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This paper discusses analytical and numerical results for nonharmonic, undamped, single-well, stochastic
oscillators driven by additive noises. It focuses on average kinetic, potential, and total energies together with
the corresponding distributions under random drivings, involving Gaussian white, Ornstein-Uhlenbeck, and
Markovian dichotomous noises. It demonstrates that insensitivity of the average total energy to the single-well
potential type, V (x ) ∝ x2n, under Gaussian white noise does not extend to other noise types. Nevertheless, in the
long-time limit (t → ∞), the average energies grow as power law with exponents dependent on the steepness of
the potential n. Another special limit corresponds to n → ∞, i.e., to the infinite rectangular potential well, when
the average total energy grows as a power law with the same exponent for all considered noise types.
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I. INTRODUCTION

Energy conservation is one of the fundamental principles
of physics. In deterministic models devoid of energy dissipa-
tion and external driving the energy conservation is typically
built in, whereas stochastic models usually require additional
constraints to uphold it. Stochastic systems in which such a
behavior is desirable and successfully implemented by careful
balancing of the dissipating and noise-related terms are said to
fulfill the fluctuation-dissipation theorem [1,2]. By definition,
stochastic models conserve energy in a statistical sense and
ought to represent physical states at the equilibrium or ap-
proaching it. Regardless of their enormous success, the class
of equilibrium and near-equilibrium systems hardly exhausts
all observed possibilities. In consequence, many models of
nonequilibrium phenomena [2–6] have been developed with
a multitude of different approaches and methods [7–9]. In
particular, considerable attention has been given to the task
of classification of various systems [10–12] described by
stochastic differential equations in and out of equilibrium.

In the case of stochastic systems relevant to this work, a
field worthy of investigation is the regime of low or vanishing
dissipation in the second-order Langevin (stochastic Newton)
equation. Accordingly, the lack of dissipation results in the
growth of average energies due to the stochastic force. As
will be shown, the short-time behavior of average energies is
often very different from the long-time (asymptotic) charac-
teristics. Having withheld the fluctuation-dissipation theorem,
one could enquire about the survival of other notions of sta-
tistical mechanics, such as the equipartition theorem [13,14].
This paper shows that, among the models studied here, the
only case where, despite the absence of stationary states,
the equipartition of energy is asymptotically satisfied is the
(undamped) harmonic stochastic oscillator which has been
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studied previously in many contexts [15,16]. Nonetheless, we
would like here to extend these earlier results and probe the
properties of nonharmonic, undamped, stochastic oscillators
and non-Gaussian noises [17]. In particular, a natural and sim-
ple extension to nonharmonic potentials includes symmetric
single-well potentials of the following form:

V (x) = k
x2n

2n
. (1)

Having narrowed the scope of our research, we start by shortly
presenting the considered model in the damped (dissipating)
context, indicating a way of obtaining the quantities of interest
and finally disregarding the damping term (Sec. II). For the
sake of completeness, the case of a free particle (Sec. II A) is
considered first. Next, we proceed to restate the results men-
tioned above (Sec. II B) and extend this approach to calculate
explicitly the uncertainties connected with the mean values of
energy. From there we continue to the last part of this paper
regarding the nonharmonic single-well potentials (Sec. II C).
The main characteristics of interest will be the asymptotic
time dependence of energies (total, kinetic, and potential).
The results are confirmed with numerical simulations for n =
1, 2, 3,∞ with special attention to the case of n = ∞ and to
the Markovian dichotomous noise [11] not considered explic-
itly in [18]. Surprisingly, the solutions hold for colored noises
different in nature such as Ornstein-Uhlenbeck, dichotomous
noise, and can give identical long-time behavior if only their
correlation times match. The paper concludes with Summary
and Discussion (Sec. III).

II. MODEL AND RESULTS

In what follows, we study the properties of a general
stochastic oscillator, i.e., the motion in the single-well poten-
tial given by Eq. (1) with k > 0 and n ∈ {1, 2, . . . }. Neverthe-
less, in more general situations, it is also possible to consider
noninteger n > 0; in such case it is necessary to replace x with
|x|. The special case of n = 1 corresponds to the harmonic
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oscillator which is one of the fundamental models in statistical
physics [19,20]. Following the convention of [21,22], in the
dimensional units, the evolution of the state variable x(t ) is
described by the second-order Langevin equation

m
d2x(t )

dt2
= −γm

dx(t )

dt
− kx2n−1(t ) +

√
2γ kBT mξ (t ),

(2)

where x(t ) represents the position, m the particle mass, T the
system temperature, kB the Boltzmann constant, and γ is a
damping coefficient. In Eq. (2) ξ (t ) stands for the Gaussian
white noise (GWN) satisfying

〈ξ (t )〉 = 0 (3)

and

〈ξ (t )ξ (s)〉 = δ(t − s). (4)

In addition to the GWN, we also consider the symmetric
Markovian dichotomous noise (DN) and Ornstein-Uhlenbeck
noise (OUN). The symmetric (allowing two possible values
±1) Markovian dichotomous noise ξDN(t ) (see [11,23]), sat-
isfies

