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Approximating microswimmer dynamics by active Brownian motion: Energetics and efficiency

Jannik Ehrich* and Marcel Kahlen
Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany

(Received 19 September 2018; published 11 January 2019)

We consider the dynamics of a microswimmer and show that they can be approximated by active Brownian
motion. The swimmer is modeled by coupled overdamped Langevin equations with periodic driving. We
compare the energy dissipation of the real swimmer to that of the active Brownian motion model, finding that the
latter can massively underestimate the complete dissipation. This discrepancy is related to the inability to infer
the full dissipation from partial observation of the complete system. We introduce an efficiency that measures
how much of the dissipated energy is spent on forward propulsion.
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I. INTRODUCTION

Microswimmers are small-scale biological or artificial ob-
jects with an active self-propulsion mechanism [1,2].

Their hydrodynamics have been the object of a long-
standing interest dating back to Purcell and the famous Scal-
lop theorem [3]. Since then, a number of microswimmer
models have been introduced, e.g., assemblies of coupled
spherical particles which achieve directed motion through
their interactions. These include the three-sphere-swimmer by
Najafi and Golestanian [4], of which there has also been an
experimental realization [5], and other similar models [6–8].

While microswimmers can have a rather complex struc-
ture, their movement is often described by active Brownian
motion, i.e., Brownian motion in two or three dimensions with
a constant force whose direction undergoes free diffusion.

Although active (e.g., Janus) particles are correctly mod-
eled by active Brownian motion, for microswimmers this
approximation is valid at most for the body of the swimmer.
This is because it neglects the motion of those degrees of
freedom needed to propel it forward. This fact is especially
relevant when considering energy dissipation.

In the following, we use stochastic thermodynamics [9,10]
to describe the energetics of small-scale systems. It enables
assigning heat and work [11] as well as an entropy produc-
tion [12] to individual trajectories described by overdamped
Langevin dynamics and thus provides a framework for ana-
lyzing dissipation of stochastic systems.

It is well known that the presence of hidden slow degrees
of freedom has an impact on central results of stochastic
thermodynamics [13–18]. Typically, an effective description
of the visible degrees of freedom is obtained by employing
a coarse-graining scheme. However, the average dissipation
inferred from such a description is underestimated [15,16].
With a concrete model, one is able to quantify the difference
between the coarse-grained and the complete dissipation.

Recently, there have been efforts to formulate stochas-
tic thermodynamics for active matter systems [19–24]. The
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discussion revolves around assigning an adequate trajectory-
dependent entropy production to the dynamics of active Brow-
nian particles.

However, since active Brownian motion neglects relevant
degrees of freedom of the complete microswimmer dynamics,
it is interesting to compare the energy dissipation of the
approximate description to that of a more complex swimmer
model.

Therefore, the aims of this paper are the following: (1)
Propose a microswimmer model that consists of two driven
coupled colloidal particles and is able to generate self propul-
sion. (2) Specify how active Brownian motion results from
a coarse-graining scheme applied to the model to be able to
compare the energy dissipation rates. (3) Having established
that active Brownian motion is an approximate process, con-
trast its dissipation rate with that of the real swimmer and
define a swimming efficiency.

II. MODEL

The propulsion mechanism of our microswimmer model
shall mirror a nonreciprocal periodic shape transformation.
A viable approximation of such a swimmer consists of many
coupled spherical particles [7,8] which interact through time-
dependent internal forces, yielding the desired shape transfor-
mation.

Therefore, we study the most simplified version of this
setting: two spherical Brownian particles submersed in a
solution at temperature T . We assume overdamped dynamics.
The particles have different time-dependent mobilities ν1(t )
and ν2(t ), respectively, and are coupled by a time-dependent
interaction potential V (r; l(t )) with l(t ) controlling the equi-
librium separation between the particles. Here, r denotes
the distance between the particles at positions r1 and r2,
respectively.

