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The phase transition and critical properties for the RP? model in two dimensions is investigated by means
of the nonequilibrium relaxation method (NER) together with the dynamical scaling analysis. The relaxation of
nematic order from the all-aligned state is observed by Monte Carlo simulations. The comparison of types of
the asymptotic form of the relaxation time around the transition point is considered by the dynamical scaling
analysis, which clearly discriminates the Kosterlitz-Thouless (KT)-type transition from the second-order one.
Using the relaxation of fluctuation, the static critical exponent 7 and the dynamical one z, which are only the
intrinsic exponents for the KT transition, are estimated at and below the KT transition temperature. The result
shows similar behaviors with those observed in the KT phase for the ferromagnetic XY model in two dimensions,
which has been recognized as a typical KT system, and reveals the confirmation of the present KT transition.
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I. INTRODUCTION

In two dimensions, since Mermin and Wagner’s remark-
able study [1], it has been well-known that the continuous
spin systems with short-range interactions show no long-range
order. Then, a quasi-long-range order without spontaneous
symmetry breaking was proposed for the XY model, which
is called the Kosterlitz-Thouless (KT) transition [2,3]. In
this phase, there is no spontaneous magnetization, but the
correlation length always diverges, and now the transition is
recognized by the scenario of the binding-unbinding behavior
of vortex pairs. As for the Heisenberg cases, of course, there
exists no long-range order, and further the KT transition is
also denied for the bilinear interactions.

However, there have been various discussions on the phase
transition for the RP? model in two dimensions, which con-
sists of Heisenberg spins with nearest-neighboring biquadratic
interactions. In three dimensions, it has been considered that
the RP% model shows a weak first-order transition, while that
in two dimensions shows KT transition with a quasi-long-
range order [4—7]. In this case, the topological point defects
caused by the Z, vortices are stable instead of the integer-
vortices in the standard KT phase in the XY model. However,
some studies show the possibility that a phase transition
doesn’t exist at finite temperature [8,9].

In the present study, we investigate the phase transition
and critical properties for the RP? in two dimensions by
means of the nonequilibrium relaxation (NER) method [10].
Using Bayesian statistics and the kernel method, we have
developed an improved dynamical scaling analysis scheme
for KT transition in the NER method [11]. This analysis
allows data to be fitted efficiently to a scaling function without
using any parametric model function. It makes the results
more precise and reliable, and can be applied to the method
for the confirmation of the transition type. Comparing the
assumptions for the asymptotic form of the relaxation time,
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we confirm the transition type as the KT one. As a successful
example, we apply this dynamical scaling analysis of NER
data to confirm the existence of the KT transition for the
present model. We also estimate the critical exponents by
means of the relaxation of fluctuation [12,13], where the static
exponent 1 and the dynamical onez can be defined for the
KT case. In the regime below the transition temperature, since
it is always critical inside the KT phase, these exponents are
estimated there, and we examine the temperature dependence
of n and z compared with KT phase for other models.

The remainder of this paper is organized as follows. The
RP? model is introduced, and a typical relaxation of order
parameter is calculated in Sec. II. The NER method and its
improved dynamical scaling analysis are explained in Sec. III.
In Sec. IV, the comparison of KT transition and its confir-
mation are discussed. Critical exponents are estimated at and
below the KT transition temperature in Sec. V. Section VI
gives some remarks.

II. RP> MODEL

We examine the RP? model in two dimensions, in which
classical Heisenberg spins show the global O(3) symmetry.
Unlike to the standard Heisenberg ferromagnet, the Hamil-
tonian contains the square of the inner product between
neighboring spins representing a nonpolar spin system and is
expressed by

H=—J) (Si-S;)=—J) cos’Ab;;, (1)
(i) (i)
where the summation is taken over all nearest-neighboring
sites on the square lattice, S; is a classical Heisenberg spin and
AG;; is the angle between two spins. The model is also known
as the Lebwohl-Lasher model [14] for the nematic transition
in liquid crystals. This system has been studied by another
Hamiltonian with a shifted origin and a different energy
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FIG. 1. Relaxation of order parameter m () plotted on a double
logarithmic scale calculated on 1501 x 1500 lattice for 7 < 0.500
and on 901 x 900 lattice for T > 0.510.

scale as

1
H=—J Z Py(S;-S;) =—J Z 5(30052A9U -1, ()
(ij) (ij)

where P, is the Legendre polynomial of the second degree:
di‘l
2'n! dx"
Since the physical properties are the same between these two
models, we use the Hamiltonian as Eq. (2) in the following

analysis.

