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Emergence of correlations in the process of thermalization of interacting bosons
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We address the question of the relevance of thermalization and scrambling to the increase of correlations in
the quench dynamics of an isolated system with a finite number of interacting bosons. Specifically, we study
how, in the process of thermalization, the correlations between occupation numbers increase in time, resulting
in the emergence of the Bose-Einstein distribution. Despite the exponential increase of the number of principal
components of the wave function, we show, both analytically and numerically, that the two-point correlation
function before saturation increases quadratically in time according to perturbation theory. In contrast, we find
that the out-of-time-order correlator increases algebraically and not exponentially in time after the perturbative
regime and before the saturation. Our results can be confirmed experimentally in traps with interacting bosons
and they may be relevant to the problem of black hole scrambling.
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I. INTRODUCTION

In recent years the problem of thermalization in closed
systems of interacting fermions and bosons has attracted
much attention (see, for example, Refs. [1–7]). An in-
crease of interest in this problem is due to remarkable
experimental achievements [8–12] and various theoretical
predictions [13–20]. Although the term thermalization is
not uniquely defined, it is widely used in many-body
physics. One of the basic statistical properties of many-
body systems is either the Bose-Einstein (BE) or the Fermi-
Dirac (FD) distribution that emerges in the thermodynamic
limit due to the combinatorics and without interparticle
interaction. As for finite isolated systems, the mechanism
for the onset of BE and FD distributions is the chaotic
structure of many-body eigenstates [5–7,13–15,20–24].
In this case, the interaction between particles plays a crucial
role: The fewer particles there are, the stronger the interpar-
ticle interaction has to be for the emergence of the statistical
properties.

To date, it is understood that the validity of statistical me-
chanics can be justified not only by averaging over a number
of eigenstates with close energies, but also with the use of a
single eigenstate if the latter consists of many uncorrelated
components in the physically chosen basis. Specifically, it
was shown that BE and FD distributions emerge also on the
level of individual eigenstates if they are strongly chaotic
[21,23–25]. Moreover, for a finite number of particles, the
temperature entering these distributions has to be corrected
by taking into account the interparticle interaction. This is at
variance with the standard derivation obtained for noninteract-
ing particles in the thermodynamic limit. Recent experiments
with cold atoms have supported the emergence of the BE
distribution in the presence of a strong interaction [26]. The

most intriguing point of these studies [13–15,21,23–25] is that
both distributions appear even if the number of particles is
small; this happens due to the fast growth of the number of
components in many-body eigenstates as a function of the
number of particles.

Here we address a problem concerning the onset of the
BE distribution in the time evolution of a system with few
interacting bosons. Our specific interest is to study how the
conventional BE distribution emerges in time and how this fact
is related to the somewhat different problem of the increase
of correlations in the process of relaxation of a system to a
steady-state distribution. The latter problem is now a hot topic
in the literature in view of various applications, such as the
evolution of systems with cold atoms, as well as in application
to the problem of scrambling in black holes (see [27,28] and
references therein).

In our study we consider the quench dynamics described by
the Hamiltonian H = H0 + V , where H0 corresponds to the
noninteracting bosons and the interaction is fully embedded
in V belonging to the ensemble of matrices with two-body
random interaction (TBRI). In this way, by exciting initially
a single many-body state of H0, we explore the evolution of
wave packets in the many-body Hilbert space. Recently, it
was discovered that for the model parameters for which the
many-body eigenstates of H are strongly chaotic, the effective
number of components Npc in the wave function increases
exponentially in time, before the saturation which is due to
the finite many-body space [29]. This time dependence was
explained with the use of a phenomenological model that
allowed one to obtain simple analytical expressions for the
rate of exponential increase of Npc and for its saturation value.

Below, in connection with the results reported in
[23,24,29], we show, both analytically and numerically, that
the onset of the BE distribution in the TBRI matrix model
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occurs on the timescale on which the number of components
in many-body eigenstates increases exponentially in time.
In order to quantify the onset of the BE distribution, we
have studied the correlations between occupation numbers by
exploring both the two- and four-point correlators. The latter
is just the well known out-of-time-order correlator (OTOC)
widely discussed in the literature [30–32]. Specifically, it was
predicted that for strongly chaotic systems the OTOC should
manifest an exponential time dependence before saturation.
One of our main findings is that actually both correlators
increase algebraically in time and not exponentially. This
result is quite unexpected, as compared with the exponential
increase of the number of principal components Npc in the
wave packet. Our analytical results are fully confirmed by
extensive numerical data.