〈ξDN(t )〉 = 0 (5)

and

〈ξDN(t )ξDN(s)〉 = exp [−2λ|t − s|], (6)

where λ is the transition rate between states [23]. The
OUN [24] is the process defined by the following Langevin
equation:

dξOU(t )

dt
= −ρξOU(t ) + Dξ (t ), (7)

where ξ (t ) is the Gaussian white noise [see Eqs. (3) and (4)].
However, in numerical simulations it is often more convenient
to use the so-called exact updating formula for the OUN [25],
rather than solving Eq. (7) directly. Moreover, the OU process
fulfills

〈ξOU(t )〉 = 0 (8)

and

〈ξOU(t )ξOU(s)〉 = D2

2ρ
exp [−ρ|t − s|], (9)

under the condition that ξOU(−∞) = 0.
The Gaussian white noise describes interactions of the

oscillator with the thermal bath of temperature T . Langevin
equation (2) is the Newton second law accounting for a
random force ξ (t ). It describes the system evolution on the
microscopic level. Both variables position x(t ) and velocity
v(t ) = ẋ(t ) are no longer deterministic, but become random
variables distributed according to some probability density
P (x, v; t ). The probability of finding the system in a state
characterized by (x(t ), v(t )) evolves according to the diffu-
sion (Fokker-Planck) equation [21,22]

∂tP (x, v; t ) =
[
∂v

(
γ v + V ′(x)

m

)
− v∂x + γ

kBT

m
∂2
v

]
×P (x, v; t ). (10)

For any potential V (x), such that V (x) → ∞ as x → ±∞,
the stationary solution of Eq. (10) is of the Boltzmann-Gibbs
type

P (x, v) ∝ exp

[
− 1

kBT

(
mv2

2
+ V (x)

)]
. (11)

The exponent in Eq. (11) is the total energy E which is the
sum of kinetic Ek and potential Ep energies. The system’s
total energy E = Ek + Ep = 1

2mv2 + k x2n

2n
depends on its state

(x(t ), v(t )). Consequently, instantaneous energies, analogous
to state variables, are random variables. Nevertheless, average
energies are constant for large t due to the existence of a
stationary state. In the stationary state, the position and the
velocity are statistically independent. Finally, Eq. (2) assures
that the stochastic harmonic oscillator, corresponding to n =
1, fulfills the equipartition theorem [21,22].

For the purpose of deriving the quantities of interest,
Eq. (2) can be rewritten as a set of two first-order equations

dx(t )

dt
= v(t ),

dv(t )

dt
= −γ v(t ) − ω2x2n−1(t ) +

√
2γ kBT

m
ξ (t ), (12)

where ω2 = k/m. For the parabolic potential these equations
are linear, thus standard methods of solving linear differential
equations can be applied [22,26]. The system described by
Eq. (2) or Eq. (12) in the presence of simple noises can be
studied analytically [10,22,26,27]. From Eq. (12) one can
derive equations for moments 〈v2(t )〉 and 〈x2(t )〉 from which
the evolution of average energies can be calculated. The
time evolutions of average potential and kinetic energies are
described by

d

dt
〈Ep(t )〉 = k〈v(t )x2n−1(t )〉 (13)

and
d

dt
〈Ek (t )〉 = −γm〈v2(t )〉 − k〈v(t )x2n−1(t )〉

+
√

2γ kBT m〈ξ (t )v(t )〉. (14)

Finally, the total mechanical energy 〈E (t )〉 varies in time
according to

d

dt
〈E (t )〉 = −γm〈v2(t )〉 +

√
2γ kBT m〈ξ (t )v(t )〉. (15)

Energy distribution f (Ep, Ek ) can be calculated by the
transformation of variables

f (Ep, Ek ) = f (x(Ep ), v(Ek )) × |J|

=
∑
{±}

f

(
± 2n

√
2nEp

k
,±

√
2Ek

m

)
× |J|, (16)

where

J = ∂ (x(Ep ), v(Ek ))
∂ (Ep, Ek )

(17)

is the Jacobian of the transformation from (x(t ), v(t )) →
(Ep(t ), Ek (t )). The sum in Eq. (16) indicates summing over all
combination of signs. Two-dimensional density f (Ep, Ek ) is
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defined for Ep � 0 and Ek � 0 while f (x, v) is defined on the
whole plane. From Eq. (16) further properties of the energy
distributions can be determined, including marginal densities
and other characteristics. Nevertheless, in the majority of
situations, knowledge of the full f (x, v) density is required.

In the absence of dissipation, i.e., when the −γ v(t ) term
is disregarded, Eqs. (13)–(15) further simplify. Moreover, for
special noise types exact solutions of these equations can be
provided. In such case Eq. (12) transforms into

d2x(t )

dt2
= −ω2x2n−1(t ) +

√
hξ (t ), (18)

where h = 2γ kBT /m is the independent parameter scaling
the noise strength. In further sections, we examine the un-
damped motion only, i.e., the system described by Eq. (18).