Swimming is achieved by periodically switching the equi-
librium distance between a short and a long value and ad-
ditionally varying the two mobilities between a high and a
low value. We choose dimensionless quantities such that the
short length and the high mobility are both equal to one.
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FIG. 1. Schematic representation of the microswimmer dynam-
ics. The equilibrium distance of the interaction potential is periodi-
cally switched between a long length L and a short length 1 . The
individual mobilities are switched between a high mobility 1 and a
low mobility ν in phase with the length variation.

Additionally, we set the Boltzmann constant to unity through-
out. The protocol is then given by

l(t ) =
{
L, 0 � mod (t,�t ) < �t

2
1, �t

2 � mod (t,�t ) < �t
, (1a)

ν1(t ) =
{
ν, 0 � mod (t,�t ) < �t

2
1, �t

2 � mod (t,�t ) < �t
, (1b)

ν2(t ) =
{

1, 0 � mod (t,�t ) < �t
2

ν, �t
2 � mod (t,�t ) < �t,

, (1c)

where L > 1 is the longer length, 0 � ν < 1 is the lower
mobility, and �t is the cycle time. Varying the mobilities
can be thought of as inflating or deflating the spheres, which
changes the coefficient of Stokes’s friction. Figure 1 shows
a schematic representation of the swimmer’s movement. We
also compiled a video illustrating the swimmer’s motion in
two dimensions [25].

A version of this model has been introduced by Avron
et al. [6], who also analyzed its hydrodynamics. Here, we in-
corporate thermal fluctuations and model the dynamics using
overdamped Langevin equations:

ṙ1 = −ν1(t ) ∇1V (r, l(t )) +
√

2ν1(t )T ξ 1(t ), (2a)

ṙ2 = −ν2(t ) ∇2V (r, l(t )) +
√

2ν2(t )T ξ 2(t ), (2b)

where ξ 1(t ) and ξ 2(t ) are zero-mean Gaussian white
noise terms whose Cartesian components k and l satisfy
〈ξ (k)

i (t ) ξ
(l)
j (t ′)〉 = δij δkl δ(t − t ′).

The swimmer’s dynamics are reminiscent of a flashing
ratchet [26]. Here, directed motion is a result of the damping
which violates momentum conservation. A similar model
implementing a kind of feedback ratchet has been introduced
by Ambía and Híjar [27,28].

In the following, we will analyze the model first in one
and later in two dimensions and show that the center of mass
performs active Brownian motion in the limit of small cycle
times �t .

III. ONE-DIMENSIONAL SWIMMER

For the one-dimensional swimmer we choose a harmonic
coupling V (r; l(t )) = 1

2 (r − l(t ))2. The particles are at po-
sitions x1 and x2, respectively. Their distance is given by
r = x2 − x1. The Langevin Eqs. (2) then read

ẋ1 = ν1V
′ +

√
2ν1T ξ1, (3a)

ẋ2 = −ν2V
′ +

√
2ν2T ξ2, (3b)

where we used V ′ := ∂rV (r; l) and dropped the explicit time-
dependence. Switching to center of mass X := 1

2 (x1 + x2)
and relative coordinates, one obtains

ṙ = −(ν1 + ν2)V ′ −
√

2ν1T ξ1 +
√

2ν2T ξ2, (4a)

Ẋ = ν1 − ν2

2
V ′ +

√
ν1T

2
ξ1 +

√
ν2T

2
ξ2. (4b)

The ensemble distribution p(r,X; t ) evolves according to
the corresponding Fokker-Planck equation:

∂t p(r,X; t ) = L(t ) p(r,X; t ), (5)

with the generator

L(t ) := (ν1 + ν2)∂rV
′ − ν1 − ν2

2
V ′∂X − T (ν1 − ν2)∂r∂X

+ T (ν1 + ν2)∂2
r + T

ν1 + ν2

4
∂2
X. (6)

Due to the linear drift and piecewise constant diffusion
coefficients in Eq. (5), a Gaussian ansatz yields the following
evolution equations for the cumulants:

μ̇r = −(ν1 + ν2)(μr − l), (7a)

μ̇X = ν1 − ν2

2
(μr − l), (7b)

ċrr = −2(ν1 + ν2)crr + 2T (ν1 + ν2), (7c)