In the NER analysis, we simulate a relaxation process from

the all-aligned state along the z-direction, and observe the
order parameter for the nematic ordering,

P(x) = [(x* = D]. 3)

1 1 1
m= Xi:Pz (cosfh) = Z§(3coszei —1, @

where 6; is the angle to the z direction, representing S;, =
cos 6;. Asymptotically in a long time, this order parameter
remains a spontaneous value in the nematic phase in higher
dimensions. In the KT phase, if it exists, it shows a power-law
decay in the asymptotic region.

To analyze the transition, we perform Monte Carlo sim-
ulations for the RP? model in two dimensions and observe
the relaxation of the order parameter m(¢) = (m),. Calcula-
tions were carried out on 901 x 900 and 1501 x 1500 square
lattices with skew boundary conditions up to an observation
time of 2 x 10° Monte Carlo steps (MCSs). We use the skew
boundary condition for the purpose of efficient calculations.
About 1024 independent samples were taken for statistical
averaging at each temperature. Hereafter, we measure the
temperature in the unit of J/kg. The result is shown in Fig. 1.
In the standard NER analysis, one needs relaxation properties
in the thermodynamic limit to avoid the finite size effect in
dynamical scaling analysis. It can be achieved by checking
the size dependence in the interval of observed MCSs. In a

L=1000 ——

L= 900 ——

L= 1\00 | | | |

1 10 100 1000 10000 100000
t

FIG. 2. Size dependence of the relaxation at 7 = 0.51. For the
case of L = 100, the curve is deviated from those of the larger sizes
around ¢ = 10* showing the finite-size effect. For the case of L =
900, the curve coincides with that of L = 1000 up to t =2 x 10°
confirming no size dependence.

Monte Carlo simulation, the correlation length £(¢) evolves
monotonically from zero (at t = 0) to a large value around the
critical temperature. The finite size effect appears when &(t)
reaches to the system size. We confirm that the size used in
the present simulation, 901 x 900, is large enough to avoid
the finite size effect in the interval less than 2 x 103 MCSs.
As an example, we show a comparison of relaxation data in
Fig. 2 for 101 x 100, 901 x 900 and 1001 x 1000 at T =
0.51 where the expected transition temperature is close to.

III. DYNAMICAL SCALING FOR
NONEQUILIBRIUM RELAXATION

The NER analysis for an equilibrium phase transition
is based on the relaxation of the order parameter m(z, T),
by which one can estimate the transition temperature, and
a dynamical exponent. It is expected that m(¢, T) decays
to zero exponentially in the paramagnetic (PM) phase, and
the algebraic decay appears at and below the KT transition
temperature. The asymptotic behavior of the order parameter
is expected to be

m(t, T) ~ {jxsgf/f)

The dynamical exponent A(7"), the asymptotic power of the
relaxation, is defined whole in the KT phase and depends on
the temperature. Let us see the relaxation behavior plotted
in Fig. 1 in a double-logarithmic scale. For T > 0.51, one
can see the downward trend in the asymptotic regime, which
indicates the exponential decay in the PM phase. However,
for T < 0.51, the asymptotic behaviors seems straight up to
the observed MCSs, which is consistent with the relaxation in
the KT phase. Note that, unlike to the second-order transition
case, one cannot estimate the lower bound of Tk, but the
upper bound in the KT case.

(T > Tkr)

(T < Txr) ©)
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To confirm the KT transition and estimate the transition
temperature, we have introduced a dynamical scaling analysis
based on the following natural scaling form [15]:

m(t, T)=1"W(t/7). (6)

The relaxation time t depends on the temperature, and is
expected to diverge at the KT transition temperature with the
asymptotic form

b
1(T) =aexp (—), @)
VT — Txr
similarly as the correlation length does. Note that the same
dynamical scaling Eq. (6) can also be applied to the second-
order transition, where a typical power-law form

t(T)=alT —T.|™" (8)

is substituted for the asymptotic form of the relaxation time.

