhibits current reversals as well as nonmonotonic dependence of the diffusion
coefficient as a function of forcing amplitude.
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I. INTRODUCTION

Several structures in nature are known to arise un-
der nonequilibrium conditions. Formation of glasses is one
archetypical example of this situation, since a glass can be
viewed as a liquid that has lost its ability to flow [1]. An-
other paradigm of out-of-equilibrium structures is the DNA
molecule. Although many of the statistical features of the
genome are not well understood, it is commonly accepted that
the DNA is a structure having some characteristics of systems
out of equilibrium [2,3]. For example, it has been shown that
warm-blooded vertebrates have a mosaic organization with
respect to the variation of the GC content along the genome
[4]. Another characteristic is, for instance, that the DNA has
a strong deterministic component in its structure, which is
a consequence of the fact that the topological entropy is
practically zero for blocks longer than 12 base pairs [3]. More-
over, in a recent work [2] Provata et al. have tackled directly
the problem of determining if real DNA has some statistical
characteristics of nonequilibrium structures. Particularly they
found that the detailed balance does not hold for human
DNA, suggesting that the genome is spatially asymmetric and
irreversible.

Here we are interested in the dynamics of a Brownian
particle when it moves on an out-of-equilibrium structure.
This study is motivated by the fact that there are some proteins
that slide along DNA, a process that is of importance in many
biological functions [5–7]. If DNA can be considered as a
nonequilibrium structure, a natural question that arises from
this observation is if this property affects in some way the
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transport properties of particles moving on DNA, such as the
particle current or the diffusion coefficient. In this work we
study the influence of nonequilibrium features of a medium on
the transport properties of Brownian particles. To achieve this
goal we model the substrate as a random polymer produced by
a simple stationary Markov process out of equilibrium. This
model gives rise to polymers having a spatial irreversibility
due to the fact that the detailed balance does not hold. Then
we use the particle-polymer model that has been studied in
Refs. [8–12] to study the dynamics of Brownian particles
on random potentials. Particularly we show that, under the
influence of an unbiased time-dependent periodic forcing, the
spatial irreversibility of the medium induces a rectification
phenomenon similar to the one occurring in the so-called
rocked thermal ratchets. The rectification phenomenon we re-
port is induced by the interplay between the thermal noise, the
external forcing, and the spatial irreversibility of the substrate.
It is worth emphasizing that the rectification phenomenon that
we report here does not arise from an asymmetric potential
profile (a necessary characteristic for ratchet systems to op-
erate), making this rectification mechanism different from the
one of ratchet systems. Besides the rectification phenomenon,
we observe in our model other transport properties, out of the
adiabatic limit, such as current reversals and nonmonotonic
dependence of the diffusion coefficient on the temperature.

This paper is organized as follows. In Sec. II we state
the equation of motion of the overdamped Brownian particle
and specify the model for the out-of-equilibrium substrate.
In Sec. III we explore the behavior of the system at the
deterministic limit and we show that no mechanical rectifi-
cation occurs in the deterministic limit. In Sec. IV we study
the particle current of the model in the adiabatic limit, i.e.,
in the case in which the period of the external forcing is
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large compared to any typical time of the system. We give
an analytical formula for the particle current based on recent
exact results for disordered systems. In Sec. V we perform
numerical simulations for the system in order to explore the
transport characteristics beyond the adiabatic limit. Finally in
Sec. VI we give a summary of our results and the conclusions
of our work.

II. MODEL

Let us consider an ensemble of Brownian particles moving
on a given substrate. We assume that every Brownian particle
only interacts with the substrate and that this interaction
results in a potential V (x). Thus, the equation of motion that
rules the dynamics of this particle is the following stochastic
differential equation:

γ dXt = [f (Xt ) + F (t )]dt + �0dWt . (1)

In the above equation, Xt represents the particle position at
time t and f (x) = −V ′(x) corresponds to the force resulting
from the interaction of the particle with the substrate. Addi-
tionally, Wt is a standard Wiener process modeling the thermal
fluctuation and F (t ) is a time-dependent periodic external
force. The constants �2

0, and γ are the noise intensity and the
friction coefficient, respectively. According to the fluctuation-
dissipation theorem �2

0 = 2γβ−1, where β, as usual, stands for
the inverse of the absolute temperature θ times the Boltzmann
constant, β = 1/kBθ ,.