II. MODEL

The system consists of N identical bosons occupying
M single-particle levels specified by random energies εs

with mean spacing 〈εs − εs−1〉 = 1. The Hamiltonian reads
(h̄ = 1)

H = H0 + V =
∑

εsa
†
s as +

∑
Vs1s2s3s4a

†
s1
a†

s2
as3as4 . (1)

In Eq. (1) as and a
†
s are, respectively, the usual annihilation

and creation operators in the single-particle energy level s.
The two-body matrix elements Vs1s2s3s4 are random Gaussian
entries with zero mean and variance V 2. The dimension of the
Hilbert space generated by the many-particle basis states is
NH = (N + M − 1)!/N!(M − 1)!.

Below we consider N = 6 particles in M = 11 levels
(dilute limit N < M) for which NH = 8008. We choose a
considerably “small” Hilbert space since fourth-order time
correlations are quite consuming from a computational point
of view. Let us also note that increasing only one unit, our
data, e.g., taking N = 7 particles in M = 12 single-particle
levels, imply a Hilbert space of dimension NH = 31 824.
Since the algorithms for exact diagonalizations are character-
ized by a CPU time proportional to N3

H , this implies a CPU
time roughly 60 times larger than that for the case we consider
here without changing significantly the physics.

Two-body random matrices (1) were introduced in [33–35]
and extensively studied for fermions and bosons (see, for
example, [13–15,36–38]). These studies can be considered
as paradigmatic also for the case of competing couplings
of single-particle levels. Examples of these are the hopping
two-body interacting Bose-Hubbard models which have been
experimentally implemented [39–41].

The eigenstates |α〉 = ∑
k C

(α)
k |k〉 of H can be written in

terms of the basis states (unperturbed many-body states) |k〉 =
a†

k1 · · · a†
kN

|0〉 of H0, where

H |α〉 = Eα|α〉, H0|k〉 = E0
k |k〉. (2)

An eigenstate |α〉 of the total Hamiltonian is called chaotic
when the number Npc of principal components defined, for
instance, via the inverse participation ratio

Npc = 1

IPR
, with IPR =

∑
k

∣∣Cα
k

∣∣4
, (3)

is sufficiently large, i.e.,
√

Npc � 1, and the numbers Cα
k can

be considered random and noncorrelated (see, for instance,
[5–7] and references therein). Note that since the system is
isolated and the perturbation V is finite, the eigenstates can
fill only a part of the unperturbed basis [5–7] determined by
the perturbation V . Specifically, the energy region which is
occupied by the eigenstates is restricted by the width of the
so-called energy shell [42,43]. The partial filling of the energy
shell by an eigenstate can be associated with the many-body
localization in the energy representation. In contrast, when an
eigenstate fills completely the energy shell the BE distribution
emerges on the level of individual eigenstates [21,23–25].
This happens when the perturbation V is sufficiently strong to
provide quantum chaos. A detailed discussion of the strength
of perturbation necessary to have chaotic eigenstates and ther-
malization in relation to the system parameters can be found
in [23,24]. In what follows we will consider the situation when
the latter condition is fulfilled.

III. DYNAMICS IN THE MANY-BODY HILBERT SPACE

In contrast with previous studies [23,24] focused on the
thermal properties of individual many-body eigenstates, here
we consider the dynamics of the model (1) by exploring
two different timescales, before and after the relaxation to
a steady state. Specifically, we study the quench dynamics
starting from a single many-body state |k0〉 of the unperturbed
Hamiltonian H0, after switching on the perturbation V . Given
the evolved wave function

|ψ (t )〉 = e−iH t |k0〉,
one can express the probability

Pk (t ) = |〈k|ψ (t )〉|2

to find the system at time t in any unperturbed state |k〉 as

Pk (t ) =
∑
α,β

Cα∗
k0

Cα
k C

β

k0
C

β∗
k e−i(Eβ−Eα )t ≡ P d

k,k0
+ P

f

k,k0
(t ),

(4)

where P d
k,k0

= ∑
α |Cα

k0
|2|Cα

k |2 and P
f

k,k0
(t ) are the time-

independent and time-fluctuating parts, respectively. With this
expression, one can analyze the inverse participation ratio

IPR =
∑

k

|〈k|ψ (t )〉|4 =
∑

k

[
P d

k,k0
+ P

f

k,k0
(t )

]2
, (5)

from which we can extract the number of principal compo-
nents in the state |ψ (t )〉 from the relation Npc = 1/IPR.