ċrX = ν1 − ν2

2
crr − (ν1 + ν2)crX − T (ν1 − ν2), (7d)

ċXX = (ν1 − ν2)crX + T
ν1 + ν2

2
. (7e)

Because of the periodic driving, p(r,X; t ) does not become
stationary. However, the cumulants involving the r-coordinate
reach a periodic stationary state specified by

μr (t + �t ) = μr (t ),

crr (t + �t ) = crr (t ),

crX(t + �t ) = crX(t ). (8)

During a full cycle, the remaining cumulants grow by the
constant increments �μX and �cXX, respectively,

μX(t + �t ) = μX(t ) + �μX,

cXX(t + �t ) = cXX(t ) + �cXX. (9)
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FIG. 2. Time evolution of the cumulants for the one-dimensional swimmer. The cumulants involving the relative coordinate r (left) are
in a periodic steady state. The mean and variance of the center of mass coordinate (right) grow by constant increments during a full cycle.
Solid lines show the analytic solutions for system parameters L = 2, ν = 0.2, T = 0.4, and �t = 4. Symbols represent simulations results for
N = 105 trajectories with time step dt = 10−3. The initial condition of the simulations represents an experimentally realizable situation: The
microswimmer is held fixed at X = 0 and the relative coordinate is allowed to equilibrate. Therefore, all trajectories are started from X = 0
and r is drawn from the periodic steady state which explains the transient relaxation of crX and cXX .

Assuming that the swimmer starts in the periodic stationary
regime specified by Eqs. (8) and (9), we solve Eqs. (7) with
the additional assumption μX(0) = 0. The solutions for the
mean values in the interval t ∈ [0,�t] are then given by

μr (t ) =
{

L + σ−2t (1−L)
1+σ−�t , 0 � t � �t

2

1 + σ−2t+�t (L−1)
1+σ−�t , �t

2 � t � �t
, (10a)

μX(t ) =
{

(1−ν)(1−L)(σ−2t−1)
2(1+ν)(1+σ−�t ) , 0 � t � �t

2
(1−ν)(1−L)(σ−2t+�t+σ−�t−2)

2(1+ν)(1+σ−�t ) , �t
2 � t � �t

, (10b)

where σ := exp ( 1+ν
2 ). Similarly, we obtain crr (t ) ≡ T ,

crX(t ), and cXX(t ). We omit the full time dependence of the
latter two in favor of brevity. The constant increments are
given by

�μX = (L − 1)
1 − ν

1 + ν
tanh

(
ν + 1

4
�t

)
, (11a)

�cXX = 2νT

ν + 1
�t + 2T

(1 − ν)2

(ν + 1)2
tanh

(
ν + 1

4
�t

)
. (11b)

With these results, the full solution can be assembled. It is
shown for a representative set of parameters in Fig. 2 together
with results from numerical simulations of the Langevin
Eqs. (3).

A. Coarse-graining in the limit of short cycle times

Due to the constant increments of the mean and variance
of the center of mass coordinate X, a measurement of the
center of mass position with low time resolution will yield
biased diffusion. Indeed, in realistic scenarios, tracking of a
microswimmer will focus only on the center position. The
swimmer’s additional degrees of freedom which accomplish
propulsion will mostly be too small and too fast to be accu-
rately resolved. Hence, we analyze the model in the limit of

very small cycle times �t → 0 and subsequently integrate out
the r-variable.

The generator [Eq. (6)] is periodic and time independent
within each of the two phases. Thus, it may be written as

L(t ) =
{
L1, 0 � mod (t,�t ) < �t

2
L2,

�t
2 � mod (t,�t ) < �t

, (12)

with time-independent generators L1 and L2 for the first and
the second phases, respectively. For small �t , the solution of
the Fokker-Planck Eq. (5) can be expanded up to terms of
order �t :

p

(
r,X;

�t

2

)
= p(r,X; 0) + �t

2
L1 p(r,X; 0), (13a)

p(r,X,�t ) = p

(
r,X;

�t

2

)
+ �t

2
L2 p

(
r,X;

�t

2

)
.