A. Free particle

By direct calculation, it is possible to show that the average
kinetic energy 〈Ek (t )〉, which is equal to the average full
energy 〈E (t )〉, scales linearly in time. The velocity can be
calculated as

v(t ) =
∫ t

0
ξ (u)du. (19)

In particular, for a free particle driven by the Gaussian white
noise one has

〈v(t )v(s)〉 =
〈 ∫ t

0
ξ (u)du

∫ s

0
ξ (v)dv

〉

=
∫ t

0
du

∫ s

0
dv〈ξ (u)ξ (v)〉

=
∫ t

0
du

∫ s

0
dvδ(u − v). (20)

Finally, for v(0) = 0, one obtains

〈v2(t )〉 = t. (21)

The average kinetic energy grows like

〈Ek (t )〉 = 〈E (t )〉 = m

2
× t. (22)

As will be shown in the forthcoming sections, the (long-
time) evolution of the average total energy is the same for
any single-well potential under the GWN [see Eq. (66) and
Sec. II C].

For a free particle driven by the Markovian dichotomous
noise one obtains

〈v(t )v(s)〉 =
〈 ∫ t

0
ξDN(u)du

∫ s

0
ξDN(v)dv

〉

=
∫ t

0
du

∫ s

0
dv〈ξDN(u)ξDN(v)〉

=
∫ t

0
du

∫ s

0
dv exp [−λ|u − v|] (23)

and

〈v2(t )〉 = −1 + exp(−2tλ) + 2tλ

2λ2
. (24)

Thus, asymptotically, one gets

〈v2(t )〉 ∝ 1

λ
× t (25)

and

〈Ek (t )〉 ∝ m

2λ
× t. (26)

Analogous calculations can be performed for the Ornstein-
Uhlenbeck noise (from here on we set D = 1 unless otherwise
stated) resulting in

〈v2(t )〉 = −1 + exp(−tρ) + tρ

ρ3
(27)

and asymptotic formulas

〈v2(t )〉 ∝ 1

ρ2
× t, (28)

〈Ek (t )〉 ∝ m

2ρ2
× t. (29)

For a free particle, V (x) = 0, the total energy E is given by
the kinetic energy Ek . Energy distribution can be calculated by
the change of variables

f (E ) = f (Ek )

=
∫ ∞

−∞
f (x, v(Ek ))

∣∣∣∣ dv

dEk

∣∣∣∣dx

=
√

2

m
√
Ek

∫ ∞

−∞
f

(
x,

√
2Ek

m

)
dx

= f (v(Ek ))

√
2√

mEk

. (30)

For Gaussian white and Ornstein-Uhlenbeck noises, due to the
Gaussian distribution of random pulses, f (x, v) distributions
are two-dimensional (2D) normal densities for which the
correlation matrix can be calculated by standard methods [22].
Nevertheless, for the free particle, the knowledge of the corre-
lation matrix is not necessary to derive the energy distribution
because it is enough to know the marginal density, which is
Gaussian. The kinetic energy distribution, as well as the full
energy distribution, has the same functional dependence as
the distribution of the kinetic energy for the harmonic (n = 1)
potential (see below). The nontrivial parameter of the energy
distribution is the average energy which, for a free particle,
follows a different scaling than for the harmonic potential
[e.g., compare Eqs. (22) and (31)].

B. Harmonic potential (n = 1)

1. Average energies

For the harmonic (n = 1) potential with x(0) = 0, v(0) =
0 and the Gaussian white noise appropriate integrals can be
performed (see [16]), resulting in

〈Ek (t )〉 = h
2ωt + sin(2ωt )

8ω
, (31)

〈Ep(t )〉 = h
2ωt − sin(2ωt )

8ω
, (32)
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and

〈E (t )〉 = h

2
× t, (33)

where ω = √
k/m.

Due to the lack of the damping term, −γ v(t ), the Gaussian
white noise pumps energy into the system. For a sufficiently
large t approximately half of the total energy is stored as
kinetic, while the remaining half is stored as the potential
energy

〈Ek (t )〉 
 1
2 〈E (t )〉 (34)

and

〈Ep(t )〉 
 1
2 〈E (t )〉. (35)

With increasing t the quality of this approximation increases
and the approximation becomes exact as t → ∞. If the GWN
is replaced by the symmetric Markovian dichotomous noise
ξDN(t ), see Eqs. (5) and (6), one can also calculate aver-
age energies. For ξDN(0) ∈ {−1,+1} with probability 1/2,
formulas for average energies can be found in [16]. The
asymptotic (large t) formula for the average total energy takes
the following form:

〈E (t )〉 ∝ 2λh

4λ2 + ω2
× t. (36)

For the average kinetic energy we get

〈Ek (t )〉 ∝ λh

4λ2 + ω2
× t 
 1

2 〈E (t )〉, (37)

and for the average potential energy

〈Ep(t )〉 ∝ λh

4λ2 + ω2
× t 
 1

2 〈E (t )〉. (38)

Average energies, analogously like for the GWN, grow lin-
early in time.