Let us now define the infinite-time average of an observable
A(t ) as

A = lim
T →∞

1

T

∫ T

0
dt A(t ). (6)

It is clear that, since in our case we have a nondegenerate

spectrum, then P
f

k,k0
(t ) = 0 so that

|〈k|ψ (t )〉|2 =
∑

α

∣∣Cα
k0

∣∣2∣∣Cα
k

∣∣2 = P d
k,k0

. (7)
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FIG. 1. (a) Number Npc(t ) of principal components in time (red
circles). The dashed line is the exponential growth with the rate 2�,
where � ≈ 2.8 is the width of the LDOS found numerically from the
decay of survival probability (for details see [29]). The horizontal
line is the estimate (8). The intersection between the infinite-time
average Npc and the analytical exponential growth e2�t defines the
saturation time tS (indicated by an arrow). The inset shows the
initial quadratic dependence Npc(t ) ∝ 1 + αt2. Initially all bosons
are placed on the fifth single-particle level so that |ψ0〉 = |k0〉 =
|00006000000〉. (b) Orange dots represent the infinite-time average
number of principal components as a function of the energy E0

k of the
initial many-body state. The black line is a Gaussian fit. Here N = 6,
M = 11, and V = 0.4.

The infinite-time average for the number of principal compo-
nents can be computed as

IPR =
∑

k

(
P d

k,k0

)2 + [
P

f

k,k0
(t )

]2
. (8)

The second term on the right-hand side of Eq. (8) can be
computed exactly,[

P
f

k,k0
(t )

]2 = (
P d

k,k0

)2 −
∑

α

∣∣Cα
k0

∣∣4∣∣Cα
k

∣∣4
, (9)

so that

Npc = 1/IPR =
[

2
∑

k

(
P d

k,k0

)2 −
∑

α

∣∣Cα
k0

∣∣4 ∑
k

∣∣Cα
k

∣∣4

]−1

.

(10)

This expression determines the asymptotic value reached by
Npc(t ) after relaxation. It is shown in Fig. 1(a) as a horizon-
tal line. In the same figure we can identify three different
regimes: a perturbative one for short time t � 1/� where
Npc(t ) grows quadratically [see the inset in Fig. 1(a)], a
second one characterized by the exponential growth Npc(t ) �
exp(2�t ) for 1/� � t � tS = N/�, and a third one (satura-
tion after relaxation) where Npc(t ) � Npc for t > N/� (for
details see [29]).

Additional important information, which will be used later,
is how the stationary value Npc depends on the initial state. In
Fig. 1(b) we show Npc as a function of the unperturbed energy
E0

k of the initial many-body state |k0〉. As one can see, it is
quite well approximated (excluding the tails) by a Gaussian
shape (see the black solid line).

As is shown in [29], the number Npc(t ) of principal compo-
nents in the wave packets increases exponentially fast in time,
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FIG. 2. (a)–(d) Probability Pk (t ) at different times t in the un-
perturbed basis |k〉: (a) t = 0.025, (b) t = 0.075, (c) t = 0.5, and
(d) t = 5. (e)–(h) Plot of ns (t ) versus single-particle energies εs at
(e) t = 0.025, (f) t = 0.075, (g) t = 0.5, and (h) t = 5. In (d) the
envelope of the stationary distribution is shown by the black curve.
The initial state is �0 = |10104000000〉, where integer numbers are
numbers of bosons occupying the s level. The dynamics is shown for
N = 6, M = 11, and V = 0.4. For this value of V the eigenstates are
strongly chaotic [23,24].

