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Ground-state properties of the one-dimensional transverse Ising model in a longitudinal
magnetic field
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The critical properties of the one-dimensional spin-1/2 transverse Ising model in the presence of a longitudinal
magnetic field were studied by the quantum fidelity method. We used exact diagonalization to obtain the ground-
state energies and corresponding eigenvectors for lattice sizes up to 24 spins. The maximum of the fidelity
susceptibility was used to locate the various phase boundaries present in the system. The type of dominant spin
ordering for each phase was identified by examining the corresponding ground-state eigenvector. For a given
antiferromagnetic nearest-neighbor interaction J2, we calculated the fidelity susceptibility as a function of the
transverse field Bx and the longitudinal field Bz. The phase diagram in the (Bx, Bz)-plane shows three phases.
These findings are in contrast with the published literature that claims that the system has only two phases. For
Bx < 1, we observed an antiferromagnetic phase for small values of Bz and a paramagnetic phase for large values
of Bz. For Bx > 1 and low Bz, we found a disordered phase that undergoes a second-order phase transition to a
paramagnetic phase for large values of Bz.
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I. INTRODUCTION

There is an ongoing interest in the zero-temperature prop-
erties of quantum spin systems [1,2]. In particular on the
nature of phase transitions that occur due to the presence
of pure quantum fluctuations since thermal fluctuations are
absent. These transitions are triggered when a Hamiltonian
parameter crosses a given value, upon which there occurs a
change in the spin arrangement in the underlying lattice. Such
transitions are regarded as second-order when the changes
of the ground-state properties are continuous. On the other
hand, if the changes are discontinuous the system undergoes
a first-order transition. All of these can only occur at the
thermodynamic limit, when the size of the system is infinite.

The one-dimensional (1D) transverse Ising model in a
longitudinal field is a relatively simple model that displays
both continuous and discontinuous transitions. Thus it has
drawn a considerable amount of interest in the literature. Sev-
eral approaches have been used to study that model, namely,
entanglement measures [2], simulations with ultra-cold atoms
in optical lattices [3–6], density matrix renormalization group
(DMRG) [7–10], quantum Monte Carlo [11], neural networks
[12], exact diagonalization [13,14], and finite size scaling
[15,16]. In numerical calculations, finite-size scaling is often
employed to infer the location of the transitions in the thermo-
dynamic limit.
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In the present work, we use the fidelity method to find the
zero-temperature phase diagram of the 1D spin-1/2 transverse
Ising model in a longitudinal field. In what follows, we present
a partial summary of the works that have appeared in the
literature. A comprehensible review of the fidelity approach
can be found in Ref. [17]. That method is well suited to the
identification of phase changes, as it relies upon the detailed
properties of the ground-state eigenvectors [18–21]. It is very
sensitive to changes in the quantum state of the system and
provides precise information about the location of the phase
transitions as a given Hamiltonian parameter is varied. The
nature of the transition can also be determined by the method.
It has been used to detect and characterize a variety of phase
transitions without requiring prior knowledge of the local
order parameter of the system. This point of view also leads
to new ways of looking at phase transitions and reveals the
origin of their universalities.

Due to its simplicity and ability to locate phase transitions,
quantum fidelity has been used in quantum information theory
[22] and for the identification of topological phases in con-
densed matter physics [19,20]. A unified approach connecting
Berry phases and quantum fidelity has been established [23].
Monte Carlo schemes were introduced to compute the fidelity
and its susceptibility for large interacting many-body systems
in arbitrary dimensions [24]. An analysis of the transverse
Ising model in the thermodynamic limit shows the universal
properties of the fidelity near a critical point [25].

The fidelity method has also been used to identify the
universality class of the quantum transitions in the 1D asym-
metric Hubbard model [26]. Scaling relations for the fidelity
susceptibility in the quantum critical regime have been derived
[27]. The scaling behavior of the fidelity susceptibility in
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the vicinity of a quantum multicritical point has been also
studied [28]. The quantum properties of the two-dimensional
version of the present model have been investigated by ex-
act diagonalization using both longitudinal and transverse
fidelity susceptibilities [29]. An exact expression for the fi-
delity susceptibility for the Ising model in a transverse field
has been derived [30]. Quantum fidelity has been used to
identify ground-state degeneracy of quantum spin systems
[31]. The behavior of the ground-state fidelity susceptibility
in 1D quantum systems displaying a Berezinskii-Kosterlitz-
Thouless type transition has been also investigated [32]. A
method to calculate the fidelity susceptibility of correlated
bosons, fermions, and quantum spins systems at both zero and
non-zero temperatures has been proposed using a variety of
quantum Monte Carlo methods [33]. An extension and gen-
eralization of the application of the fidelity susceptibility to
strongly correlated lattices systems has been put forward [34].
Closed-form expressions for the fidelity susceptibility of the
anisotropic XY -model in a transverse field has been recently
found [35]. Dynamical phase transitions at finite temperatures
have recently been studied in topological systems by means of
fidelity susceptibility [36].