(13b)

Therefore,

p(r,X; �t ) − p(r,X; 0)

�t
= L1 + L2

2
p(r,X; 0), (14)

and for �t → 0 we obtain the Fokker-Planck equation:

∂t p(r,X; t ) = L̄p(r,X; t ), (15)

with the effective generator

L̄ := L1 + L2

2
, (16)

= (ν + 1)∂r

(
r − L + 1

2

)
− (L − 1)

1 − ν

4
∂X

+ (1 + ν)T ∂2
r + 1 + ν

4
T ∂2

X, (17)

where we used Eq. (6).
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FIG. 3. Mean center of mass position μX (t ) of the one-
dimensional microswimmer for different cycle times �t . The shorter
the cycle duration, the better the dynamics of the center of mass are
described by biased diffusion. The system parameters are L = 3, ν =
0.7, and T = 0.2. Symbols represent simulations of the Langevin
Eqs. (3) of the complete dynamics (N = 105 trajectories, time step
dt = 10−2).

Upon integration of Eq. (15) over r , we obtain an effective
equation for the center of mass:

∂tp(X; t ) = −νefffeff ∂Xp(X; t ) + νeff T ∂2
Xp(X, t ), (18)

with the effective mobility

νeff = 1 + ν

4
(19)

and the constant force

feff = (L − 1)
1 − ν

1 + ν
. (20)

Note that, as expected, the constant force vanishes in the limits
ν → 1 (no change of mobilities) and L → 1 (no change of the
equilibrium distance).

The corresponding Langevin equation describes biased
diffusion (see, e.g., Ref. [29]):

Ẋ = νefffeff +
√

2νeff T ξ (t ). (21)

This first central finding shows that the complex microswim-
mer dynamics simplify to biased diffusion of the center of
mass in the limit of small cycle times. Figure 3 shows how
the mean value μX(t ) approaches the limit of biased diffusion
where μ(t ) = νefffeff t when �t → 0. Similar results hold for
the variance cXX.

IV. TWO-DIMENSIONAL SWIMMER

We proceed to analyze the model in two dimensions. Here,
it has a richer structure as there is an additional rotational
diffusion of the swimmer. The particles are at positions
(x1, y1) and (x2, y2), respectively. Their distance is given by
r =

√
(x2 − x1)2 + (y2 − y1)2. For the interaction potential

we choose

V (r; l(t )) = 1

r
+ 1

2
(r − l(t ))2, (22)

which now also contains a repulsive term needed to enable
smooth rotational diffusion as we shall see later.

The Langevin Eqs. (2) read

ẋ1 = ν1V
′ x2 − x1

r
+

√
2ν1T ξ

(x)
1 , (23a)

ẏ1 = ν1V
′ y2 − y1

r
+

√
2ν1T ξ

(y)
1 , (23b)

ẋ2 = −ν2V
′ x2 − x1

r
+

√
2ν2T ξ

(x)
2 , (23c)

ẏ2 = −ν2V
′ y2 − y1

r
+

√
2ν2T ξ

(y)
2 . (23d)

Introducing the angle φ := arctan y2−y1

x2−x1
and the center of

mass coordinates X := 1
2 (x1 + x2) and Y := 1

2 (y1 + y2) we
obtain

Ẋ = ν1 − ν2

2
V ′ cos φ +

√
ν1T

2
ξ

(x)
1 +

√
ν2T

2
ξ

(x)
2 , (24a)

Ẏ = ν1 − ν2

2
V ′ sin φ +

√
ν1T

2
ξ

(y)
1 +

√
ν2T

2
ξ

(y)
2 , (24b)

ṙ = −(ν1 + ν2)V ′ +
√

2T (cos φ ζ (x) + sin φ ζ (y) ), (24c)

φ̇ =
√

2T

r
(cos φ ζ (y) − sin φ ζ (x) ), (24d)

where

ζ (x) = √
ν2 ξ

(x)
2 − √

ν1 ξ
(x)
1 , (25a)

ζ (y) = √
ν2 ξ

(y)
2 − √

ν1 ξ
(y)
1 . (25b)