Exact formulas can be also derived for the OUN replacing
the GWN (see [16]). Asymptotically, average energies grow
like

〈Ek (t )〉 ∝ h

4(ρ2 + ω2)
× t 
 1

2 〈E (t )〉, (39)

〈Ep(t )〉 ∝ h

4(ρ2 + ω2)
× t 
 1

2 〈E (t )〉, (40)

and

〈E (t )〉 ∝ h

2(ρ2 + ω2)
× t. (41)

The long-time behavior of the stochastic harmonic oscil-
lator driven by simple noises (e.g., GWN, Markovian DN,
or OUN) was studied in [16] where exact formulas are pro-
vided. From Table I and Eqs. (31)–(41) it is clearly visible
that asymptotically average energies grow linearly in time.
Moreover, the average total energy is equally divided between
average kinetic and potential energies, i.e., equipartition of
energy is fulfilled.

2. Energy distributions

For the harmonic potential the deterministic force
−V ′(x) = −kx is linear; consequently, for the GWN driving

TABLE I. Asymptotic dependence of the average energy 〈E (t )〉
and the ratio of average energies 〈Ek (t )〉/〈Ep(t )〉 for the harmonic
oscillator driven by various noise types.

Noise lim
t→∞

〈E (t )〉 lim
t→∞

〈Ek (t )〉/〈Ep(t )〉

GWN h

2 × t 1

DN 2λh

4λ2+ω2 × t 1

OUN h

2(ρ2+ω2 )
× t 1

the 2D probability density f (x, v) is a 2D, time-dependent,
normal density. Similarly, time-dependent marginal densities
f (x) and f (v) are 1D Gaussians with parameters determined
from the full f (x, v) density, i.e., 〈x(t )〉, σ 2(x(t )) and 〈v(t )〉,
σ 2(v(t )).

The time-dependent energy distribution f (Ep, Ek ) can be
calculated by the transformation of variables [see Eq. (16)],
with the Jacobian

|J| =
∣∣∣∣∂ (x(Ep ), v(Ek ))

∂ (Ep, Ek )

∣∣∣∣ = 1

2
√

mk
√
EpEk

. (42)

Taking into account that ±x gives the same Ep and ±v results
in the same Ek , one gets

f (Ep, Ek ) = f (x(Ep ), v(Ek )) × |J|

=
∑
{±}

f

(
±

√
2Ep

k
,±

√
2Ek

m

)
× |J|. (43)

Marginal densities are defined in the standard manner:

f (Ep ) =
∫ ∞

0
f (Ep, Ek )dEk, (44)

f (Ek ) =
∫ ∞

0
f (Ep, Ek )dEp. (45)

In a general situation, in order to find marginal densities,
it is necessary to find the 2D f (Ep, Ek ) density first and
then perform the appropriate integration. Since Ep depends
on the position x only and Ek depends on the velocity v only,
the transformation does not mix variables and the marginal
densities of Ep and Ek can be calculated from the marginal
densities of x and v.

For instance, at a given time point t

f (Ep ) =
∫ ∞

0
f (Ep, Ek )dEk

=
∫ ∞

0
f (x(Ep ), v(Ek ))

2√
mk

√
EpEk

dEk

=
∫ ∞

0
f (x(Ep ), v)

2√
kEp

2dv√
2

=
∫ ∞

−∞
f (x(Ep ), v)

√
2√

kEp

dv

= f (x(Ep ))

√
2√

kEp

, (46)

where dEk√
mEk

= 2dv√
2

.

012125-4



ENERGETICS OF SINGLE-WELL UNDAMPED STOCHASTIC … PHYSICAL REVIEW E 99, 012125 (2019)

Let us calculate 〈Ep(t )〉 and σ 2(Ep(t )). The marginal den-
sity f (x), as a marginal density of 2D normal distribution, is
1D Gaussian density

f (x) = 1√
2πσ 2(x(t ))

exp

[
− [x − 〈x(t )〉]2

2σ 2(x(t ))

]
, (47)

where 〈x(t )〉 = 0 and

σ 2(x(t )) = 2

k
〈Ep(t )〉. (48)

The marginal distribution of Ep is

f (Ep ) = 1√
4π〈Ep(t )〉/k

exp

[
− Ep

2〈Ep(t )〉
]

×
√

2√
kEp

= 1√
2π〈Ep(t )〉 exp

[
− Ep

2〈Ep(t )〉
]

× 1√
Ep

(49)

and its cumulative density is

F (Ep ) = erf

[√
Ep

2〈Ep(t )〉

]
, (50)

where erf (· · · ) is the error function and 〈Ep(t )〉 is given by
Eq. (32). Equation (50) gives the cumulative density (CDF)
from which the complementary cumulative distribution func-
tion (CCDF), 1 − F (· · · ), is obtained. The CCDF is calcu-
lated at a time t at which the average potential energy is
〈Ep(t )〉 [see Eq. (32)]. Indeed, as expected and confirmed by
the integration, the mean value of Ep at a time t is∫ ∞

0
f (Ep )EpdEp = 〈Ep(t )〉 (51)

and 〈
E2

p(t )
〉 = 3〈Ep(t )〉2. (52)

Consequently, the variance and the standard deviation of the
potential energy Ep are

σ 2(Ep(t )) = 〈
E2

p(t )
〉 − 〈Ep(t )〉2 = 2〈Ep(t )〉2, (53)

and

σ (Ep(t )) =
√

2〈Ep(t )〉, (54)

respectively.
Analogously, for the kinetic energy we have

f (Ek ) = 1√
2π〈Ek (t )〉 exp

[
− Ek

2〈Ek (t )〉
]