Now let us describe the model for the substrate, which
was introduced in Refs. [8,9]. First we assume that the (one-
dimensional) substrate is divided into cells of size L. Every
cell can be thought of as a monomer, which interacts with
the particle via some interacting potential. We assume that the
monomers comprising the substrate (called hereafter polymer)
can be of different types, and that all the possible types of
monomers is finite, just as it occurs in a DNA molecule. Let A
be the set of possible monomer types and let AZ be the set of
all the possible polymers made up from monomers in A. Then,
a (random) polymer is represented by a symbolic sequence
a ∈ AZ, which is of the form a = (. . . , a−1, a0, a1, a2, . . . )
where aj is an element in A for all j ∈ Z.

For the sake of simplicity, we assume that the particle
interacts only with the closest monomer, i.e., the monomer
at which the particle is located. Thus, the potential profile
only depends on the monomer type on which the particle
is located. See Fig. 1 for a schematic representation of the
model. Let us call ψ (y, a) the interaction potential induced
when the particle is located at the position y ∈ [0, L) along
the monomer of type a ∈ A. Thus, if we write x as y + nL

for some n ∈ Z, the potential V (x) that the particle “feels”,
can be explicitly written as

V (x) = ψ (y, an), (2)

where n labels the unit cell at which the particle is lo-
cated and y represents the relative position of the parti-
cle on the monomer. The symbol an stands for type of
the nth monomer on the chain. Analogously, we will de-
note by φ(y, an) the force field induced by ψ (y, an), i.e.,
f (x) := −V ′(x) = φ(y, an), with x = y + nL, or equiva-

V(x)

B A C C B AC

FIG. 1. Schematic representation of the model. The substrate,
on which the particle moves, consists of a sequence of tracks of
fixed length. On every track (called monomer) we define a potential
profile, which is interpreted as the potential interaction of the particle
with the monomer. The letters A, B, and C are displayed to indicate
the monomer type on every track. The monomer type defines a
unique potential profile and the disorder in the potential comes
from the disorder of the monomer types along the substrate. The
order of the monomers gives rise to a disordered medium that can
be an out-of-equilibrium structure if the monomers are assembled
according to an out of equilibrium process.

lently, φ(y, an) := −ψ ′(y, an), where the “prime” stands for
the derivative with respect to the variable y.

Now, let us state the model for the disordered sub-
strate. In order to meet the condition that the polymer has
an out-of-equilibrium structure we assume that the poly-
mer is randomly produced by a Markov chain attaining a
nonequilibrium stationary state (NESS). Thus a polymer a =
(. . . , a−1, a0, a1, a2, . . . ), with aj ∈ A, is interpreted as a
realization of a sequence of random variables {Mj : j ∈
Z} with joint probabilities P(M0 = a0,M1 = a1, . . . Mn =
an) =: P(a0, a1, . . . an), defined through a Markov matrix Q
and its corresponding invariant probability row vector π as
follows:

P(a0, a1, . . . an) := π (a0)Q(a0, a1) . . . Q(an−1, an), (3)

for all n ∈ Z. Notice that within the language of Markov
chains, the set of possible monomer types A is called the
state space, and the spatial variable n, indexing the monomers
along the polymer, corresponds to the time variable of the
stochastic process. The assumption that the Markov chain at-
tains a NESS implies that, if we draw a random polymer, then
a finite sequence and its reversal will not occur, in general,
with the same probability along the polymer. This property
is what we call the spatial irreversibility of the polymer.
This property can be explicitly written as follows. Given a
finite sequence a = a1a2 . . . an, with aj ∈ A, we have that
the probability that the reversed trajectory, ā = anan−1 . . . a1,
occurs in the process is not the same as the probability that a
occurs, i.e., we have in general that

P(a1, a2, . . . , an) �= P(an, an−1, . . . , a1). (4)

The entropy production ep for the process {Mj : j ∈ Z}
actually measures, in some way, the degree of time irre-
versibility the process. In our context, the entropy production
is a measure of the spatial irreversibility of a random polymer.
This quantity can be defined as [13,14],

ep := lim
n→∞ ln

(
P(a1, a2, . . . , an)

P(an, an−1, . . . , a1)

)
. (5)
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Particularly, it is known that for Markov chains the entropy
production can be obtained directly by means of the cor-
responding Markov matrix [15]. If the Markov matrix is
represented by Q and its corresponding stationary probability
vector is denoted by π , then,

ep = 1

2

∑
a,b∈A

(π (a)Q(a, b) − π (b)Q(b, a))

× ln

(
π (a)Q(a, b)