If the Langevin Eqs. (24) are interpreted in the
Stratonovich sense, the corresponding Fokker-Planck equa-
tion for the joint distribution p = p(X, Y, r, φ; t ) reads [30]

∂tp =
{
Lrφ + LXY + (ν2 − ν1)T

[
cos φ

(
∂2
rX + 1

r
∂2
φY

)

+ sin φ

(
∂2
rY − 1

r
∂2
φX

)]}
p, (26)

with

Lrφ = (ν1 + ν2)

[
∂r

(
V ′ − T

r

)
+ T ∂2

r + T

r2
∂2
φ

]
(27)

and

LXY = (ν2 − ν1)

(
V ′

2
− T

r

)
(cos φ ∂X + sin φ∂Y )

+ ν1 + ν2

4
T

(
∂2
X + ∂2

Y

)
. (28)

A. Coarse-graining in the limit of short cycle times

We now investigate the limit �t → 0. In analogy to
Sec. III A, we use Eqs. (15), (16), and (22) to obtain an
effective Fokker-Planck equation:

∂tp(r, φ,X, Y ; t ) = (L̄rφ + L̄XY )p(X, Y, r, φ; t ), (29)
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where

L̄rφ = (1 + ν)∂r

(
− 1

r2
− T

r
+ r − L + 1

2

)

+ (1 + ν)T

(
∂2
r + 1

r2
∂2
φ

)
, (30)

L̄XY = νefffeff (cos φ ∂X + sin φ ∂Y ) + νeffT
(
∂2
X + ∂2

Y

)
.

(31)

The effective mobility νeff and constant force feff are again
given by Eqs. (19) and (20), respectively.

Integrating Eq. (29) over X, Y , and φ, we obtain a Fokker-
Planck equation for the marginal distribution pr = pr (r; t ) of
the relative coordinate:

1

1 + ν
∂tpr =

[
∂r

(
− 1

r2
− T

r
+ r − L + 1

2

)
+ T ∂2

r

]
pr.

(32)

Its solution for long times t yields the steady-state distribution
of r:

pst
r (r ) = r

Z
exp

[
− 1

T
V

(
r;

L + 1

2

)]
, (33)

where Z ensures normalization and V (r; l) is given by
Eq. (22).

As before, we assume that the relative coordinate has
reached its periodic steady state. Thus, with the ansatz
p(X, Y, r, φ; t ) = p(X, Y, φ; t ) pst

r (r ) and using Eq. (32) we
obtain the Fokker-Planck equation for the center of mass
movement and the direction of the swimmer:

∂tp(X, Y, φ; t ) = [ − νeff feff (cos φ ∂X + sin φ ∂Y )

+ νeffT
(
∂2
X + ∂2

Y

) + ∂2
φ Dφ

]
p(X, Y, φ; t ).

(34)

The directional diffusion Dφ is given by

Dφ = 4νeffT

∫ ∞

0
dr

pst
r (r )

r2
= const. (35)

Here, we see that an additional repulsive term in the poten-
tial in Eq. (22) is needed: Otherwise, the integral in Eq. (35)
diverges at the lower limit and the rotational dynamics cannot
be described by simple diffusion.

Thus, for short cycle times, the center of mass movement
is given by active Brownian motion [2]:

Ẋ = νefffeff cos φ +
√

2νeff T ξ (X)(t ), (36a)

Ẏ = νefffeff sin φ +
√

2νeff T ξ (Y )(t ), (36b)

φ̇ = √
2Dφ ξ (φ)(t ), (36c)

which is a two-dimensional generalization of biased diffusion.
This constitutes our second main finding.

If the process described by Eqs. (36) is started from
X = Y = φ = 0, the time-dependent mean μX(t ) and
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FIG. 4. Mean center of mass position μX (t ) and mean-squared
displacement (inset) of the two-dimensional model for different cycle
times �t . The shorter the cycle duration, the better the dynamics
of the center of mass are described by active Brownian motion.
The system parameters are L = 5, ν = 0.1, and T = 0.1. Symbols
represent simulations of the Langevin Eqs. (23) of the complete
process (N = 105 trajectories, time step dt = 10−2).

mean-squared displacement MSD(t ) are given by

μX(t ) = νefffeff

Dφ

(1 − e−Dφt ), (37a)

MSD(t ) =
(

4νeffT + 2ν2
efff

2
eff

Dφ

)
t − 2ν2

efff
2
eff

D2
φ

(1 − e−Dφt ).