× 1√
Ek

(55)

leading to

F (Ek ) = erf

[√
Ek

2〈Ek (t )〉

]
, (56)

and

σ (Ek (t )) =
√

2〈Ek (t )〉, (57)

where 〈Ek (t )〉 is given by Eq. (31).
The full energy E is distributed according to

f (E ) =
∫ E

0
f (E − Ek, Ek )dEk. (58)

0

0.5
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4
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σ
(E

..
.)

t

σ(Ep)√
2 p

σ(Ek)√
2 k

FIG. 1. Standard deviations of kinetic, σ (Ek (t )), and potential,
σ (Ep (t )), energies as a function of time for the harmonic potential
perturbed by the Gaussian white noise. Points correspond to results
of simulations, while solid lines present theoretical formulas (54)
and (57), i.e., Eqs. (31)–(33) multiplied by

√
2. More detail in the

text.

In order to find f (E ) the joint density f (Ep, Ek ) is required,
which can be obtained from the f (x, v) density which is a 2D
normal distribution. Therefore, one needs to know the corre-
lation matrix for (x, v) (see [22]). Elements of the correlation
matrix can be deduced from Eqs. (31) and (32). The formula
for the remaining element 〈x(t )v(t )〉 reads

〈x(t )v(t )〉 = h
1 − cos(2ωt )

4m2ω2
. (59)

For the sake of clarity, we do not provide the formula for f (E ).
Nevertheless, in Fig. 3(b) the exact f (E ) density is depicted
as a solid line (see also [10]).

Figure 1 presents standard deviations for kinetic and po-
tential energies for the harmonic potential well. Solid lines
present formulas given by Eqs. (31)–(33), (54), and (57) while
points correspond to results of computer simulations. Please
note that full and empty symbols of each type, i.e., squares
and triangles, are superimposed. Therefore, as predicted, the
numerically estimated σ (E...(t )) is equal to

√
2〈E...(t )〉.

C. Nonharmonic potentials (n > 1)

1. Gaussian white noise

In the following section we focus our attention on the non-
harmonic potentials, i.e., n > 1 [see Eq. (1)]. We start with the
Gaussian white noise driving. Next, we move to more general
noises. For the Gaussian white noise driving the results for the
time dependence of the average total 〈E (t )〉, potential 〈Ep(t )〉,
and kinetic 〈Ek (t )〉 energies are presented in Fig. 2. Various
rows (from top to bottom) correspond to various potential
wells: linear, parabolic (n = 1), cubic and quartic (n = 2).
In Fig. 2(b), analytical results [see Eqs. (31)–(33)] and [16]
are compared with Monte Carlo (MC) simulations of the
appropriate Langevin equation. Analytical solutions (31)–(33)
have been constructed with the help of Eqs. (13)–(15) and
exact solution of Eq. (18). Numerical (Monte Carlo) results
for undamped stochastic oscillators have been constructed by
the algorithm presented in [28]. For the sake of simplicity,
we have additionally assumed that h = 1, x(0) = 0, and
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FIG. 2. Average energies 〈E...(t )〉 (left column), medians of energy distributions q0.5(E...(t )) (middle column), interquantile widths of energy
distributions q0.9(E...(t )) − q0.1(E...(t )) (right column) for linear (top panel), parabolic, cubic and quartic (bottom panel) potentials subject to
the action of the Gaussian white noise. Solid lines present exact formulas given by Eqs. (31), (32) and (66).

v(0) = 0. As can be seen from Fig. 2(b), for the parabolic
potential, numerical simulations perfectly corroborate the
theoretical predictions. Subsequent Fig. 3 compares energy
distributions between various setups.

Surprisingly, comparing various plots in the left column
of Fig. 2 one can see that for all considered potential wells
with the Gaussian white noise driving the average total energy
〈E (t )〉 exhibits the same time dependence. Using the Itô
lemma [26] it is possible to confirm this observation in an
analogous way to the damped harmonic oscillator [29]. Using
the definition of the potential energy Ep = k

2x2 one gets

dEp(x(t ))
dt

= kx(t )
dx(t )

dt
= kx(t )v(t ). (60)

Therefore, after ensemble averaging the following formula is
obtained:

d

dt
〈Ep(t )〉 = k〈x(t )v(t )〉, (61)

which is exactly the same as Eq. (13). The kinetic energy
Ek = 1

2mv2 requires different treatment [29], because the

velocity v(t ) fulfills the stochastic differential equation (12).
Therefore, it is necessary to use the Itô lemma

dEk (v(t )) = dEk

dv
dv + 1

2

d2Ek

dv2
(dv)2 + . . .