Here, we interpret the dynamical scaling analysis improved
previously [11], and follow the formalism what is shown
there for the self-containedness. To estimate Tk, we can use
m(t, T) in a sufficient interval of MC steps for several values
of T, and fit the data to the above formula. Let us use the
label i for all data points as m(t;, T;). The corresponding
relaxation time is also dependent on i, i.e., t;, which should
be identical for those with the same temperature, i.e., 7; = T;
when T; = T;. If one assumes the scaling law, all data points
converted as

X, =t/7, (9a)
Y, = t'mt, Tp), (9b)
E; =1t/sm(, T;) (9¢)

should collapse according to a scaling function as
Yi = W(X;), (10)

where ém(t;, T;) is the statistical error of m(z;, T;) estimated
in the simulation, and E; is that of Y;. Estimating the critical
exponent and corresponding transition temperature is known
as dynamical scaling analysis.

To perform the scaling fit efficiently, we use the dynamical
scaling analysis proposed previously [11]. Assuming the pos-
terior probability as a multivariate Gaussian distribution, the
log-likelihood function can be written as

log L(6,, 6,) = —%log 27X
- %(17 —UyY2 Y - ), 1D
where X is the covariance matrix and
(Y) =Y, (12)

(W) = W(X)). (13)

Using the kernel method, we assume that the covariance
matrix is expressed by the kernel function, and the Gauss
kernel function is used in the Bayesian inference with a Gauss
process regression [11,16]. Then, the covariance matrix X in

=
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FIG. 3. Relaxation of order parameter for selected temperatures
plotted on a double-logarithmic scale. For each temperature, 100 data
points are chosen so as to give equal intervals on the horizontal axis.

Eq. (11) is obtained by
2 _(Xi*X/)2 . .
() = 912 exp2< —22922 ) (l. 7 {)’ (14)
05 +6f + E; (i=J)

where 6y, 61, and 6, are hyper parameters for the Gauss kernel
function. In this study, we perform dynamical scaling for the
logarithms of X; and Y; as

b
X, =log X; =logt; — <loga—|— —),
v T; = Tkr

b
Yi’ =logY; = logm(t;, T;) +A(loga + —),
VT, — Tkt
E =1 - E; E;  dm(4,T)) (15)
. =10 —_ N — = —.
A SRS 7 A T )

We used ten values of temperatures above the transition
temperature, where the downward trend is observed in Fig. 1,
and sampled 100 points for each temperature as shown in
Fig. 3, so as to give equal intervals of log¢ (the X axis).
To maximize the log-likelihood function Eq. (11), the pa-
rameters, Tk, A, a, b, 6y, 01, and 6, appearing in Egs. (6),
(7), and (14) are optimized. We use the conjugate gradient
algorithm [17] to maximize the log-likelihood function prac-
tically, where the iterations are performed by modifying the
parameters along the direction of steepest descent. The results
are shown in Fig. 4 with Txr = 0.50764 and A = 0.069. It
is noted that we do not consider so-called the logarithmic
correction, which has been pointed out for the analysis of
static correlation, since there is an argument for negligible of
it in the dynamical case [18]. In our dynamical analysis, we
simulate on sufficiently large lattices so that the size depen-
dence does not appear up to the maximum observed MCS,
which can be recognized almost an infinite lattice. Thus, if the
logarithmic correction observed in scaling analysis for finite
systems appears because of the finiteness, our dynamical data
could be free to that. This conjecture is consistent with our
previous results, however we can not show the validity of it at
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FIG. 4. Scaling plot for the date in Fig. 3 with Txr = 0.50764
and A = 0.069.

present. To confirm it, we need a model for a benchmark test
in which the exact transition temperature is known. It remains
a future problem.

IV. CONFIRMATION OF KT TRANSITION

To support the confirmation of the KT transition, we apply
the method for the discrimination of transition type by the
use of the NER data. In the previous paper, we proposed a
numerical scheme to confirm the KT transition by the use of
the following dynamical scaling [11]. Let us fit the relaxation
data by introducing the values of 7 for all temperatures
as the fitting parameters, rather than using the asymptotic
form of 7. If, for example, the temperatures of the simulated
data are Ty, T,,---, Ty, the corresponding t values, i.e.,
71, T2, ..., Ty, are introduced and optimized by a similar
scaling process. This provides the temperature dependence
of 7 for the chosen temperatures without any assumption
regarding its asymptotic form. Together with the dynamical
scaling for the assumption of the algebraic divergence of
7(T), Eq. (8), we have three different dynamical scaling
results for the function 7(7'): (i) assumption of second-order
type using Eq. (8), (ii) assumption of KT type using Eq. (7),
and (iii) no assumption of the transition type. We can compare
them to determine the most suitable transition type.