Npc(t ) ∼ exp(2�t ) up to some saturation time ts . The rate of
the exponential growth is defined by the width � of the local
density of states (LDOS),

Fk0 (E) =
∑

α

∣∣Cα
k0

∣∣2
δ(E − Eα ),

obtained by projecting the initial state |k0〉 onto the exact
eigenstates. In nuclear physics this function is known as the
strength function and it describes the relaxation of excited
heavy nuclei [44]. Concerning the saturation time ts , it was
found [29] to be proportional to the number of particles, ts ≈
N/�. This time should be treated as the time after which one
can speak of a complete thermalization occurring in a system.

IV. ONSET OF THE BOSE-EINSTEIN DISTRIBUTION

The time-dependent occupation number distribution
(OND) is defined as

ns (t ) = 〈ψ (t )|n̂s |ψ (t )〉 =
∑

k

nk
s |〈k|ψ (t )〉|2, (11)

which gives the average number of particles in the single-
particle energy level εs at the time t . Here we take into account
that 〈k|n̂s |k′〉 = nk

s δk,k′ , where nk
s = 0, . . . , N . The evolution

of ns (t ) in comparison with the wave-packet dynamics Pk (t )
is shown in Figs. 2(e)–2(h). These figures demonstrate that
when the packet fully occupies the energy shell, the occupa-
tion numbers are relaxed to the steady-state distribution. We
can estimate analytically both the short- and the long-time
behaviors.

Concerning the former, expanding e−iH t � 1 − iH t +
· · · , one gets the time dependence for ns (t ) at short times

|〈k|e−iH t |k0〉|2 � δk,k0 + t2
[
H 2

k,k0
− δk0,k0 (H 2)k,k0

] + o(t4),

(12)
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FIG. 3. Evolution of the averaged ns (t ) for all s = 1, . . . , M .
The dashed line is the predicted t2 behavior (13) characteristic of
the perturbative regime when nk0

s = 0. The initial state is |�0〉 =
|10104000000〉. Here N = 6, M = 11, and V = 0.4 as in Fig. 2. An
average over ten realizations of the random potential has been used.
The vertical dotted lines indicate the saturation time tS .

which results in the estimate

ns (t ) � nk0
s + t2

∑
k �=k0

(
nk0

s − nk
s

)
H 2

k,k0
+ o(t4). (13)

One can see in Fig. 3 that for single-particle s levels which are
not initially occupied by particles, ns (t ) grows quadratically
in time. As for the saturation values ns after the relaxation
time ts , they can be also obtained analytically by performing
an infinite-time average

ns =
∑

k

nk
s |〈k|ψ (t )〉|2 =

∑
k

nk
sP

d
k,k0

. (14)

In order to claim that after relaxation the OND is statistically
described by a BE distribution, one has to be sure that the fluc-
tuations of ns follow the standard requirements of statistical
mechanics.

In view of this very point, we have thoroughly analyzed
both temporal fluctuations and “quantum” fluctuations. Con-
cerning the former, they are defined as

�n2
s = 〈ns (t )〉2 − 〈ns (t )〉2

(15)

and represent the temporal fluctuations of the classical vari-
able 〈ns (t )〉. According to statistical mechanics, (a) the fluc-
tuations have to be small compared to the mean value 〈ns〉 and
(b) the fluctuations should be Gaussian. Let us first analyze the
distribution of the different average values for one single fixed
s value. The distributions P (ns ) obtained from the stationary
distribution are shown in Fig. 4(a) (for two values of s: s = 1
and s = M). As one can see, there is very good agreement
with a Gaussian fit. The width of these distributions (as given
by the second moment of the fitted Gaussians �n2

s ) weakly
depends on the particular chosen s value [see Fig. 4(a)], while
the dependence on the initial state is stronger. To this end we
compute the relative fluctuations �ns/ns , choosing as initial
states different unperturbed many-body basis states from the
whole energy spectrum. In agreement with the results found
for Fermi particles [15], we consider in Fig. 4(b) the relative
fluctuations �ns/ns as a function of the number of principal
components of the stationary wave packet (after relaxation)
for the correspondent initial states [essentially what is shown
in Fig. 1(b)]. As one can see, there is very good agreement
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Npc
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n s)
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FIG. 4. (a) Probability distribution P (ns ) for two different s

values: s = 1 (closed red symbols) and s = 11 (open blue symbols).
Dashed lines represent fits with Gaussian distributions. (b) Rela-
tive time fluctuations �ns/ns as a function of the correspondent
number of principal components Npc obtained from the stationary

distribution. The dashed line is 1/

√
Npc. The parameters are N = 6,

M = 11, and V = 0.4.