= mvdv + 1

2
m(dv)2 + . . . . (62)

From Eq. (12)

dv = −ω2xdt +
√

hξ (t )dt

= −ω2xdt +
√

hdW (t ), (63)

where dW (t ) is the increment of the Wiener process. Keeping
terms that are at most linear in dt , [dW (t )]2 = dt , one gets

d

dt
〈Ek (t )〉 = −k〈x(t )v(t )〉 + mh

2
. (64)

After the addition of Eqs. (61) and (64) one obtains

d

dt
〈E (t )〉 = mh

2
. (65)
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FIG. 3. Energy distributions f (E ), f (Ep ), and f (Ep ) for differ-
ent potentials: linear [top panel, (a)], parabolic (b), cubic (c) and
quartic [bottom panel, (d)] with the GWN driving at a fixed t = 10
time. Solid lines for the parabolic potential represent exact results
[see Eqs. (50), (56), and discussion in the text].
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FIG. 4. Behavior of the rescaled (divided by t) average total
energy 〈E (t )〉 for different potential wells subject to the action of
the GWN. The solid black line indicates the theoretical asymptotic
prediction.

Integration of Eq. (65) results in

〈E (t )〉 = mh

2
× t + E0, (66)

where E0 is determined by the initial condition. In an analo-
gous way, it is possible to show that Eq. (66) holds for any
single-well potential of V (x) = k|x|ν/ν (ν > 0) type when
Ep = k|x|ν/ν. In such case 〈x(t )v(t )〉 in Eqs. (61) and (64)
is to be replaced with 〈xν−1(t )v(t )〉. In a similar way, as for
the parabolic potential terms k〈xν−1(t )v(t )〉 cancel after the
addition of Eqs. (61) and (64). Therefore, inflow (pumping of
energy), due to the contact with the thermal bath (described
by the Gaussian white noise) results in the same (linear) time
dependence of the average total energy [see Eq. (66)]. This
effect is very well visible in the left column of Fig. 2 and
consequently in Fig. 4 where the prediction given by Eq. (66)
is further tested for n ∈ {2, 3,∞} in the long-time limit. Vari-
ous rows in Fig. 2 present results for potentials with different
values of the exponent n: linear, parabolic (n = 1), cubic and
quartic (n = 2) [see Eq. (1)]. In all panels 〈E (t )〉 is the same.
Differences between all setups are recorded in the average po-
tential 〈Ep(t )〉 and average kinetic 〈Ek (t )〉 energies which dis-
play very different time dependence. Differences between var-
ious types of single-well potentials are also visible in the char-
acteristics of energy distributions: median [quantile q0.5(t )]
and width [defined as interquantile width, q0.9(t ) − q0.1(t )],
which are presented in the middle and right columns of Fig. 2.

Further differences between various potentials are in-
spected in Fig. 3 which presents energy distributions f (E ),
f (Ep ), and f (Ek ) at t = 10 for the potential wells studied in
Fig. 2. For the parabolic potential (n = 2) solid lines represent
exact results which perfectly agree with the results of Monte
Carlo simulations [see Fig. 3(b)]. Since the characteristics of
the energy distributions depicted in Fig. 2 differ, likewise the
energy distributions depicted in Fig. 3 depend on the potential
type (see the next section).

The linear growth of the average total energy 〈E (t )〉 for
any single-well potential perturbed by the GWN raises a
question whether the observed effect, i.e., the linear growth
of 〈E (t )〉, holds for other types of noise. In general, the
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FIG. 5. Average energies 〈E...(t )〉 for DN [left column, (a)–(d)] and OUN [right column, (e)–(h)] drivings for linear [top panels, (a) and
(e)], parabolic, cubic and quartic [bottom panels, (d) and (h)] potentials. Solid lines for the parabolic potentials (b) and (f) depict exact results
(see [16]).

answer is negative and depends on the steepness of the
potential. Nevertheless, as we show later, in the long-time
limit it is possible to fine-tune the rate of energy growth by
adjusting noise parameters, as is done in the following case
of OUN.

The Gaussian white noise can be generalized to the α-
stable (Lévy type) white noise (see [30,31]). For a nonequi-
librium noise of α-stable type the general property visible
for the GWN is no longer true. Moreover, for the harmonic
potential well time-dependent densities f (x, v) are given by
2D α-stable densities [32,33] which are characterized by the
diverging variance, and possibly also by the diverging mean.
Therefore, it is necessary to use different measures, e.g.,

robust measures based on quantiles of the energy distribution.
These measures, by analogy with medians and interquantile
widths presented in Fig. 2, confirm the dependence of ener-
getic properties of stochastic oscillators driven by an α-stable
noise both on the noise type and the potential type.

2. Ornstein-Uhlenbeck and Markovian dichotomous noises

We now proceed to study energetic properties of stochastic
oscillators driven by colored noises, e.g., Ornstein-Uhlenbeck
and Markovian dichotomous noises. Figure 5 presents 〈E (t )〉
for linear, parabolic (n = 2), cubic and quartic (n = 2) po-
tential wells. The left column corresponds to the DN driving
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FIG. 6. Energy distributions for DN [left column, (a)–(d)] and OUN [right column, (e)–(h)] drivings for linear [top panels, (a) and (e)],
parabolic, cubic and quartic [bottom panels, (d) and (h)] potentials at a fixed t = 10 time.

while the right one corresponds to the OUN driving. Figure 5
clearly shows that time dependence of the average total energy
〈E (t )〉 depends both on the noise and potential types. This
is a consequence of a lack of whiteness in the driving noise.
Additional differences between various considered setups are
depicted in Fig. 6 which shows complementary cumulative
densities of energy. Figure 6 presents energy distributions
for various potential types. Solid lines in the second row,
Figs. 6(b) and 6(f), represent exact results for the parabolic
potential under the Gaussian white noise with the formulas
for 〈Ep(t )〉, 〈Ek (t )〉, and 〈E (t )〉 for appropriate noises [see
Eqs. (36)–(41)]. Consequently, solid lines demonstrate how
the harmonic oscillator driven by a colored noise (points)
differs from its Gaussian counterpart (solid lines).