Note that, even if the assumption of one particular transi-
tion type is correct and the assumed asymptotic function is
suitable, the result cannot give a better fit than that without
any assumption. Thus, one can discriminate the transition type
by checking how close the result with some assumption is to
that without the assumption. Such a comparison could take
many forms; we have proposed the following residual for the
logarithm of 7, defined by

1 & 2
r= M;{logr(Tm) —log 7 }7, (16)

where 7(7,,) is estimated through the assumption (i) or (ii)
using Eqgs. (8) or (7), respectively, and 1, is estimated through

1x10'6
1x10"* ¢
1x10"2
1x10'0 ¢
1x10% |
1x108 |
10000 |

100 |

001 L L L L L
0.5 0.51 0.52 0.53 0.54 0.55 0.56

T

FIG. 5. Estimated relaxation time t. Three different dynamical
scaling results are plotted for the function t(7') under the assumption
of a second-order transition, KT transition, and without assumption
(closed circles).

no assumption, i.e., (iii). While this function would not be the
best choice for the analysis, it has worked very well for some
benchmark cases [11].

We perform three types of dynamical scaling for the relax-
ation data in Fig. 3. For type (i), we obtain the transition tem-
perature as T, = 0.51111. The result in the previous section is
used for the type (ii). Together with the result for type (iii), the
T values are plotted in Fig. 5. At a glance, the curves of 7 for
assumption (ii) is more suitable than that for assumption (i),
indicating the KT transition. For a more precise comparison,
we used the residual defined in Eq. (16). This gives ronq =
11.3 for the assumption of the second-order transition and
rgr = 2.17 for the assumption of the KT transition. The
residual for the assumption of the KT transition is suitable
and several times smaller than that for the second-order type.
This result for the confirmation of the KT transition is also
supported by the following observation. As seen in Fig. 5,
the curve for the second-order transition shows diverging at
temperatures greater than 7 = 0.51, which is inconsistent
with the estimation of the finite value of 7(7T) at T = 0.51,
indicating the PM phase. This reveals the identification of the
correct KT transition.

Since it has been clearly known that the second-order tran-
sition cannot appear in the present model because of the Mer-
min and Wagner’s theorem [1], the above result for the pref-
erence of the KT transition can be recognized as an evidence
for the existence of that transition. Therefore, while seeking
the best choice for the cost function instead of the residual
Eq. (16) is important for the present dynamical method, we
would not do it in this paper. It remains a future problem.

V. EVALUATION OF CRITICAL EXPONENTS DUE TO
RELAXATION OF FLUCTUATION

Let us consider the critical exponents. For the KT transition
point, the intrinsic critical exponents are only the static one 7
and the dynamical one z. In the case inside the KT phase,
the thermodynamics keeps critical, and the correlation length
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FIG. 6. Relaxation of order parameter m(z) at and below the
estimated transition temperature Txr = 0.5075.

always diverges. Therefore, one can define the exponents n
and z whole inside the KT phase. We estimate these exponents
and compare the temperature-dependence with those for the
ferromagnetic (FM) XY model in two dimensions, which has
previously been investigated well.

We have proposed the NER analysis of critical exponents
for KT transition systems applying the NER of fluctuation like
in the case of second-order transitions [10]. At the transition
point, we assume a power-law relaxation of order parameter

m(t) ~t=. (17)
Previously, we showed the relation [13]
U]
A= —. 18
2 (13)

To estimate the exponents n and z separately, we use a
relaxation of fluctuation,

my (1)
fmm(t)EN 2 -1 ’ (19)
m(t)
100
10 + 4
1 E 4
01 f g
£
E
001 | 1
0.001 | T=05075 —— 1
T=0.5000 ——
T =0.4000
0.0001 T =0.3000 1
T =0.2000
5 T=0.1000 ——
1x10 : : ‘
1 10 100 1000 10000

t

FIG. 7. Relaxation of fluctuation f,,,(¢) at and below the esti-
mated transition temperature.

where

1 2
my (t) = <<N > Py (cos 9,-)) > . (20)