π (b)Q(b, a)

)
. (6)

Next we chose a specific model of Markov chain having a
nonequilibrium stationary state, in which the entropy pro-
duction can be tuned by varying a single parameter. For this
purpose we assume that the state space is A := {0, 1, 2}, i.e.,
there are only three monomer types labeled by the symbols
0, 1, and 2. The Markov chain is defined through the one-
parameter Markov matrix Q, given by,

Q =

⎛
⎜⎝

0 p 1 − p

1 − p 0 p

p 1 − p 0

⎞
⎟⎠. (7)

It is easy to check that the matrix Q is doubly stochastic and
has a unique invariant probability vector π = πQ, given by
π = ( 1

3 , 1
3 , 1

3 ). This model attains a stationary state, which
is of equilibrium for the parameter value p = 1/2. For p �=
1/2 the stationary state is of nonequilibrium and its entropy
production is given by [15]

ep = (2p − 1) ln

(
p

1 − p

)
. (8)

It is important to note that, independently of the parameter
value p, the probability vector π is always the same. In other
words, monomer types in a typical realization of the random
polymer are equally distributed independently of the value of
the entropy production. In the following we will study the
dynamics of an ensemble of Brownian particles moving on
the above-described out-of-equilibrium structures.

III. DETERMINISTIC LIMIT

In this section we consider the dynamics of our model in
absence of noise. In this case, the dynamics of a particle on a
random potential is governed by the equation

γ
dx

dt
= f (x) + F (t ). (9)

Here f (x) is minus the gradient of the potential V (x) :=
ψ (an, y) (where x = nL + y) defined above that de-
pends on a realization of the random polymer a =
(. . . , a−1, a0, a1, a2, . . . ), with aj ∈ {0, 1, 2}. The function
F (t ) is a time-periodic external force with period T . Through-
out this work we will use a simple form for F (t ),

F (t ) =
{

F0 if 0 � t mod [T ] < T/2

−F0 if T/2 � t mod [T ] < T.
(10)

This choice for F (t ) allows us to analyze the trajectories
described by Eq. (9) by means of the technique developed

in Refs. [16,17]. Actually, our goal is to prove that, inde-
pendently of the initial condition and independently of the
realization of the polymer (random potential), the solution to
Eq. (9), x(t ), does not diverge in time. The main hypothesis
we use for the potential profile ψ (y, an) is that it is symmetric
in the sense ratchet systems [18]. This condition establishes
that the potential ψ (y; a) is symmetric on [0, L] ⊂ R if the
force field φ(y, an) := −ψ ′(y, a) satisfy that,

φ(y, an) = −φ(L − y, an). (11)

As we said above, we use the technique developed in
Refs. [16,17] to prove the absence of rectification phe-
nomenon in this system. However, such a technique does not
apply directly to our case because the potential we use is not
periodic. Actually in Ref. [16] it was proved that the dynamics
of an overdamped particle in a periodic potential and under
the influence of a time-dependent periodic forcing, can be
described by sampling periodically the position. The result is
a discrete-time trajectory that is ruled by a circle map (specifi-
cally, a lift of a circle homeomorphism). In our case, although
we can still perform a sampling at regular time intervals of
the continuous trajectory to generate a discrete one, we cannot
obtain a single mapping to reproduce the particle motion. This
is of course, a consequence of the disorder of the potential.