The problem of the general stochastic oscillator driven by
OUN was studied in [18] where the formula for the evolution
of the average mechanical energy 〈E (t )〉 was derived:

〈EOUN(t )〉 = �
(

3n+1
4n−2

)
�

(
n+1

4n−2

)[
(2n − 1)2

2n2
μt

]n/(2n−1)

, (67)

where

μ = (2n)1/n
�

(
3

2n

)
�

(
n+1
2n

)
�

(
1

2n

)
�

(
n+3
2n

) . (68)

Equation (67) clearly indicates that the exponent character-
izing the growth of the average total energy depends on the
steepness of the potential n. At this point we would also like to
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note that for D = 1 [see Eq. (9)] the resulting energy growth
rate [i.e., the prefactor in Eq. (67)] does not depend on the
damping rate ρ (inverse of the correlation time). Additionally,
in [34] the following relations have been obtained:

〈E (t )〉 = n + 1

2n
〈ẋ2(t )〉 (69)

and

〈ẋ2(t )〉 = 〈x2n(t )〉 (70)

which provide the relation between the growth of average
kinetic and potential energies. The solution for the Ornstein-
Uhlenbeck driving was reported [34] to hold also for the
symmetric Markovian dichotomous noise, which in our case
yields

〈EDN(t )〉 = �
(

3n+1
4n−2

)
�

(
n+1

4n−2

)[
(2n − 1)2

2n2
4λμt

]n/(2n−1)

. (71)

At this point, we would like to underline that for an appro-
priate choice of parameters, despite a different character of
Markovian dichotomous and Ornstein-Uhlenbeck noises, both
noises could result in the same asymptotic scaling of average
total energies, i.e., 〈EOUN(t )〉/tn/(2n−1) tends to the same limit
as 〈EDN(t )〉/tn/(2n−1). More precisely, in order to reach the
same scaling, it is necessary to choose such parameters that
autocorrelation functions of both noises, which are given
by Eqs. (6) and (9), are the same. For n = 3, predictions
given by Eqs. (67) and (71) have been tested using Monte
Carlo simulations (see Fig. 7). MC tests have proven that at
sufficiently large time t scaling predicted by Eqs. (67) and (71)
is reached.

D. Infinite rectangular potential well (n = ∞)

In the limit of n → ∞ the potential well of x2n/2n type
transforms into the infinite rectangular potential well. A par-
ticle moving in the infinite rectangular potential well, except
time instants when it reflects from the boundary, moves like a
free particle. As we already noted, for the GWN the average
energy scales linearly in time for any single-well potential [see
Fig. 4 and Eq. (66)]. The time dependence of the rescaled
energy for n = ∞ for systems driven by Markovian dichoto-
mous noise and Ornstein-Uhlenbeck noise are presented in
Fig. 8. From Fig. 8 it can be deduced that in the n → ∞ limit
predictions given by Eqs. (67) and (71) (see [34]) are valid.

The presence of boundaries affects the scaling predicted by
Eq. (26). For example, the Markovian symmetric dichotomous
noise stays constant for exponentially distributed time τ , i.e.,

p(τ ) = λ exp(−λτ ) (72)

with average time 〈τ 〉 given by

〈τ 〉 = 1

λ
. (73)

At λ → 0 the Markovian dichotomous process stays constant.
Therefore, the motion of a particle is like a free fall of a
bouncing ball. It moves in the direction of the randomly
chosen boundary (the floor in the case of the bouncing ball),
i.e., to x = ±1 where the boundaries are located. After reflec-
tion at the boundary, the velocity is reversed and the particle
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FIG. 7. Behavior of total rescaled energy for OUN [top panel,
(a)] and DN [bottom panel, (b)] drivings for n = 3. Solid black lines
indicate theoretical asymptotic predictions.

returns to the origin, that is, to its starting point. At the origin
the motion is stopped and reversed by the external force.
In the chosen setup, the time needed to reflect for the first
time is

√
2. The particle returns to its starting point after

double the time, i.e., 2
√

2. In such case (λ = 0) the motion is
fully periodic with the period T = 2

√
2. The particle interacts

with the one boundary only, which is selected by the initial
value of the dichotomous noise. More precisely, for ξDN(0) =
+1 the particle reflects from the right boundary (x = +1)
only, while for ξDN(0) = −1 from the left boundary (x = −1)
only.