Recently, the fidelity method was used to study the trans-
verse Ising model with next-to-nearest neighbor interactions
[21], where it uncovered other quantum phases whose exis-
tence had been overlooked by other approaches. Thus, the fi-
delity method helped to uncover a much richer phase diagram
for that model.

The phase diagrams found in the literature for the 1D
spin-1/2 transverse Ising model in a longitudinal field show
an antiferromagnetic phase at low fields and a paramagnetic
phase at high fields [2,3,7]. There appears a transition line
for a continuous transition belonging to the same universal-
ity class of the 2D Ising model [13]. When the transverse
field vanishes, the model shows a multicritical point where
a first-order transition occurs. The phase diagrams in the
literature show a single transition between antiferromagnetic
and paramagnetic phases. As we shall see below, our fidelity
approach uncovers an additional phase boundary line between
the paramagnetic phase and a disordered phase, in addition to
reproducing the boundary line found in the literature.

This paper is organized as follows. In Sec. II we present the
model, while in Sec. III we discuss the fidelity susceptibility
method. In Sec. IV we present our results and finally, we
summarize our results in Sec. V.

II. THE MODEL

The 1D transverse Ising model in the presence of a longi-
tudinal field is written as

H = J2

∑

i

σ z
i σ z

i+1 − Bx

∑

i

σ x
i − Bz

∑

i

σ z
i . (1)

The chain consists of L spin-half interacting spins, written
in terms of Pauli operators, where σα

i (α = x, y, z) is the α-
component located at site i. We consider a chain with periodic
boundary conditions. The nearest-neighbor Ising coupling is
antiferromagnetic, that is J2 > 0, while the applied longitu-
dinal field Bz > 0 tends to align the spins ferromagnetically.
For Bz > 0 the model is gapped with a non-degenerate ground

state. Finally, quantum fluctuations are induced by a trans-
verse magnetic field Bx . In what follows, we take J2 = 1 as
the energy unit.

When Bx = 0, the Hamiltonian reduces to the Ising model
in a longitudinal magnetic field. In that case the model shows
a first-order phase transition at Bz = 2.0. For Bx � 0, the
ground state of the system in the low-field regime (Bz < 2.0)
is antiferromagnetic, whereas for high fields (Bz > 2.0) it is
paramagnetic separated by a second-order transition except
at the multicritical point (Bx, Bz) = (0.0, 2.0), where the
quantum fluctuations are suppressed and a classical first-order
phase transition occurs [3].

On the on the hand, for Bz = 0, the Hamiltonian becomes
the transverse Ising model, whose ground-state properties
were exactly obtained by Pfeuty in 1970 [37]. He found that
quantum fluctuations induced by the transverse field drive the
system through a second-order phase transition at Bx = 1.0.
At low fields the phase is antiferromagnetic, whereas for high
fields it is disordered.

III. THE FIDELITY APPROACH

Consider a Hamiltonian that depends on an arbitrary pa-
rameter λ, which drives the system through a phase transition
when λ = λc. We define the quantum fidelity of a ground
state as the magnitude of the overlap between two neighboring
ground states, namely,

F (λ, δ) = |〈ψ (λ) | ψ (λ + δ)〉|, (2)

where |ψ〉 is the normalized non-degenerate ground-state
eigenvector evaluated near a given value of λ by an arbitrary
small shift δ.

Quantum fidelity also depends on the system size. As the
system approaches a quantum transition, the fidelity behavior
changes dramatically. It drops from a level close to unity on
either side of the transition point, to a minimum value at the
transition point. This is caused by the distinct nature of the
ground state at each side of that transition point.