(37b)

Figure 4 shows how the complete process approaches this
limiting case as �t → 0.

We therefore see that the center of mass movement of our
microswimmer model is described by biased diffusion in one
dimension and active Brownian motion in two dimensions
when the cycle times become short.

V. COMPARISON OF DISSIPATION RATES

To sustain its motion, any microswimmer must convert en-
ergy into heat that is dissipated into the surrounding medium.
In this section, we calculate the rate of energy dissipation
for the real microswimmer model and compare it to the
dissipation rate that is inferred from the coarse-grained active
Brownian motion.

For the one-dimensional swimmer, the complete dissipa-
tion per cycle �Q can be easily calculated by realizing that
the average potential energy is periodic. Using the first law
[11] and realizing that the work done on the system only
has contributions from the abrupt changes in the interaction
potential we find

�Q = �W =
〈
V

(
r

(
�t

2

)
, 1

)
− V

(
r

(
�t

2

)
, L

)

+V (r (0), L) − V (r (0), 1)

〉
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= (L − 1)

[
μr

(
�t

2

)
− μr (0)

]
, (38)

= (L − 1)2 tanh

(
1 + ν

4
�t

)
, (39)

where we have used Eq. (10a).
For small cycle times, the rate Q̇ of energy dissipation thus

reads

Q̇ = lim
�t→0

�Q

�t
= (L − 1)2 (1 + ν)

4
. (40)

In contrast, the energy dissipation rate assigned to the
effective process reads, following Sekimoto’s definition [11],

Q̇eff = 〈Ẋ feff〉 = νefff
2
eff = (L − 1)2 (1 − ν)2

4 (1 + ν)
, (41)

where we used Eqs. (19) and (20). The ratio of these dissipa-
tion rates is given by

Q̇eff

Q̇
= (1 − ν)2

(1 + ν)2
� 1. (42)

Figure 5 shows how the complete energy dissipation rate
approaches the limiting rate in Eq. (40). The simulation
results are obtained by applying Sekimoto’s definition to the
complete system, i.e., calculating force times velocity for both
particles. For comparison, the effective dissipation in Eq. (41)
is also shown.

From Eq. (42) as well as from Fig. 5, we infer that the
effective dissipation rate always underestimates the complete
dissipation rate. Interestingly, with increasing ν the total dissi-
pation grows while the effective dissipation decreases. There
can even be an extreme discrepancy between them as the
effective dissipation vanishes when the complete dissipation is
maximal. They agree only when ν = 0, i.e., where the particle
with the low mobility cannot move at all.
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FIG. 5. Comparison of energy dissipation rates. Symbols repre-
sent average dissipation rates obtained from applying Sekimoto’s
definition of heat to trajectories obtained from simulations of the
complete process (N = 104 trajectories, time step dt = 10−2). The
short cycle limit is shown as a solid line. Additionally the effective
dissipation of the biased diffusion process is shown (dashed line). For
the simulation the system parameters are L = 3 and T = 0.2. Inset:
efficiency η of the swimmer.

To better understand this issue, let us define an efficiency η

of the swimming mechanism by taking the ratio of the average
energy �QX dissipated in one cycle by moving the center of
mass to the complete average dissipation:

η := �QX

�Q
. (43)

The heat �QX is given by

�QX :=
∫ �t

0
dt 〈Ẋ fX(r; t )〉, (44)

where fX(r; t ) is the force on the center of mass. According
to Eqs. (4) and (19), this is given by

fX(r; t ) = 4

1 + ν

ν1 − ν2

2
V ′(r; l(t )). (45)

As we show in Appendix A, this dissipated energy reads

�QX = (1 − ν)2

(1 + ν)2
(L − 1)2 tanh

(
1 + ν

4
�t

)
. (46)

For �t → 0, we recover the dissipation rate of the effective
process.