Let x(t ) be a solution of Eq. (9) with initial condition
x(0) = x0. We define the sequence {xn ∈ R : n ∈ N} such
that xn := x(nT/2). We can see that xn corresponds to the
particle position at the beginning of every half of the period
of F (t ). Next we define a sequence {yn ∈ [0, 1) : n ∈ N}
of reduced positions as follows, yn = xn mod [L]. Recall
that L is the length of the unit cell, i.e., the length of every
monomer. We can say alternatively that the position xn of
the particle can be written as xn = yn + mnL where yn (the
reduced position) corresponds to the particle position relative
to the monomer at which it is located. The integer mn is the
monomer where the particle is found at t = nT/2. With these
definitions we can say that the particle motion can split in two
parts, (i) a sequence of integers labeling the monomers that
the particle has visited {mn ∈ Z : n ∈ N}, and (ii) a sequence
of numbers indicating the relative particle position on the
visited monomer {yn ∈ [0, 1) : n ∈ N}. The former can be
thought of as a coarse-grained description of the trajectory of
x(t ), giving information on the monomers that the particle has
visited, while the latter is interpreted as the relative position
of the particle with respect to the monomer (or unit cell).
The proof of the absence of the rectification phenomenon
consist of two parts. First, it is necessary to show that there
exists an integer n∗ ∈ N such that mn∗ = mn∗+2. This means
that if a t = n∗T/2 the particle is located at the mn∗ th track
(at the mn∗ th monomer) then at t = n∗T/2 + T (after one
period) the particle will return to the same unit cell. Next,
we can prove that, once the particle departs and returns to
the same monomer after one period, the particle remains in
this dynamics, i.e., the particle gets trapped by a kind of
coarse-grained periodic orbit. The last statements actually
implies that the mapping R ruling the behavior of the discrete
trajectory {xn : n ∈ N} has at least one fixed point, according
to a theorem about nondecreasing maps on an interval [19].
The existence of such a fixed point for the map R actually
means that the full trajectory of the particle x(t ), eventually
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FIG. 2. Realizations of the particle position x(t ) in the determin-
istic limit for several values of the dimensionless parameters F̃ and
T̃ (see Sec. IV for the definition of dimensionless parameters). The
parameter p for the Markov chain was chosen as p = 0.99, which
is very close to the totally irreversible case p = 1. We should notice
that, despite the high statistical asymmetry in the random potential,
we have no particle current arising in this case. Here high statistical
asymmetry means that the random potentials were produced by a
process with an entropy production near its maximal value.

reaches a periodic orbit. All the above-mentioned proofs are
given in Supplemental Material (SM) [20].

In Fig. 2 we display some trajectories of the system at zero
noise strength. We observe that these trajectories always reach
a periodic orbit, showing that the rectification phenomenon
does not occur. This is in agreement with the above claim,
which states that a particle eventually reaches a periodic
orbit independently of the disorder and the realization of the
disordered potential.

Thus we have proven that dynamics of the model in ab-
sence of noise exhibits a zero particle current. This means
that the statistical asymmetry of the substrate is not a suf-
ficient condition for the system to exhibit the rectification
phenomenon at the deterministic limit, as it occurs in ratchet
systems [16–18,21–23]. Indeed, the fact that the system is
unable to rectify motion of particles in absence of noise is
due to the symmetry of the potential profile on every unit cell,
which is the main hypothesis done to achieve the proofs.

IV. PARTICLE CURRENT IN THE ADIABATIC LIMIT

As mentioned in Sec. II, we are considering the dynamics
of an overdamped particle on a disordered potential, V (x) =
ψ (y, an), subjected to a time-dependent periodic driving force
F (t ), which is ruled by the stochastic differential equation,

γ dXt = [f (Xt ) + F (t )]dt + �0dWt . (12)

Here we assume that the potential profile ψ (y, an) at the nth
unit cell is a piecewise linear function of the form

ψ (y, an) =
{
α(an)y if 0 � y < L/2
α(an)(L − y) if L/2 � y < L,

(13)

where α : A → R is a function giving the slopes of the
potential profile depending of the monomer type at which the
particle is located. This form of the potential profile complies
with the symmetry criterion given in Sec. III and will be

useful to obtain a explicit expression for the particle current
in the adiabatic limit. As stated above, we will assume that
the time-dependent periodic forcing is a square-wave function
given by,

F (t ) =
{
F0 if 0 � t mod [T ] < T/2

−F0 if T/2 � t mod [T ] < T.
(14)

We should notice that F (t ) is a periodic function with period
T . During every half of the period, the external driving force
remains constant and the system is described by means of a
time-independent stochastic differential equation. During the
first half of the period, the external forcing is F0 and the
dynamic equation is,

γ dXt = [f (Xt ) + F0]dt + �0dWt . (15)

During the second half of the period, the external driving force
turns into −F0 and the system is described by the equation

γ dXt = [f (Xt ) − F0]dt + �0dWt . (16)

It is clear then, that the set of equations given by expressions
(15) and (16) are completely equivalent to Eq. (12).

We are interesting in studying the behavior of particle
current Jeff and the effective diffusion coefficient Deff for this
system. These quantities are defined as

Jeff := lim
t→∞

〈〈Xt 〉〉
t

, (17)

Deff := lim
t→∞

〈〈
X2

t

〉〉 − 〈〈Xt 〉〉
2t

, (18)

where the symbol 〈〈·〉〉 denotes a double average, the first one
taken with respect to noise (maintaining fixed the disorder of
the polymer), and the second one taken over an ensemble of
disordered polymers [9].