Instead of working with quantum fidelity as defined above,
it is preferable to work with the fidelity susceptibility, which is
obtained by expanding the fidelity as a Taylor’s series for very
small δ about λ. Assuming that the ground state is normalized,
the fidelity susceptibility can be written as

χ (λ) = 2(1 − F (λ, δ))/δ2 + O(δ2). (3)

In the present work, the ground-state energy and eigen-
vector for a given λ are found by using both Lanczos
and conjugate gradient methods. The latter has been used
in Hamiltonian models in statistical physics and transfer-
matrix techniques [38,39]. For a given accuracy, both methods
give the same results for the ground-state eigenvectors and
energies.

Since the Hamiltonian (1) depends on two independent
parameters, Bx and Bz, we must investigate each of their
associated susceptibilities. To differentiate between them, we
use the notation χγ (λ), where λ is chosen as one of the
fields, and γ is the other field, which is kept fixed during
the calculations. In our numerical calculations, the boundary
lines are found by using Eq. (3) with δ = 0.001 with a range
of accuracy between 10−12 and 10−14 for the ground-state
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energy, depending on the chain size. For each λ, the location
of the phase boundary is determined by the maximum of the
fidelity susceptibility.

We write the Hamiltonian using the standard basis consist-
ing of a tensor product of L eigenstates of the z-component of
the Pauli operator σ z

i located at site i, namely |n〉 = ∏L
i |s〉i .

On each site i we have s = 0, 1, where |s = 1〉i denotes
the eigenvector of σ z

i for an up-spin, and |s = 0〉i is the
corresponding eigenvector for a down-spin. The index n labels
the basis states and has the values n = 0, 1, . . . , N − 1, with
N = 2L which denotes the size of the Hilbert space.

By writing the basis index n in binary notation, each of the
L binary digits will represent the z-component of the spin at
a given site i of a lattice with L spins. An arbitrary eigenstate
of the Hamiltonian can therefore be written as

|φα〉 =
N−1∑

n=0

aα (n)|n〉, (4)

where the energy levels are labeled by α = 0, 1, . . . , N − 1.
In particular, α = 0 is assigned to the ground state.

Because of the symmetry of the Hamiltonian (1), the coef-
ficients aα (n) are real. The full wave vector can be visualized
by plotting the amplitudes aα (n) for any lattice size L, as a
function of the state index n in a single graph [40–42].

IV. RESULTS

In our numerical calculations we used even lattice sizes
from L = 8 to 24. This choice of lattice sizes preserves
the symmetry of the ground state when the system is in the
antiferromagnetic phase. In addition, it avoids undesirable
frustration effects due to the finite size of the system and
the imposed periodic boundary conditions.

To obtain the phase diagram of the model, we first calcu-
lated the fidelity susceptibility as a function of the transverse
field Bx for a fixed longitudinal field Bz. We represented this
susceptibility as χBz

. In Fig. 1 we show the behavior of χBz

for three lattice sizes L = 12, 16, and 24, for the particular
value of the longitudinal field Bz = 0.5. The maximum of the
susceptibility for each lattice size is taken as the quantum tran-
sition point from antiferromagnetic to paramagnetic phases
for this particular value of longitudinal field.

By carrying out such calculations for different values of
longitudinal fields in the interval (0,2), we obtained the phase
diagram shown in Fig. 2. The results for L = 12 (open cir-
cles), 16 (squares), and 24 (diamonds) are shown together
with the critical boundary (dashed line) from [7] calculated
using DMRG. As one can see, by increasing the lattice sizes
from L = 12 to 24 the critical line from the fidelity method
gradually approaches the DMRG results. The critical line for
L = 24 is almost indistinguishable from that of DMRG. This
is the full phase diagram of the model, as reported in the
literature [2,3,7].

However, an analysis of the phase transitions for small
longitudinal or transverses fields shows an inconsistency in
the phase diagram of Fig. 2. For instance, for small trans-
verse fields we expect an antiferromagnetic to paramagnetic
phase transition boundary near Bz = 2. On the other hand,
in the limit of small longitudinal fields, and based on the
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L=16
L=24

Bz= 0.5

FIG. 1. Fidelity susceptibility as a function of the transverse field
Bx for a fixed longitudinal field Bz = 0.5, and lattice sizes L = 12,
16, and 24. The maximum of the susceptibility specifies the location
of the transition point. We set J2 = 1 as the unity of energy for this
and the subsequent figures.

exact results for the transverse Ising model, we expect an
antiferromagnetic to disordered transition near Bx = 1.