Therefore, with Eqs. (39), (42), (43), and (46), the effi-
ciency is the same as the ratio of the effective dissipation to
the complete dissipation:

η = (1 − ν)2

(1 + ν)2
= Q̇eff

Q̇
. (47)

This efficiency is plotted in the inset of Fig. 5. It is
monotonously decreasing from maximum to vanishing effi-
ciency with increasing ν.

We also investigated the dissipation rates for the two-
dimensional model with similar results. The calculations can
only be carried out numerically as outlined in Appendix B.

VI. DISCUSSION

The dissipation assigned to the active Brownian motion
approximation underestimates the complete dissipation occur-
ring in the full model. This fact matches previous results by
Esposito [15] showing that a coarse-grained average entropy
production underestimates the true average entropy produc-
tion. This is a fairly general result but the magnitude of the
discrepancy is left open.

However, with our specific model at hand, we can quantify
the difference between the observed and the complete dissi-
pation. Depending on the parameter configuration, it can be
extremely small or large: For ν → 0, the complete dissipation
is perfectly captured by the observed dissipation while for
ν → 1 it is grossly underestimated.

That is because when observing the center of mass move-
ment, one only glimpses at traces of the total dissipation. This
total dissipation depends solely on the relative coordinate r as
can be seen in Eq. (38). Equations (46) and (47) imply that
only part of this dissipation results in forward propulsion of
the center of mass.

Knowing the changes in the center of mass position merely
gives a part of the information needed to infer the complete
dissipation. Only when the particles are alternately immobile
(ν → 0) is the total dissipation captured by the center of mass
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displacement. In that case, changes in the relative coordinate
are strictly proportional to translations of the center of mass.
For ν → 1, the mobilities of both particles are almost equal
and the microswimmer wastes energy in expanding and con-
tracting while achieving minimal propulsion.

This justifies the definition of an efficiency of a mi-
croswimmer as the ratio of dissipated energy utilized for
useful forward propulsion to the total dissipation. This ef-
ficiency is maximized for active Brownian motion as all
energy is dissipated in forward propulsion. It measures the
deviations of more complicated swimming strategies from this
optimum. This can be seen in our model as well: For ν = 0,
our swimmer invests all dissipation in forward propulsion.
Consequently, it is maximally efficient.

To derive these results, we showed that the center of mass
movement of a microswimmer with periodic driving can be
mapped onto active Brownian motion when the cycle time
becomes short. This is especially relevant for experiments as
the swimming dynamics are often fast and spacial imaging
resolution is usually limited, enabling only a tracking of the
body of the swimmer.

Note that the additional repulsive term in the potential
in Eq. (22) needed to enable smooth rotational diffusion of
the two-dimensional model is only an issue in theoretical
modeling. In reality, there is a hard-core repulsion keeping
the particles at least two radii apart.

We need to point out that while active Brownian motion
[Eq. (36)] correctly describes the ensemble distribution of the
coordinates X, Y , and φ, on the level of individual trajectories
the description is not correct. Particularly, the φ-process is
not Markovian. This is a consequence of the coarse-graining
we performed by integrating out the r-variable to arrive at
Eq. (34). It is known that coarse-graining preserves the en-
semble distribution of visible variables but it does not yield
the correct description of the trajectory probabilites [18]. This
effect does not arise in the one-dimensional model as there is
no coupling between r and X after taking the limit �t → 0
[cf. Eq. (15)].

Our results show that active Brownian motion can be a
good approximation for microswimmer dynamics. The find-
ings can help to gauge the quality of this approximation for
the energetics of microswimmers, especially if they have ad-
ditional degrees of freedom which are not correctly resolved.

VII. CONCLUSION

We analyzed the energetics of a microswimmer consisting
of a system of two coupled Brownian particles able to generate
self propulsion. For fast internal dynamics, the center of
mass movement obeys biased diffusion in one dimension and
active Brownian motion in two dimensions. We quantified the
difference between the actual dissipation and the effective dis-
sipation captured by active Brownian motion and showed that
there can be a large discrepancy between these descriptions
even though the observed dynamics are the same. This is due
to the fact that some parts of the system where dissipation oc-
curs are not observed. We introduced a swimming efficiency
that captures how much of the dissipation is used in actual
propulsion.