It is easy to see that Jeff can be written as,

Jeff = lim
n→∞

〈〈
XnT/2

〉〉
nT

,

= lim
n→∞

1

nT

n∑
j=1

(
〈〈
XjT/2

〉〉 − 〈〈
X(j−1)T/2

〉〉
), (19)

or, equivalently,

Jeff = 1

2

(
lim

n→∞
1

n

n∑
j odd

〈〈
XjT/2

〉〉 − 〈〈
X(j−1)T/2

〉〉
T/2

+ lim
n→∞

1

n

n∑
j even

〈〈
XjT/2

〉〉 − 〈〈
X(j−1)T/2

〉〉
T/2

)
. (20)

Next, if we assume that the period T is large with respect to
any relaxation time of the system, assuming constant driving
force on every half of the period, it is clear that the particle
current given in Eq. (20) can be written as

Jeff = 1
2 [Js(+F0) + Js(−F0)], (21)

where Js(F0) is defined as the particle current in the stationary
state of the system subjected to a constant driving force F0.
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The stochastic differential equation by means of which we can
obtain Js is written as follows:

γ dXt = [f (Xt ) + F0]dt + �0dWt . (22)

The formula (21) for the particle current for the time-
dependent system is commonly known as the adiabatic ap-
proximation.

In Ref. [9] the author has obtained the exact expression
for the particle current (and the diffusion coefficient) of over-
damped particles moving on disordered potentials subjected
to a constant driving force governed by Eq. (22). Using such
a formula we obtain that

Js(F ) = L

〈T1(a; F0)〉p
. (23)

Here, the notation 〈·〉p means average with respect to the
polymer ensemble and T1(a; F0) stands for the mean first
passage time (MFPT) from x = 0 to x = L for the process
defined by the stochastic differential equation (22). It is clear
that T1 depends on the disorder (which is represented by
the symbolic sequence a and the external driving force F0.
Actually there are standard techniques to calculate the MFPT
in terms of quadratures [24,25]. In Ref. [9] it was shown
that for the case of disordered potentials the MFPT can be
written as,

T1(a; F0) = γβ

∞∑
m=1

e−mβF0Lq+(a0)q−(am) + γβI0(a0),

(24)

where the functions q+ and q− and I0 are defined as,

q±(a) :=
∫ L

0
e±β[ψ (x,a)−xF0]dx, (25)

I0(a) :=
∫ L

0

∫ x

0
e−β[ψ (y,a)−ψ (x,a)+(x−y)F0] dy dx. (26)

Recall that the potential profile ψ (y, a) has been chosen
as a piecewise linear function as we can see in Eq. (13).
This choice is particularly convenient to obtain an explicit
expression for all the quantities involved in the MFPT given
by Eq. (24). Thus, using the above-mentioned model for the
potential profile, it is not hard to see that the functions q± and
I0 can be written as,

q±(a) = L

2
E (±β[α(a) − F0]L/2)

+ L

2
e−βF0LE

(
±βL

2
[α(a) + F0]

)
, (27)

I0(a) = L

2β

2F0

F 2
0 − α2(a)

− L

2β

E (β(F0 − α(a))L/2)

F0 − α(a)

− L

2β

(
eβα(a)L

F0 + α(a)

)
E
(

−βL

2
(F0 + α(a))

)

+ L2

4
eβ(F0−α(a))LE

(
βL

2
(F0 − α(a))

)

× E
(

−βL

2
(F0 + α(a))

)
. (28)

In the above expressions we made use of the function E :
R → R, which is defined as

E (x) := ex − 1

x
.

Once we have the explicit expressions for the functions
involved in Eq. (24) for the MFPT, we need to establish the
manner in which we perform the average with respect to the
polymer ensemble,

〈T1(a; F0)〉p = γβ

∞∑
m=1

e−mβF0L〈q+(a0)q−(am)〉p

+ γβ〈I0(a0)〉p. (29)

We should observe that it is necessary to take the average
of two functions, one depending only on one monomer of a,
namely I0(a0), and another one depending on two monomers,
the function q+(a0)q−(am). To compute such averages we
need the corresponding marginal distributions, i.e., we need
to know explicit expressions for the probabilities P(a0) and
P(a0, am) := P(M0 = a0; Mm = am).