with the dependence 1/

√
Npc, which is a strong result in

view of the requirement of statistical mechanics. Let us stress
that the decrease of relative fluctuations occurs not with
respect to the number N of particles, but with the number of
principal components contained in the stationary distribution.
This remarkable result shows that for chaotic systems with
few interacting particles the number of principal components
in the stationary distribution Npc plays the same role as the
number of particles N in ordinary statistical mechanics.

An even more interesting point concerns quantum fluctu-
ations. In the grand-canonical ensemble, for noninteracting
bosons, relative quantum fluctuations satisfy the following
relation [45]: (

δns

ns

)2

= 1 + 1

ns

. (16)

In order to compute quantum fluctuations for our finite system
in equilibrium, we first perform the infinite-time average for
the first two moments,

ns =
∑

k

nk
s |〈k|ψ (t )〉|2 =

∑
k

nk
sP

d
k,k0

,

n2
s =

∑
k

(
nk

s

)2|〈k|ψ (t )〉|2 =
∑

k

(
nk

s

)2
P d

k,k0
, (17)

and from that we obtain

δn2
s (k0) =

∑
k

(
nk

s

)2
P d

k,k0
−

(∑
k

nk
sP

d
k,k0

)2

, (18)

where the dependence on the initial basis state |k0〉 has been
explicitly indicated in Eq. (18).

We have numerically checked this relation; see the data in
Fig. 5(a), from which one can see a good correspondence to
the above relation in the case when the eigenstates are strongly
chaotic. In Fig. 5(b) the same quantity has been plotted for
a nonchaotic case. As one can see, quantum fluctuations
deviate strongly from the prediction given in Eq. (16). This
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FIG. 5. Relative quantum fluctuations (δns/ns )2 − 1. Initial
states |k0〉 are basis states chosen in the whole energy spectrum. On
the x axis the averaged values of ns are plotted. The dashed line is
the theoretical prediction 1/ns . Different colors refer to different s

values. (a) The V = 0.4 case of strong quantum chaos and (b) the
V = 0.04 case of nonchaotic eigenstates for which Eq. (16) is not
valid.

result shows once more that even for a finite number of
particles, provided a strong enough interparticle interaction,
conventional statistical mechanics works extremely well.

V. TWO-POINT CORRELATION FUNCTION

Let us now study how the onset of the BE distribution is
manifested by the emergence of correlations between occu-
pation numbers. First, we start with the two-point correlation
function Cs,s+1(t ) between neighboring occupation numbers

Cs,s+1(t ) = 〈k0|[n̂s (t ) − n̂s][n̂s+1(t ) − n̂s+1]|k0〉. (19)

Initially the correlations are absent, Cs,s+1(0) = 0, however,
they appear, due to the dynamics, in time. The evolution of
Cs,s+1(t ) is shown in Fig. 6(a) for all s values. As one can see,
there is a clear relaxation to steady-state values after a time tS .
The negative or positive sign of the asymptotic correlations
is related to the particular choice of the initial state. It is also
instructive to introduce the global correlator C (2), which is the
sum of the correlators between all neighboring single-particle
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100

101
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(2
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10-2 10-1 100 101 102
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tStS

FIG. 6. (a) Correlation function Cs,s+1(t ) for different s values.
(b) Global two-point correlation function C (2)(t ) (red squares). The
dashed line is given by Eq. (23). The horizontal line corresponds to
Eq. (24). The initial state and parameters are the same as in Fig. 3.
The average over ten realizations of the random potential was used.
In both (a) and (b) the vertical dotted line indicates the saturation
time tS .

energy levels εs and εs+1,

C (2)(t ) =
∣∣∣∣∣
M−1∑
s=1

Cs,s+1(t )

∣∣∣∣∣. (20)

This correlator is independent of the specific s level and it
can be used as a global measure of correlations between
occupation numbers of nearest single-particle energy levels.
Starting from the initial state |k0〉, it can be written as