Another way to see this is that for low Bx and high Bz, the
spins should be pointing in the z-direction and for opposite
case, namely low Bz and high Bx , the spins should be pointing
in the x-direction. Thus these two configurations cannot be
part of the same phase. Therefore a phase boundary between
the disordered-paramagnetic phase must be present in the
phase diagram, Fig. 2.

We will show below that by evaluating a second fidelity
susceptibility for a fixed transverse field (χBx

) this missing
phase boundary can be located. As in the case of Fig. 2,
we first calculated the susceptibility χBx

as a function of

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Bx

0.0

0.5

1.0

1.5

2.0

Bz

J2 = 1.0

Antiferromagnetic

Paramagnetic

FIG. 2. Phase diagram in the (Bx, Bz )-plane for chains sizes
L = 12 (circles), 16 (squares), and 24 (diamonds), obtained from the
maximum of χBz

. The model shows two phase regions, antiferromag-
netic and paramagnetic. The transition points (Bx, Bz ) = (0, 2) and
(Bx, Bz ) = (1, 0) are exact results. The dashed line is the critical line
from DMRG results (Ref. [7]).
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FIG. 3. Fidelity susceptibility vs longitudinal field Bz for a chain
of size L = 24, and fixed transverse fields Bx = 1.5 and 0.5 (inset).
The maximum of the susceptibility locates the transition point.

Bz for fixed values of Bx . Figure 3 shows the results for
Bx = 1.5 and 0.5 (inset). The value Bx = 0.5 lies within the
antiferromagnetic phase, while Bx = 1.5 is in the disordered
phase.

A point worth noticing in Fig. 3 is the relatively high
ratio between the two fidelity susceptibility maxima. The
susceptibility maximum across the transition from the anti-
ferromagnetic phase to the paramagnetic phase, shown in the
inset, is about 35 times larger than that of the maximum for
the disordered to paramagnetic phase of the main figure. That
is to be expected since the destruction of the antiferromagnetic
order produces a very small fidelity (overlap of the wave
functions) at the transition, hence a large susceptibility. On
the other hand, the overlap between the disordered and the
paramagnetic phases should be substantially larger, since no

0.0 0.5 1.0 1.5 2.0
Bx

0.0

0.5

1.0

1.5

2.0

Bz

J2 = 1.0

Antiferromagnetic Disordered

Paramagnetic

FIG. 4. Phase diagram in the (Bx, Bz )-plane for chains with
L = 12 (circles), 16 (squares), and 24 (diamonds), obtained from
the maxima of χBx

. The model shows three phase regions, antifer-
romagnetic, paramagnetic, and disordered. The transition points at
(Bx, Bz ) = (0, 2) and (Bx, Bz ) = (1, 0) are known exact results. The
dashed line is the critical line from DMRG (Ref. [7]).
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FIG. 5. Critical value Bz at the transition line between disordered
and paramagnetic phases as a function of 1/L for Bx = 1.5. The
extrapolated straight line to the origin yields the thermodynamic
value Bz = 1.788.

particular spin ordering is being broken, causing the suscep-
tibility peak to be much less pronounced. Perhaps that is the
reason why the disorder to paramagnetic transition has been
overlooked in the treatments using other methods [2,3,7].

The phase diagram obtained using the maxima of χBx
for

magnetic fields in the interval (0 � Bz, Bx � 2) for lattice
sizes L = 12, 16, and 24 is depicted in Fig. 4. For comparison,
we have also included the DMRG results (dashed line). For
Bx < 1, the transition boundary between the antiferromag-
netic and paramagnetic phases gets closer to the DMRG
results as the chain size increases (although the convergence
is slower for the susceptibility χBz