As mentioned before, we assume that the sequence a =
(. . . a−1, a0, a1, a2, . . . ) is built up by means of a stationary
Markov chain with Markov matrix Q given in Eq. (7). It is
known that the one-dimensional marginal distribution P(a0)
for a Markov chain corresponds to the invariant probability
vector π , i.e., P(a0) = π (a0). On the other hand, the two-
dimensional marginal distribution, P(a0, am), is obtained by
means of the Markov matrix Q as follows:

P(a0, am) =
∑
a1

· · ·
∑
am−1

π (a0)Q(a0, a1) . . . Q(am−1, am).

(30)

where the summation runs over all possible states of the
Markov chain, i.e., over all possible monomer types. With
these expressions it is possible to calculate the following
averages:

〈I0(a0)〉p =
∑
a0

I0(a0)π (a0) (31)

〈q+(a0)q−(am)〉p =
∑
a0

∑
am

q+(a0)q−(am)P(a0, am). (32)

Up to now, all the above quantities have been written explicitly
allowing us to numerically evaluate the particle current as a
function of the parameters.

Now we define dimensionless quantities in order to per-
form numerical experiments showing the validity of the theo-
retical results. For this purpose let us start defining a critical
driving force as the average of the slopes involved in the
random potential, i.e., we define α as,

α :=
2∑

a=0

α(a)π (a). (33)

We also define a relaxation time tr as follows:

tr := γL

α
(34)

With these quantities now we define dimensionless param-
eters as follows. First, we define the dimensionless forcing
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amplitude, F̃0, as F̃0 := F0/α. We also define the dimension-
less period, T̃ , of the time-dependent driving force as

T̃ := T

tr
= T α

γL
. (35)

Now we define a dimensionless temperature θ̃ as follows:

θ̃ := β−1

αL
= kBθ

αL
, (36)

where kB is the Boltzmann constant and θ is the absolute tem-
perature. Finally, we define a dimensionless particle current
and a dimensionless effective diffusion coefficient as,

J̃eff := Jeff

L/tr
= γ Jeff

α
, (37)

D̃eff := Deff

L2/tr
= γDeff

Lα
. (38)

At this point we can numerically evaluate the formula
for the particle current (21) if we specify the values of the
parameters. For this purpose let us state the parameter values
that will be used for the numerical evaluation of the particle
current in the adiabatic limit as well as for the numerical
simulations of the Langevin equation. Throughout the rest of
this paper we will take γ = 1, L = 1, and the slopes of the
random potential as α(0) = 0.1, α(1) = 1.2, and α(2) = 1.8.

In Fig. 3(a) we plot the particle current in the adiabatic
limit for p = 0.25 and θ̃ = 0.24 obtained by numerically
evaluating Eq. (21). Figure 3(a) also shows the particle current
for several values of the dimensionless period: T̃ = 50, T̃ =
100, T̃ = 200, and T̃ = 400. We observe that the particle
current curve approaches to the adiabatic limit curve as the
period increases showing that the numerical simulations are
consistent with our theoretical prediction. Analogously, in
Fig. 3(b) we appreciate the convergence of the particle current
curves, obtained by numerical simulations, to the theoretically
predicted adiabatic limit curve for p = 0.75. We should notice
that the particle current is positive for p = 0.75 and negative
for p = 0.25. This fact can be explained by comparing our
model with a disordered ratchet model [26]. Although our
system does not behave as a ratchet system in the limit of zero
noise strength (because of the asymmetry and the vanishing
particle current), we can still explain the sign of the particle
current by thinking that the potential is asymmetric in a
domain larger than the unit cell. This asymmetry, which in
the context of nonequilibrium system is called irreversibility,
can be observed in Fig. 4 where we sketch a realization of the
random potential. We should observe that the potential limited
to a single unit cell is symmetric by definition. However, if
extended the domain of observation, for instance, to three unit
cells, we will see that the profile is asymmetric if we look
at the appropriate unit cells. Recall that the potential profile
associated to a realization of the polymer is made according
to the function α. This function was chosen in such a way
that the highest profile is assigned to the monomer 2 and the
lower to the monomer 0. Then, if a given realization prefers
the three-monomer structures 012, then the potential profile
will look like an asymmetric effective potential as can be
appreciated in Fig. 4. This effective potential, in the context
of rocket thermal ratchets, would rectify to the right [18]. It is