ACKNOWLEDGMENTS

We thank A. Engel for valuable discussions and critically
reading the paper.

Both authors contributed equally to this paper.

APPENDIX A: DISSIPATION BY THE CENTER OF MASS

Following Eqs. (44) and (45) and using the definitions of
center of mass and relative coordinates, the average energy
dissipated by the center of mass during one cycle is given by

�QX :=
∫ �t

0
dt

〈
(ẋ1 + ẋ2)

ν1 − ν2

1 + ν
(x2 − x1 − l)

〉
, (A1)

which can be simplified to [12]

�QX :=
∫ �t

0
dt

∫∫
dxdy (j1 + j2)

ν1 − ν2

1 + ν
(x2 − x1 − l),

(A2)

where

j1 = [
ν1(x2 − x1 − l) − ν1T ∂x1

]
p(x1, x2; t ), (A3)

j2 = [−ν2(x2 − x1 − l) − ν2T ∂x2

]
p(x1, x2; t ) (A4)

are the probability currents of the Fokker-Planck equation
corresponding to the Langevin Eqs. (3). The joint probability
p(x1, x2; t ) can be calculated from p(r,X; t ) by transforma-
tion of variables. We then obtain

�QX = (1 − ν)2

(1 + ν)

[∫ �t/2

0
dt (μr − L)2 +

∫ �t

�t/2
dt (μr − 1)2

]
,

(A5)

and the result presented in Eq. (46) follows with Eq. (10a).

APPENDIX B: DISSIPATION IN TWO DIMENSIONS

We calculate the dissipation of the two-dimensional mi-
croswimmer. The dissipation per cycle �Q is given by

�Q = (L − 1)

[
μr

(
�t

2

)
− μr (0)

]
, (B1)

analogously to Eq. (38).

FIG. 6. Mean values for the relative coordinate of the two-
dimensional swimmer and comparison with simulations (104 trajec-
tories, time step dt = 10−2) of the Langevin Eqs. (23) for system
parameters L = 5, T = 0.1, and ν = 0.1.
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The mean values in the above equation cannot be calculated directly. Instead, we obtain an approximation valid for small �t .
First, from Eqs. (23) we obtain the Fokker-Planck equation for the variables rx := x2 − x1 and ry := y2 − y1. From this,

we find the infinitesimal propagator [31]. A transformation of variables to r and φ such that rx = r cos φ and ry = r sin φ,
subsequent integration over φ, and an expansion in the exponent up to terms of order dt yields

p(r ′, t + dt |r, t ) =
√

r ′/r

4πT̃ dt
exp

[
− (r ′ − r + dtṼ ′)2

4T̃ dt

]
exp

[
T̃ dt

4rr ′ + dt
Ṽ ′

2r

]
, (B2)

where T̃ = (1 + ν)T and Ṽ ′ = (1 + ν)V ′.
Thus, for small cycle times �t , the propagator for one cycle reads

p(r ′′,�t |r, 0) =
∫ ∞

0
dr ′p

(
r ′′,�t

∣∣r ′,
�t

2

)
p

(
r ′,

�t

2

∣∣r, 0

)
. (B3)

The distribution pr (r, 0) is numerically obtained by discretizing the propagator of one cycle in Eq. (B3) in r and r ′′. The
eigenvector to the eigenvalue 1 is the distribution pr (r, 0) from which we obtain the average μr (0). The second average μr ( �t

2 )
then follows from

pr

(
r,

�t

2

)
=

∫ ∞

0
dr ′p

(
r,

�t

2

∣∣r ′, 0

)
pr (r ′, 0). (B4)

A comparison of the numerical results with a simulation is given in Fig. 6.
These mean values can be inserted into Eq. (B1), yielding the complete dissipation for small �t . The dissipation rate of the

active Brownian motion is again given by Eq. (41). A comparison of the two dissipation rates yields qualitatively similar results
to those depicted in Fig. 5.
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