). Along that line, the

0.0 0.5 1.0 1.5 2.0
Bx

0.0

0.5

1.0

1.5

2.0

Bz

J2 = 1.0

Antiferromagnetic Disordered

Paramagnetic

FIG. 6. Full phase diagram of the model in the (Bx, Bz )-plane
in the thermodynamic limit. The open circles for Bx < 1.0 are from
DMRG (Ref. [7]). The diamonds for Bx > 1.0 are our results in the
L → ∞ limit obtained from finite-size scaling. The model shows
three phase regions, antiferromagnetic, paramagnetic, and disor-
dered. The transition points (Bx, Bz ) = (0, 2) and (Bx, Bz ) = (1, 0)
are known exact results. These phases are separated by second-order
phase transitions.
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FIG. 7. Ground-state amplitudes vs the basis state index n for
(Bx, Bz ) = (0.5, 0.2), within the antiferromagnetic phase for L =
12. The two largest amplitudes correspond to an antiferromagnetic
ordering. The smaller amplitudes are a signature of the transverse
magnetic field.

transition is of second-order. The critical exponents could
possibly be obtained from the behavior of the fidelity suscep-
tibility with the system size. However, an analysis based on
DMRG calculations has already established that the system is
in the same universality class as the 2D Ising model, hence
the same critical exponents. In addition, the model has the
same central charge (c = 1/2) of the conformal field theory of
the 2D Ising model. On the other hand, for Bx > 1, our fidelity
results for the phase boundaries of different lattice sizes
converge quite rapidly. The boundary between the disordered
and paramagnetic phases for L = 16 and L = 24 are already
indistinguishable in the scale of the figure.

Figure 5 illustrates the convergence of results for the
critical field Bz as we consider larger lattices. In that figure,
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Bx= 2.0
Bz= 0.1

L = 12
J2 = 1.0

FIG. 8. Ground-state amplitude vs basis state index n, for
(Bx, Bz ) = (2.0, 0.1), in the disordered phase for L = 12. This spin
configuration corresponds to a disordered phase. The two largest
amplitudes are for antiferromagnetic ordering. The smaller, yet
comparable, amplitudes arise from quantum effects of the transverse
magnetic field.
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L = 12
J2 = 1.0

FIG. 9. Ground-state amplitudes vs basis state index n for
(Bx, Bz ) = (1.5, 2.0), within the paramagnetic phase for L =
12. The largest amplitude corresponds to the ferromagnetic
configuration.

Bx = 1.5. It shows the values of Bz which maximize the
susceptibility as a function of the inverse lattice size 1/L. As
can be seen, the data converges rapidly to Bz = 1.788 at the
thermodynamic limit. Thus, the two fidelity susceptibilities
χBx

and χBz
complement each other in the determination

of the phase boundaries. By combining the results of the
present work and those of DMRG, we arrived at the full phase
diagram for the model, depicted in Fig. 6.

The spin configuration of each phase can be found by
plotting the ground-state eigenvector amplitudes as a function
of the ground-state index n. As a working example we shall
use L = 12. For the point (Bx, Bz) = (0.5, 0.2) inside the
antiferromagnetic phase, we obtained the plot depicted in
Fig. 7. The two largest amplitudes are at n = 1365 and n =
2730, corresponding to a ground state in the binary representa-
tion |010101010101〉 and |101010101010〉, respectively. The
much smaller amplitudes are transverse field effects.

Moving to the disordered phase, we consider now the point
(Bx, Bz) = (2.0, 0.1), where the ground-state amplitudes are
shown in Fig. 8. Although the antiferromagnetic component
is still present (due to the Ising interactions) as the larger
component of the amplitudes, many other components with
comparable amplitudes are also present.

Finally, we considered (Bx, Bz) = (1.5, 2.0), inside the
paramagnetic phase. We obtained the graph shown in Fig. 9.
The largest amplitude at n = 4096 corresponds to the ferro-
magnetic configuration with all spins pointing in the direction
of the field. The second largest amplitudes also correspond to
a ferromagnetic configuration with all spins but one aligned
with the field. The third largest amplitudes still correspond to
a ferromagnetic configuration with all spins but two aligned
with the field. Similar ferromagnetic configurations are found
for the smaller amplitudes.

V. SUMMARY AND CONCLUSIONS

The ground-state properties of the transverse Ising model
in the presence of a longitudinal field were analyzed us-
ing the quantum fidelity method. The phase diagram in the
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(Bx, Bz)-plane shows three phases, in contrast to results from
the literature which show only two phases. The phases are an-
tiferromagnetic, paramagnetic, and disordered. These phases
are separated by second-order phase transitions. We have also
analyzed the spin configurations of the ground state of each
corresponding phase. The spin configurations on each phase
clearly show distinct characteristics.
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