FIG. 3. (a) Particle current as a function of driving force. We
display the particle current obtained from numerical simulations for
several values of the dimensionless period T̃ and for the parameter
values p = 0.25 and θ̃ = 0.24. We also plot the corresponding
curve obtained from the theoretical prediction in the adiabatic limit
(T̃ = ∞) given by Eq. (21). We can appreciate that as the period
increases the particle current approaches the adiabatic limit curve, in
agreement with our theoretical predictions. (b) The same as (a) for
p = 0.75. We should observe the difference in sign in the particle
current.

not difficult to see that the Markov chain we have chosen, the
three-monomer structures 012 will occur with higher proba-
bility than the three-monomer structures 210 if p > 1/2. The
latter means that for p > 1/2 the random potential will have a
potential profile with a preferred asymmetry rectifying to the
right, as it has been demonstrated in the case of disordered
ratchets [26]. This is consistent with the fact that the particle
current is positive for p > 1/2 as shown in Fig. 3(b). The
same argument applies for the case p < 1/2, which implies
a negative particle current, as shown in Fig. 3(a). Notice
that, despite the irreversibility of the process give rise a kind
of coarse-grained asymmetry in the random potential, this

012128-6



NOISE-INDUCED RECTIFICATION IN OUT-OF- … PHYSICAL REVIEW E 99, 012128 (2019)

... 1 0 1 2 0
x

...

FIG. 4. Schematic representation of a realization of the random
potential. The numbers 0,1, and 2 labeling the monomers are ob-
tained by a realization of a three-states Markov chain. Each state
translates into a potential profile having different heights. It is clear
that the potential profile on a unit cell (a monomer) is symmetric
by definition. However, if we see the potential profile on three unit
cells, the potential have a clear global asymmetry, as we can see in
the consecutive monomers 0,1,2 shown in the figure.

asymmetry is not enough to induce a ratchet effect at the
deterministic limit as we have already proven.

It is also important to observe how the particle current
behaves as a function of the parameter p of the Markov
chain that generates the disordered substrate. We should recall
that p controls, in some way, the degree of irreversibility of
the polymer. Actually, for p = 1/2 the substrate is generated
under equilibrium conditions and the irreversibility grows as
p approaches the extreme values p = 0 or p = 1. In Fig. 5 we
show the behavior of J̃eff as a function of p. To compare this
behavior against the entropy production, we also plot ep as a
function of p, but scaled by a constant factor of 10−3 just to
compare it with the particle current. We see that the minimum
occurs at p = 1/2 for the particle current as well as for the
entropy production.

V. PARTICLE CURRENT AND DIFFUSION
COEFFICIENT FOR FAST TILTING

Beyond the adiabatic limit our model exhibits a phe-
nomenology that differs from the one observed in its adiabatic
counterpart. First, in analogy to rocked thermal ratchets, we

FIG. 5. Particle current and entropy production. We compare the
behavior of Jeff (solid line) as a function of p with the entropy
production of the substrate (dot-dashed line). We observe that the
minimum entropy production is zero and is attained at p = 1/2.
For such a parameter value we have that the structure is produced
under equilibrium conditions and the particle current is zero. We also
observe that, the larger entropy production, the larger particle current
(in absolute value).

FIG. 6. (a) Particle current as a function of the period T̃ of
the driving force. We display the particle current obtained from
numerical simulations for the parameter values p = 0.24, F̃=1.45,
and θ = 0.0.24. We observe that a current reversal occurs as we
increase T . (b) Particle current as a function of the driving force
amplitude F̃0. The parameter values used to obtain this curve were
chosen as p = 0.25, T̃ = 2.06, and θ̃ = 0.048. We observe that in
this case the current reversal occurs as we vary the amplitude of the
driving force.

found the presence of current reversals (CRs). This behavior
occurs when the system is driven at high frequencies (fast
tilting regime). In Fig. 6(a) we can appreciate the phenomenon
of CRs when we plot the particle current as a function of
the period T̃ of the driving force. In Fig. 6(b) we observe
that the CRs are also exhibited in the system when we vary
the forcing amplitude for fixed values of T̃ = 2.06 and p =
0.25. We should emphasize that by varying continuously the
period T̃ , the CR is exhibited in a non-negligible window
of the parameter T̃ ∈ (0.75, 3.2). The latter means that the
phenomenon of CRs is robust under perturbations in the
parameters controlling the driving force, implying that it is
not necessary for a fine tuning of the parameter to find current
reversals in this class of systems.