This function diverges algebraically at the KT transition point,

S (1) ~ 12, 1)
as t — oo with the exponent

2
Amm = —. (22)
Z

It is convenient to define the local exponents for m(¢) and

Jmnm (1) as

_ dlogm(t)
) = T dlogt (23)
_ dlog fum(1)
)"mm (t) = d IOg P . (24)

Using Eqgs. (18) and (22) together with Egs. (23) and (24), we
obtain the following local exponents:

A
n() = ) (26)

which approach to conventional exponents z and 7 respec-
tively with # — oco. The above argument can be used also to
estimate the exponents inside the KT phase, and Egs. (18),
(22), (25), and (26) can be applied.

We calculate m(¢) and f;,,,(¢) for the estimated transition
temperature Txr = 0.5075 together with several ones (T =
0.1,0.2,0.3,0.4,0.5) below Tkt. Calculations were carried
out on a 401 x 400 square lattice with skew boundary condi-
tions up to an observation time of 10* MCSs. About 4 x 10°
independent samples were taken for statistical averaging at
each temperature. The results are shown in Figs. 6 and 7.
From these figures, we obtain numerical evaluations of the

2.5 T T T T .

15+ 1

0 L L L L L
0 01 02 03 04 05

T

FIG. 8. Estimated dynamical exponent z at and below the transi-
tion temperature. The constantness around z ~ 2 is observed whole
in the KT phase.

012116-5



YUKIYASU OZEKI, ATSUYUKI MATSUDA, AND YUKI ECHINAKA

PHYSICAL REVIEW E 99, 012116 (2019)

0.3

spin wave

0.25 1

0.2 r 1

0.1 1

0.05 1

O L L L L L
0 01 02 03 04 05

T

FIG. 9. Estimated static exponent 1 at and below the transition
temperature. The solid line indicates the result by the spin wave
theory in the KT phase.

logarithmic derivatives, Eqs. (23) and (24), for each tempera-
ture. Then, we estimate the asymptotic values of Egs. (25) and
(26) and obtain the exponents shown in Figs. 8 and 9. Note
that corrections to scaling are considered in the estimation
of exponents automatically (while not completely), since,
in the extrapolation for 1/t — 0, intermediate values with
1/t > 0 deviate from the asymptotic one with 1/t = 0 and
the estimates are treated to converge to such deviations.

It is observed in Fig. 8 that the dynamical exponent z
behaves almost z = 2 whole in the low temperature phase.
This behavior in low-temperature regime for the RP? model is
quite similar with that for the FM XY model in two dimensions
[2,13]. It is also observed in Fig. 9 that the temperature
dependence of the static exponent n(7') is consistent with the
result of the spin wave theory,

4T

=3 27)

n

around T ~ 0. The consistency with the spin wave theory
have also been seen in the FM XY model [13]. A similar

observation has been reported by means of the equilibrium
simulations [9], where the authors claimed the small discrep-
ancy among the estimations of 1 and concluded the absence
of the KT transition. While the numerical result for 7 is quite
similar, we would like to argue that the validity for the KT
transition has been supported in the previous section as well
as the present result for the temperature dependence of z and
n. Consequently, these observations support the confirmation
of the KT transition and the KT phase in the present model.

VI. REMARKS

We investigate the phase transition and critical properties
for the RP?> model in two dimensions. The nonequilibrium
relaxation method (NER) is used together with the dynamical
scaling analysis developed recently. As an order parameter,
the relaxation of nematic order from the all-aligned state
is observed by the Monte Carlo simulation with the stan-
dard Metropolis algorithm. In the dynamical scaling analysis
for the order parameter, the comparison of the type of the
asymptotic form of the relaxation time around the transition
point clearly discriminates the Kosterlitz-Thouless (KT) type
transition from the second-order one. Furthermore, using the
relaxation of fluctuation, we estimate the static critical expo-
nent n and the dynamical one z, which are only the intrinsic
exponents for the KT transition, at the transition point as well
as inside the KT phase. The result shows similar behaviors
with those observed in the KT phase for the FM XY model
in two dimensions, which has been recognized as an typical
KT system, and reveals the confirmation of the present KT
transition. Especially, we emphasize that it would be the first
time in the society to observe the temperature-independent
dynamical exponent z ~ 2 for the present model, which has
been reported for the FM XY model.
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