For λ = 0 the motion is fully deterministic thus the po-
sition p(x) and velocity p(v) densities consist of moving
delta peaks at the deterministic velocity v(t ) and the deter-
ministic position x(t ) (see Fig. 9). Due to the initial con-
dition set at the DN, i.e., ξDN = ±1, for λ = 0, there are
two symmetric peaks in p(v) and p(x) densities. With the
increasing switching rate λ the particle starts to change its
direction due to noise and the peaks smear out. For a large
switching rate λ, the velocity distribution resembles normal
density while the position distribution becomes uniform on
[−1, 1] [see Fig. 9(b)]. Therefore, σ (x) tends to 1/

√
3 ≈ 0.58

[see Fig. 10(b)].
Boundaries “modulate” how the energy is pumped into the

system over short times. By adjusting the correlation time
of the DN one can control the rate of the delivered energy
at long times [see Fig. 8(b)]. The increase in the switching
rate λ destroys the periodicity of 〈Ek (t )〉. For a large enough
λ the average kinetic energy grows in time, but the average
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FIG. 8. Behavior of total rescaled energy for OUN [top panel,
(a)] and DN [bottom panel, (b)] in the infinite rectangular poten-
tial well (n = ∞). Solid black lines indicate theoretical asymptotic
predictions.

level of energy reached at a fixed time is a monotonous
function of the switching rate λ only in the long-time limit
[see Fig. 8(b)]. In contrast, for a finite time t it can be
nonmonotonous as confirmed by crossing lines in Fig. 8(b).
For a finite λ, the average energy 〈E (t )〉 scales asymptotically
like t1/2. Nevertheless, another special limit should be dis-
cussed. The symmetric Markovian dichotomous noise reduces
to the Gaussian white noise in the limit of λ → ∞ under the
additional condition that noise values, here set to ±1, also
tend to infinity (see [11,35]). Consequently, for a sufficiently
large λ the average energy scales in the same manner as
for the GWN (i.e., 〈E (t )〉 ∝ t); however, the proportionality
coefficient depends on λ (i.e., it is 1/2λ) because values of the
Markovian dichotomous process are kept constant. Despite
the presence of the reflecting boundaries, this scaling is the
same as for a free particle. The transition from t1/2 to t scaling
of the average energy is due to the vanishing correlation time.
For the OUN, as can be seen in Fig. 8(a), one finds perfect
agreement with the scaling predicted by Eq. (67)

The energy of a particle trapped in the infinite rectangular
potential well subject to the action of DN grows slower
when the noise changes its state less often, i.e., the faster
the switching rate, the higher the coefficient (prefactor) with
which the energy grows in the t → ∞ limit. At the same
time the rescaled energy saturates slower, i.e., a longer time is
necessary to reach the asymptotic dependence. Thus, in prin-
ciple, one could control the amount of energy pumped over
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FIG. 9. Velocity p(v) [top panel, (a)] and position p(x ) [bottom
panel, (b)] histograms at a fixed time t = 10 for the infinite rectan-
gular potential well and dichotomous noise with various switching
rates λ. For the legend, see panel (a).

short times by modifying the width of the infinite rectangular
potential well. At long times the amount of delivered energy
can be adjusted by the correlation time.

III. SUMMARY AND CONCLUSIONS

We have studied the undamped motion in single-well po-
tentials of kx2n/2n type subject to the action of stochastic
driving. The absence of the damping term breaks the energy
balance because there is no dissipation in the system. Due
to the presence of noise, energy is pumped into the system.
Therefore, both average kinetic and potential energies grow
in time. The examination of the energy growth curve in
single-well potential wells constituted the main subject of this
research.

First of all, we have shown that undamped motion per-
turbed by the Gaussian white noise, in any single-well poten-
tial, results in the linear scaling of the average total energy. At
the same time, the dependence of average kinetic and potential
energies is sensitive to the potential type.

Furthermore, we have considered other, nonwhite, noise
types, i.e., the symmetric Markovian dichotomous noise and
the Ornstein-Uhlenbeck noise. For these two special types of
colored noises, average energies scale in time with the poten-
tial dependent exponent different from that of the Gaussian
white noise.
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FIG. 10. Standard deviation of velocity σ (v) [top panel, (a)] and
position σ (x ) [bottom panel, (b)] for the infinite rectangular potential
well and the Markovian dichotomous noise with various switching
rates λ. For the legend, see panel (a).

The limiting case of the infinite potential steepness (n →
∞) has also been studied. In such case, the potential of
kx2n/2n type reduces to the infinite rectangular potential well.
Therefore, the motion of the particle is affected by external
forces only during collision events with the ideally reflecting
boundaries. These collisions result in hard velocity reversals,
i.e., the velocity, which typically differs from zero, changes
its sign at the boundary. For the increasing n, the predicted
scaling of the average energy recorded for a finite n stays
valid under the condition that the noise correlation time stays
finite. In the special limit of a vanishing correlation time the
Markovian symmetric dichotomous noise and the Ornstein-
Uhlenbeck noise can be reduced to the Gaussian white noise.
Therefore, for a very small correlation time the scaling of the
average energy predicted for the Gaussian noise is recovered.
The dependence of the average energy scaling on details of
the system dynamics opens potential practical applications.
In particular, the undamped motion in single-well potentials
can be used to identify the underlying noise type. Finally,
the reintroduction of the damping term results in a situation
when the dissipation of energy prevents average energies
from an unlimited growth and the departure from the studied
regime.
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