Another phenomenon exhibited by our model, which is
worth mentioning here, is the nonmonotonic dependence of
the diffusion coefficient on temperature. This phenomenon
is important in the sense that it implies a counterintuitive
behavior of the particles diffusing in a medium. To be precise,
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FIG. 7. Effective diffusion coefficient as a function of dimen-
sionless temperature. We observe the estimated D̃eff from numerical
simulations of the stochastic differential equation (1) using the pa-
rameter values p = 0.25, F̃ = 0.96, and T̃ = 5.16. The inset shows
that the diffusion coefficient does not behaves monotonically with the
temperature, which is counterintuitive phenomenon previously found
in other systems (see for example Refs. [9,27–30]). The occurrence
is mainly due an interplay between the noisy and the deterministic
dynamics as it has been observed in Ref. [9].

in recent years it has been shown that, in some systems out
of equilibrium, an increase in temperature does not always
imply an increase in the diffusion coefficient [9,27–32]. In
Fig. 7 we display the behavior of the diffusion coefficient D̃eff

with respect to the dimensionless temperature θ̃ , maintaining
fixed the amplitude F̃0 = 0.96 and the period T̃ = 5.16 of the
time-dependent external forcing. We can appreciate that in a
small window the diffusion coefficient does not behave as a
monotonically increasing function of the temperature. This
phenomenon has been shown to occur in window frequencies
around ω := 1/T̃ ≈ 0.193 of size nearly �ω ≈ 0.06. This
fact suggests that this phenomenon is robust in the parameter
space. The occurrence of this phenomenon can be actually a
direct consequence of the fact that it is already present in the
case of a static driving force [9]. It has been shown that the
nonmonotonic behavior on temperature of the diffusion co-
efficient occurs in the particle-polymer model for disordered
systems under the influence of a constant driving force [9].
In that work, the author shows that the emergence of such
a phenomenon is due to an interplay between the determin-
istic and noisy dynamics. Although this argument gives a
simple explanation for the occurrence of the nonmonotonic
behavior of the diffusion coefficient it is necessary to make
more exhaustive numerical and analytical studies in order
to understand how does this phenomenon is affected by the
parameters of the model.

VI. CONCLUSIONS

We have shown that a disordered medium produced under
nonequilibrium conditions is able to rectify the motion of
Brownian particles in a similar way as that achieved by
rocket thermal ratchet systems. This rectification phenomenon

is not the result of an asymmetric potential (a requirement
unavoidable in ratchet systems) but the result of an interplay
between noise and a coarse-grained asymmetry resulting from
the irreversibility of the process producing the substrate (the
random potential). We have shown the occurrence of this
phenomenon by taking a simple stochastic process to build
up the disordered medium. The model we have chosen is
a three-states Markov having a nonequilibrium steady state.
The structures produced by such a Markov chain (called here
polymers) can be considered as out-of-equilibrium structures.
By using the particle polymer model for particles moving on
disordered media, we have shown that this simple system is
able to rectify the motion at a finite temperature. We have also
shown that at the deterministic limit, our model is unable to
rectify motion due to the symmetry of the potential profiles.
These two facts imply that the rectification phenomenon we
report is not induced by an asymmetry of the potential profile
as it occurs in deterministic ratchet systems. It is also worth
mentioning that we have given an exact expression for the
particle current in the adiabatic limit, based on recent works
on the transport of Brownian particles on disordered media.
We have also explored our model beyond the adiabatic limit
by means of numerical simulations. In this regime we have
found that our model exhibits current reversals as a function of
both the period and the amplitude of the external driving force.
Moreover, in this system we have also reported the presence
of the nonmonotonic dependence of diffusion coefficient as
a function of temperature. This phenomenon is important
because it is a counterintuitive behavior of Brownian particles,
which is the enhancement of the dispersion by decreasing
the temperature. It is also worth mentioning that, although
we have used a specific model for the Markov matrix Q,
our results can be extended to other Markov models such as
those obtained by modeling out-of-equilibrium structures (see
for example the work of Provata [2] where it is estimated a
Markov matrix from real DNA sequences). The emergence of
a net particle current will depend on the spatial irreversibility,
a property that occurs whenever the entropy production of the
process is positive.

In conclusion this simple model has exhibited several phe-
nomena, already observed in other systems, but by means of a
different mechanism, in which the out-of-equilibrium features
of the substrate plays a central role. It would be interesting
to analyze the case in which the system we propose exhibits
other phenomena such as stochastic resonance [33,34] or the
resonant response [35]. We believe that our findings might
contribute to a better understanding of the transport properties
of mesoscopic systems where the disorder of the substrate and
its nonequilibrium properties play an important role.
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