C (2)(t ) =
M−1∑
s=1

〈k0|[n̂s (t ) − n̂s][n̂s+1(t ) − n̂s+1]|k0〉

=
M−1∑
s=1

〈k0|n̂s (t )n̂s+1(t )|k0〉 − nk0
s 〈k0|ns+1(t )|k0〉

− n
k0
s+1〈k0|ns (t )|k0〉 + nk0

s n
k0
s+1

≡
M−1∑
s=1

∑
k

|〈k|ψ (t )〉|2Wsr
k,k0

, (21)

where n̂s (t ) = eiHt n̂se
−iH t and we have defined

Wsr
k,k0

= [
nk

sn
k
r + nk0

s nk0
r − nk0

s nk
r − nk

sn
k0
r

]
. (22)

From this expression it is easy to get the short-time behavior

C (2)(t ) � t2

∣∣∣∣∣
M−1∑
s=1

M∑
r=s+1

∑
k

H 2
k,k0

Wsr
k,k0

∣∣∣∣∣ + o(t4). (23)

The agreement between our numerical results obtained by
the dynamics and Eq. (23) marks the range of validity of
perturbation theory. As one can see, Eq. (23) does not contain
either eigenvalues or eigenfunctions. This means that in order
to get the initial spread of the correlator, there is no need to
diagonalize the Hamiltonian.

In order to compute the infinite-time average (stationary
value), we note that since the number operator n̂s giving the
number of particles in the single-particle energy level εs is
diagonal in the unperturbed many-body basis, i.e., 〈k|n̂s |k′〉 =
δk,k′nk

s , then

C (2) =
M−1∑
s=1

∑
k

P d
k,k0

Wsr
k,k0

. (24)

The time evolution for C (2)(t ) is shown in Fig. 6, together
with the analytical predictions. The correspondence between
numerical data and analytical predictions is impressive and as
one can see, no room is left between the perturbation theory
estimate and the equilibration regime where thermalization
emerges. This is at variance with the behavior of the four-point
correlator that will be studied in the next section. We can
conclude that the whole dynamics of C (2)(t ) is fully described
by the analytical expressions (23) and (24).

VI. FOUR-POINT CORRELATION FUNCTION (OTOC)

Let us study the four-point correlator between neighboring
single-particle energy levels

Os,s+1(t ) = 〈k0|[n̂s (t ), n̂s+1(0)]|2|k0〉. (25)
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FIG. 7. Evolution of the four-point correlator Os,s+1(t ) for s = 5.
The dashed line is the analytical prediction (31). The horizontal line
corresponds to Eq. (29). The dotted line is the fit for 0.07 < t <

0.5 (outside the perturbative regime), giving the t2.5 dependence.
The initial state is |�0〉 = |00006000000〉 and N = 6, M = 11, and
V = 0.4. The vertical dotted line indicates the saturation time tS .

This correlator, also known as the OTOC, has been introduced
in the frame of the Sachdev-Ye-Kitaev (SYK) model [46,47]
and widely discussed in view of various physical applications
(see, e.g., [30,31]).

From the definition it is clear that Os,s+1(0) = 0. In order
to compute explicitly Eq. (25), let us insert a completeness
relation so that

Os,s+1(t ) =
∑

k

|〈k0|n̂s (t )|k〉|2
(
nk

s+1 − n
k0
s+1

)2
. (26)

Setting

〈k0|n̂s (t )|k〉 =
∑

q

Fk,q (t )F∗
k0,q

(t )nq
s , (27)

where we have defined

Fk,q (t ) = 〈q|e−iH t |k〉 =
∑

α

Cα
q Cα

k e−iEαt , (28)

the infinite-time average can be written as

Os,s+1 =
∑

k

(
nk

s+1 − n
k0
s+1

)2

⎧⎨
⎩

[∑
α

Cα
k Cα

k0
N α,α

s

]2

+
∑
α �=β

∣∣Cα
k

∣∣2∣∣Cβ

k0

∣∣2(N α,β
s

)2

⎫⎬
⎭, (29)

where we have defined the matrix

N α,β
s =

∑
k

Cα
k C

β

k nk
s . (30)

After some algebra and following the previous procedure, one
can obtain the short-time behavior

Os,s+1(t ) � t2
∑
k �=k0

H 2
k,k0

(
nk

s − nk0
s

)2(
nk

s+1 − n
k0
s+1

)2
, (31)

i.e., the correlator Os,s+1(t ) increases in time quadratically
on a short timescale, whose validity defines the perturbative
regime. Numerical data for Os,s+1(t ) are shown in Fig. 7 to-
gether with the expressions (31) and (29). Our results demon-
strate that beyond the perturbative regime, characterized by
a quadratic growth in time, another more interesting regime

appears where a clear deviation from the t2 dependence
occurs. Although the time window in which deviations from
the quadratic growth appear is too small to draw definite con-
clusions, the standard power-law fitting gives the approximate
relation t2.5, which is in agreement with the results recently
found in [48]. This should indicate that the TBRI model
approaches the thermal regime as a slow scrambler at variance
with the SYK model, where a fast (exponential) scrambling is
expected. Of course, there are many differences between the
two models which do not permit a conclusive statement: (i)
The TBRI model conserves the number of particles while the
SYK model does not, (ii) here we consider a small number
of particles N , while in the SYK model N → ∞, and (iii)
observables are different. However, our data indicate that the
exponential increase of the OTOC may not occur for a finite
number of particles even in the presence of strong chaos and
thermalization.

VII. CONCLUSION AND DISCUSSION

We addressed the question of how the conventional Bose-
Einstein distribution emerges in time in an isolated system
with a finite number of interacting bosons. Since this process
is accompanied by an increase of strong correlations between
the occupation numbers ns (t ), a large part of our study was
devoted to the details of the time dependence of these correla-
tions.

For our analysis we have used the well known model (1)
describing bosons interacting with each other via two-body
random matrix elements. By exploring the quench dynamics,
we showed that the BE distribution emerges on the same
timescale tS on which the number of principal components in
the wave function increases exponentially in time in the many-
body Hilbert space [29]. This timescale tS is proportional to
the number N of bosons and defines the time after which one
can speak of a complete thermalization in the system.

In order to confirm the true statistical behavior of the oc-
cupation numbers, we have carefully studied the fluctuations
of ns (t ) after the relaxation. In accordance with standard
statistical mechanics, our data manifest that the fluctuations
are of the Gaussian type and that they are small compared
to the mean values of ns (t ). It was also shown that relative
quantum fluctuations δn2

s /n2
s are also in agreement with the

Bose statistics (see [45]).
In order to reveal how the process of thermalization is

related to the onset of correlations, we have studied, both ana-
lytically and numerically, two correlators. One is the standard
two-point correlator between nearest occupation numbers ns

and ns+1 and the other is the out-of-time-order correlator
discussed in the literature. We have found that the two-point
correlator increases in time quadratically before the satura-
tion, in agreement with perturbation theory. As for the OTOC,
beyond the initial perturbative quadratic growth and before the
saturation, our numerical data demonstrate an algebraic de-
pendence t2.5. Remarkably, the exponent found characterizing
the polynomial growth is in agreement with recent findings
[48] but at variance with the exponential prediction obtained
for a very large number of particles in closely related random
models [30,31].

Our results also show how the information initially en-
coded in a local unperturbed state spreads over the whole
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system and transforms onto global correlations specified
by the BE distribution of occupation numbers. Although
the dynamics is completely reversible due to the unitarity
of the evolution operator, it is practically impossible to
extract the information about the initial state by measur-
ing the correlations between the components of the wave
function. The full information about the initial state can
be extracted only if there is additionally complete knowl-
edge of the random operator V . In this sense, one can
indeed speak of a practical loss of information due to
scrambling. On the other hand, the process of this loss
is accompanied by the emergence of global (thermody-

namic) correlations, as demonstrated by the data reported
here.

We hope that our study can help to understand the relation
between thermalization and scrambling from one side and the
onset of correlations in the evolution of chaotic systems from
the other one. Since the TBRI matrix model (1) has been
proved to manifest generic statistical properties occurring
in realistic physical systems (see, for example, [49]), the
obtained results can be confirmed experimentally by studying
interacting bosons in optical traps. Our study may also be
important in view of the problem of black hole scrambling
(see [27,28] and references therein).
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